Articles | Volume 25, issue 2
https://doi.org/10.5194/hess-25-565-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-565-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions
Mahmoud Osman
CORRESPONDING AUTHOR
Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
Benjamin F. Zaitchik
Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
Hamada S. Badr
Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
Jordan I. Christian
School of Meteorology, University of Oklahoma, Norman, OK, USA
Tsegaye Tadesse
National Drought Mitigation Center, University of Nebraska–Lincoln, Lincoln, NE, USA
Jason A. Otkin
Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, WI, USA
Martha C. Anderson
Hydrology and Remote Sensing Laboratory, Agricultural Research Service, USDA, Beltsville, MD, USA
Related authors
No articles found.
Sadegh Ranjbar, Danielle Losos, Sophie Hoffman, Yafang Zhong, Jason A. Otkin, Ankur Rashmikant Desai, Martha Anderson, Christopher R. Hain, and Paul Christopher Stoy
EGUsphere, https://doi.org/10.22541/essoar.174792936.66373305/v1, https://doi.org/10.22541/essoar.174792936.66373305/v1, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Water moves from land to air in a process called evapotranspiration, which affects weather, crops, and water supply. Using satellites and AI, we created a system that tracks this water movement every five minutes, day and night, even through clouds. This provides continuous insights that can help manage water, predict weather, and better understand the water cycle.
Nicholas K. Corak, Jason A. Otkin, Trent W. Ford, and Lauren E. L. Lowman
Hydrol. Earth Syst. Sci., 28, 1827–1851, https://doi.org/10.5194/hess-28-1827-2024, https://doi.org/10.5194/hess-28-1827-2024, 2024
Short summary
Short summary
We simulate how dynamic vegetation interacts with the atmosphere during extreme drought events known as flash droughts. We find that plants nearly halt water and carbon exchanges and limit their growth during flash drought. This work has implications for how to account for changes in vegetation state during extreme drought events when making predictions under future climate scenarios.
A. Taravat, G. Abebe, B. Gessesse, and T. Tadesse
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W9-2024, 357–362, https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-357-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W9-2024-357-2024, 2024
R. Bradley Pierce, Monica Harkey, Allen Lenzen, Lee M. Cronce, Jason A. Otkin, Jonathan L. Case, David S. Henderson, Zac Adelman, Tsengel Nergui, and Christopher R. Hain
Atmos. Chem. Phys., 23, 9613–9635, https://doi.org/10.5194/acp-23-9613-2023, https://doi.org/10.5194/acp-23-9613-2023, 2023
Short summary
Short summary
We evaluate two high-resolution model simulations with different meteorological inputs but identical chemistry and anthropogenic emissions, with the goal of identifying a model configuration best suited for characterizing air quality in locations where lake breezes commonly affect local air quality along the Lake Michigan shoreline. This analysis complements other studies in evaluating the impact of meteorological inputs and parameterizations on air quality in a complex environment.
Jason A. Otkin, Lee M. Cronce, Jonathan L. Case, R. Bradley Pierce, Monica Harkey, Allen Lenzen, David S. Henderson, Zac Adelman, Tsengel Nergui, and Christopher R. Hain
Atmos. Chem. Phys., 23, 7935–7954, https://doi.org/10.5194/acp-23-7935-2023, https://doi.org/10.5194/acp-23-7935-2023, 2023
Short summary
Short summary
We performed model simulations to assess the impact of different parameterization schemes, surface initialization datasets, and analysis nudging on lower-tropospheric conditions near Lake Michigan. Simulations were run with high-resolution, real-time datasets depicting lake surface temperatures, green vegetation fraction, and soil moisture. The most accurate results were obtained when using high-resolution sea surface temperature and soil datasets to constrain the model simulations.
Sangchul Lee, Dongho Kim, Gregory W. McCarty, Martha Anderson, Feng Gao, Fangni Lei, Glenn E. Moglen, Xuesong Zhang, Haw Yen, Junyu Qi, Wade Crow, In-Young Yeo, and Liang Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-187, https://doi.org/10.5194/hess-2022-187, 2022
Manuscript not accepted for further review
Short summary
Short summary
Watershed modeling is important to protect water resources. However, errors are involved in watershed modeling. To reduce errors, remotely sensed evapotranspiration data are widely used. However, the use of remotely sensed evapotranspiration data still includes errors. This study applied two remotely sensed data (evapotranspiration and leaf area index) into watershed modeling to reduce errors. The results showed advancement of watershed modeling by two remotely sensed data.
