Articles | Volume 26, issue 1
https://doi.org/10.5194/hess-26-149-2022
https://doi.org/10.5194/hess-26-149-2022
Research article
 | 
12 Jan 2022
Research article |  | 12 Jan 2022

A space–time Bayesian hierarchical modeling framework for projection of seasonal maximum streamflow

Álvaro Ossandón, Manuela I. Brunner, Balaji Rajagopalan, and William Kleiber

Data sets

Projection of Seasonal Streamflow Extremes for UCRB Dataset Alvaro Ossandon https://doi.org/10.4211/hs.d8c1b413951843cf9be968e9d2a4aa79

Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Timely projections of seasonal streamflow extremes on a river network can be useful for flood risk mitigation, but this is challenging, particularly under space–time nonstationarity. We develop a space–time Bayesian hierarchical model (BHM) using temporal climate covariates and copulas to project seasonal streamflow extremes and the attendant uncertainties. We demonstrate this on the Upper Colorado River basin to project spring flow extremes using the preceding winter’s climate teleconnections.