Articles | Volume 26, issue 1
https://doi.org/10.5194/hess-26-149-2022
https://doi.org/10.5194/hess-26-149-2022
Research article
 | 
12 Jan 2022
Research article |  | 12 Jan 2022

A space–time Bayesian hierarchical modeling framework for projection of seasonal maximum streamflow

Álvaro Ossandón, Manuela I. Brunner, Balaji Rajagopalan, and William Kleiber

Related authors

Elasticity curves describe streamflow sensitivity to precipitation across the entire flow distribution
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-407,https://doi.org/10.5194/hess-2022-407, 2023
Preprint under review for HESS
Short summary
Spatial variability in Alpine reservoir regulation: deriving reservoir operations from streamflow using generalized additive models
Manuela Irene Brunner and Philippe Naveau
Hydrol. Earth Syst. Sci., 27, 673–687, https://doi.org/10.5194/hess-27-673-2023,https://doi.org/10.5194/hess-27-673-2023, 2023
Short summary
Floods and droughts: a multivariate perspective on hazard estimation
Manuela Irene Brunner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-20,https://doi.org/10.5194/hess-2023-20, 2023
Preprint under review for HESS
Short summary
Does higher spatial resolution improve snow estimates?
Edward H. Bair, Jeff Dozier, Karl Rittger, Timbo Stillinger, William Kleiber, and Robert E. Davis
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-230,https://doi.org/10.5194/tc-2022-230, 2022
Preprint under review for TC
Short summary
Lessons from the 2018–2019 European droughts: a collective need for unifying drought risk management
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022,https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Stochastic approaches
A mixed distribution approach for low-flow frequency analysis – Part 1: Concept, performance, and effect of seasonality
Gregor Laaha
Hydrol. Earth Syst. Sci., 27, 689–701, https://doi.org/10.5194/hess-27-689-2023,https://doi.org/10.5194/hess-27-689-2023, 2023
Short summary
Significant regime shifts in historical water yield in the Upper Brahmaputra River basin
Hao Li, Baoying Shan, Liu Liu, Lei Wang, Akash Koppa, Feng Zhong, Dongfeng Li, Xuanxuan Wang, Wenfeng Liu, Xiuping Li, and Zongxue Xu
Hydrol. Earth Syst. Sci., 26, 6399–6412, https://doi.org/10.5194/hess-26-6399-2022,https://doi.org/10.5194/hess-26-6399-2022, 2022
Short summary
A geostatistical spatially varying coefficient model for mean annual runoff that incorporates process-based simulations and short records
Thea Roksvåg, Ingelin Steinsland, and Kolbjørn Engeland
Hydrol. Earth Syst. Sci., 26, 5391–5410, https://doi.org/10.5194/hess-26-5391-2022,https://doi.org/10.5194/hess-26-5391-2022, 2022
Short summary
Low-flow estimation beyond the mean – expectile loss and extreme gradient boosting for spatiotemporal low-flow prediction in Austria
Johannes Laimighofer, Michael Melcher, and Gregor Laaha
Hydrol. Earth Syst. Sci., 26, 4553–4574, https://doi.org/10.5194/hess-26-4553-2022,https://doi.org/10.5194/hess-26-4553-2022, 2022
Short summary
Impact of bias nonstationarity on the performance of uni- and multivariate bias-adjusting methods: a case study on data from Uccle, Belgium
Jorn Van de Velde, Matthias Demuzere, Bernard De Baets, and Niko E. C. Verhoest
Hydrol. Earth Syst. Sci., 26, 2319–2344, https://doi.org/10.5194/hess-26-2319-2022,https://doi.org/10.5194/hess-26-2319-2022, 2022
Short summary

Cited articles

Akaike, H.: Akaike's Information Criterion, Springer Berlin Heidelberg, Berlin, Heidelberg, p. 25, ISBN 978-3-642-04898-2, https://doi.org/10.1007/978-3-642-04898-2_110, 2011. a
Anghileri, D., Voisin, N., Castelletti, A., Pianosi, F., Nijssen, B., and Lettenmaier, D. P.: Value of long-term streamflow forecasts to reservoir operations for water supply in snow-dominated river catchments, Water Res. Res., 52, 4209–4225, https://doi.org/10.1002/2015WR017864, 2016. a
Apputhurai, P. and Stephenson, A. G.: Spatiotemporal hierarchical modelling of extreme precipitation in Western Australia using anisotropic Gaussian random fields, Environ. Ecol. Stat., 20, 667–677, https://doi.org/10.1007/s10651-013-0240-9, 2013. a
Atyeo, J. and Walshaw, D.: A region-based hierarchical model for extreme rainfall over the UK, incorporating spatial dependence and temporal trend, Environmetrics, 23, 509–521, https://doi.org/10.1002/env.2155, 2012. a
Bracken, C., Rajagopalan, B., and Prairie, J.: A multisite seasonal ensemble streamflow forecasting technique, Water Resour. Res., 46, W03532, https://doi.org/10.1029/2009WR007965, 2010. a
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Timely projections of seasonal streamflow extremes on a river network can be useful for flood risk mitigation, but this is challenging, particularly under space–time nonstationarity. We develop a space–time Bayesian hierarchical model (BHM) using temporal climate covariates and copulas to project seasonal streamflow extremes and the attendant uncertainties. We demonstrate this on the Upper Colorado River basin to project spring flow extremes using the preceding winter’s climate teleconnections.