Wanshu Nie, Sujay V. Kumar, Kristi R. Arsenault, Christa D. Peters-Lidard, Iliana E. Mladenova, Karim Bergaoui, Abheera Hazra, Benjamin F. Zaitchik, Sarith P. Mahanama, Rachael McDonnell, David M. Mocko, and Mahdi Navari
Hydrol. Earth Syst. Sci., 26, 2365–2386, https://doi.org/10.5194/hess-26-2365-2022, https://doi.org/10.5194/hess-26-2365-2022, 2022
Short summary
Short summary
The MENA (Middle East and North Africa) region faces significant food and water insecurity and hydrological hazards. Here we investigate the value of assimilating remote sensing data sets into an Earth system model to help build an effective drought monitoring system and support risk mitigation and management by countries in the region. We highlight incorporating satellite-informed vegetation conditions into the model as being one of the key processes for a successful application for the region.
Justin Schulte, Frederick Policelli, and Benjamin Zaitchik
Nonlin. Processes Geophys., 29, 1–15, https://doi.org/10.5194/npg-29-1-2022, https://doi.org/10.5194/npg-29-1-2022, 2022
Short summary
Short summary
The skewness of a time series is commonly used to quantify the extent to which positive (negative) deviations from the mean are larger than negative (positive) ones. However, in some cases, traditional skewness may not provide reliable information about time series skewness, motivating the development of a waveform skewness index in this paper. The waveform skewness index is used to show that changes in the relationship strength between climate time series could arise from changes in skewness.
Anam M. Khan, Paul C. Stoy, James T. Douglas, Martha Anderson, George Diak, Jason A. Otkin, Christopher Hain, Elizabeth M. Rehbein, and Joel McCorkel
Biogeosciences, 18, 4117–4141, https://doi.org/10.5194/bg-18-4117-2021, https://doi.org/10.5194/bg-18-4117-2021, 2021
Short summary
Short summary
Remote sensing has played an important role in the study of land surface processes. Geostationary satellites, such as the GOES-R series, can observe the Earth every 5–15 min, providing us with more observations than widely used polar-orbiting satellites. Here, we outline current efforts utilizing geostationary observations in environmental science and look towards the future of GOES observations in the carbon cycle, ecosystem disturbance, and other areas of application in environmental science.
Sangchul Lee, Gregory W. McCarty, Glenn E. Moglen, Haw Yen, Fangni Lei, Martha Anderson, Feng Gao, Wade Crow, In-Young Yeo, and Liang Sun
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-669, https://doi.org/10.5194/hess-2020-669, 2021
Publication in HESS not foreseen
Yifan Zhou, Benjamin F. Zaitchik, Sujay V. Kumar, Kristi R. Arsenault, Mir A. Matin, Faisal M. Qamer, Ryan A. Zamora, and Kiran Shakya
Hydrol. Earth Syst. Sci., 25, 41–61, https://doi.org/10.5194/hess-25-41-2021, https://doi.org/10.5194/hess-25-41-2021, 2021
Short summary
Short summary
South and Southeast Asia face significant food insecurity and hydrological hazards. Here we introduce a South and Southeast Asia hydrological monitoring and sub-seasonal to seasonal forecasting system (SAHFS-S2S) to help local governments and decision-makers prepare for extreme hydroclimatic events. The monitoring system captures soil moisture variability well in most regions, and the forecasting system offers skillful prediction of soil moisture variability 2–3 months in advance, on average.
Cited articles
Anderson, M. C., Hain, C., Otkin, J., Zhan, X., Mo, K., Svoboda, M.,
Wardlow, B., and Pimstein, A.: An Intercomparison of Drought Indicators Based
on Thermal Remote Sensing and NLDAS-2 Simulations with U.S. Drought Monitor
Classifications, J. Hydrometeorol., 14, 1035–1056,
https://doi.org/10.1175/jhm-d-12-0140.1, 2013.
Andreadis, K. M. and Lettenmaier, D. P.: Trends in 20th century drought over
the continental United States, Geophys. Res. Lett., 33, L10403,
https://doi.org/10.1029/2006GL025711, 2006.
Basara, J. B., Christian, J. I., Wakefield, R. A., Otkin, J. A., Hunt, E. H.,
and Brown, D. P.: The evolution, propagation, and spread of flash drought in
the Central United States during 2012, Environ. Res. Lett., 14, 084025,
https://doi.org/10.1088/1748-9326/ab2cc0, 2019.
Basara, J. B., Christian, J., Wakefield, R., Otkin, J. A., Hunt, E. D., and
Grace, T. M.: A Look Back at a Historic Flash Drought Event – The Central
United States Drought of 1988, in: 34th Conference on Hydrology, AMS, Boston,
MA, available at:
https://ams.confex.com/ams/2020Annual/webprogram/Paper367992.html (last access:
11 July 2020), 2020.
Bukovsky, M. S.: Masks for the Bukovsky regionalization of North America,
available at: http://www.narccap.ucar.edu/contrib/bukovsky/ (last access: 2 February 2021),
2011.
Changnon, S. A., Kunkel, K. E., and Reinke, B. C.: Impacts and Responses to
the 1995 Heat Wave: A Call to Action, B. Am. Meteorol. Soc., 77,
1497–1506, https://doi.org/10.1175/1520-0477(1996)077<1497:IARTTH>2.0.CO;2, 1996.
Chen, L. G., Gottschalck, J., Hartman, A., Miskus, D., Tinker, R., and
Artusa, A.: Flash Drought Characteristics Based on U.S. Drought Monitor,
Atmosphere (Basel), 10, 498, https://doi.org/10.3390/atmos10090498, 2019.
Christian, J. I., Basara, J. B., Otkin, J. A., Hunt, E. D., Wakefield, R.
A., Flanagan, P. X., and Xiao, X.: A Methodology for Flash Drought
Identification: Application of Flash Drought Frequency Across the United
States, J. Hydrometeorol., 20, 833–846, https://doi.org/10.1175/JHM-D-18-0198.1,
2019a.
Christian, J. I., Basara, J. B., Otkin, J. A., and Hunt, E. D.: Regional
characteristics of flash droughts across the United States, Environ. Res.
Commun., 1, 125004, https://doi.org/10.1088/2515-7620/ab50ca, 2019b.
Christian, J. I., Jeffrey, B. B., Hunt, E. D., Otkin, J. A., and Xiao, X.:
Flash drought development and cascading impacts associated with the 2010
Russian Heatwave, Environ. Res. Lett., 15, 094078, https://doi.org/10.1088/1748-9326/ab9faf, 2020.
Ejeta, M.: The 2011 Texas Drought in Hindsight, pp. 2464–2471, World
Environmental And Water Resources Congress, Albuquerque, New Mexico, United
States, 2012.
Ford, T. W. and Labosier, C. F.: Meteorological conditions associated with
the onset of flash drought in the Eastern United States, Agric. For.
Meteorol., 247, 414–423, https://doi.org/10.1016/J.AGRFORMET.2017.08.031, 2017.
Fuchs, B., Wood, D., and Ebbeka, D.: From Too Much to Too Little: How the central U.S. drought of 2012 evolved out of one of the most devastating floods on record in 2011, Drought Mitigation Center Faculty Publication 118, 99 pp., available at: https://digitalcommons.unl.edu/droughtfacpub/118/ (last access: 2 February 2021), 2015.
Gerken, T., Bromley, G. T., Ruddell, B. L., Williams, S., and Stoy, P. C.: Convective suppression before and during the United States Northern Great Plains flash drought of 2017, Hydrol. Earth Syst. Sci., 22, 4155–4163, https://doi.org/10.5194/hess-22-4155-2018, 2018.
He, M., Kimball, J. S., Yi, Y., Running, S., Guan, K., Jensco, K., Maxwell,
B., and Maneta, M.: Impacts of the 2017 flash drought in the US Northern
plains informed by satellite-based evapotranspiration and solar-induced
fluorescence, Environ. Res. Lett., 14, 074019, https://doi.org/10.1088/1748-9326/ab22c3,
2019.
Heim Jr., R. R.: A Review of Twentieth-Century Drought Indices Used in the
United States, B. Am. Meteorol. Soc., 83, 1149–1166,
https://doi.org/10.1175/1520-0477-83.8.1149, 2002.
Hoerling, M., Schubert, S., and Mo, K. C.: An Interpretation of the Origins
of the 2012 Central Great Plains Drought Assessment Report, NOAA Drought Task Force Narrative Team, available at:
https://psl.noaa.gov/csi/factsheets/pdf/noaa-gp-drought-assessment-report.pdf, (last access: 2
February 2021), 2013.
Hoerling, M., Eischeid, J., Kumar, A., Leung, R., Mariotti, A., Mo, K.,
Schubert, S., and Seager, R.: Causes and Predictability of the 2012 Great
Plains Drought, B. Am. Meteorol. Soc., 95, 269–282,
https://doi.org/10.1175/bams-d-13-00055.1, 2014.
Hunt, E. D., Hubbard, K. G., Wilhite, D. A., Arkebauer, T. J., and Dutcher,
A. L.: The development and evaluation of a soil moisture index, Int. J.
Climatol., 29, 747–759, https://doi.org/10.1002/joc.1749, 2009.
IPCC: Summary for Policymakers, in: Global Warming of 1.5 ∘C. An
IPCC Special Report on the impacts of global warming of 1.5 ∘C
above pre-industrial levels and related global greenhouse gas emission
pathways, in the context of strengthening the global response to, Geneva,
Switzerland, 32 pp., available at: https://www.ipcc.ch/sr15/chapter/spm/ (last access: 2 February 2021),
2018.
Jencso, K., Parker, B., Downey, M., Hadwen, T., Hoell, A., Rattling Leaf,
J., Edwards, L., Akyuz, A., Kluck, D., Peck, D., Rath, M., Syner, M.,
Umphlett, N., Wilmer, H., Barnes, V., Clabo, D., Fuchs, B., He, M., Johnson,
S., Kimball, J., Longknife, D., Martin, D., Nickerson, N., Sage, J., and
Fransen, T.: Flash drought: Lessons learned from the 2017 drought across the
U.S. northern plains and Canadian prairies, NOAA National Integrated Drought Information System, available at:
https://www.drought.gov/sites/default/files/2020-09/NIDIS_LL_FlashDrought_2017_Final_6.6.2019.pdf (last access: 2 February 2021), 2019.
Kampe, T. U.: NEON: the first continental-scale ecological observatory with
airborne remote sensing of vegetation canopy biochemistry and structure, J.
Appl. Remote Sens., 4, 043510, https://doi.org/10.1117/1.3361375, 2010.
Kimball, J. S., Jones, L., Jensco, K., He, M., Maneta, M. and Reichle, R.:
Smap L4 Assessment of the Us Northern Plains 2017 Flash Drought, in:
International Geoscience and Remote Sensing Symposium (IGARSS), pp.
5366–5369, Institute of Electrical and Electronics Engineers Inc., 2019.
Konrad II, C. E. and Knox, P.: The Southeastern Drought and Wildfires of
2016, available at:
http://www.sercc.com/NIDISDroughtAssessmentFINAL.pdf (last access: 2 February 2021), 2018.
Koster, R. D., Dirmeyer, P. A., Guo, Z., Bonan, G., Chan, E., Cox, P.,
Gordon, C. T., Kanae, S., Kowalczyk, E., Lawrence, D., Liu, P., Lu, C. H.,
Malyshev, S., McAvaney, B., Mitchell, K., Mocko, D., Oki, T., Oleson, K.,
Pitman, A., Sud, Y. C., Taylor, C. M., Verseghy, D., Vasic, R., Xue, Y., and
Yamada, T.: Regions of strong coupling between soil moisture and
precipitation, Science, 305, 1138–1140,
https://doi.org/10.1126/science.1100217, 2004.
Koster, R. D., Schubert, S. D., Wang, H., Mahanama, S. P., and Deangelis, A.
M.: Flash drought as captured by reanalysis data: Disentangling the
contributions of precipitation deficit and excess evapotranspiration, J.
Hydrometeorol., 20, 1241–1258, https://doi.org/10.1175/JHM-D-18-0242.1, 2019.
Li, J., Wang, Z., Wu, X., Guo, S., and Chen, X.: Flash droughts in the Pearl
River Basin, China: Observed characteristics and future changes, Sci. Total
Environ., 707, 136074, https://doi.org/10.1016/j.scitotenv.2019.136074, 2020.
Liu, Y., Zhu, Y., Ren, L., Otkin, J., Hunt, E. D., Yang, X., Yuan, F., and
Jian, S.: Two different methods for flash drought identification: Comparison
of their strengths and limitations, J. Hydrometeorol., 21, 691–704,
https://doi.org/10.1175/JHM-D-19-0088.1, 2020.
Lyon, B. and Dole, R. M.: A Diagnostic Comparison of the 1980 and 1988 U.S.
Summer Heat Wave-Droughts, J. Clim., 8, 1658–1675,
https://doi.org/10.1175/1520-0442(1995)008<1658:ADCOTA>2.0.CO;2,
1995.
Mallya, G., Zhao, L., Song, X. C., Niyogi, D., and Govindaraju, R. S.: 2012
Midwest drought in the United States, J. Hydrol. Eng., 18, 737–745,
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000786, 2013.
McEvoy, D. J., Huntington, J. L., Hobbins, M. T., Wood, A., Morton, C.,
Anderson, M., and Hain, C.: The evaporative demand drought index. Part II:
CONUS-wide assessment against common drought indicators, J. Hydrometeorol.,
17, 1763–1779, https://doi.org/10.1175/JHM-D-15-0122.1, 2016.
Mesinger, F., DiMego, G., Kalnay, E., Mitchell, K., Shafran, P. C.,
Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery, E. H., Ek,
M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H., Lin, Y., Manikin, G.,
Parrish, D., and Shi, W.: North American regional reanalysis, B. Am.
Meteorol. Soc., 87, 343–360, https://doi.org/10.1175/BAMS-87-3-343, 2006.
Mo, K. C. and Lettenmaier, D. P.: Heat wave flash droughts in decline,
Geophys. Res. Lett., 42, 2823–2829, https://doi.org/10.1002/2015gl064018, 2015.
Mo, K. C. and Lettenmaier, D. P.: Precipitation Deficit Flash Droughts over
the United States, J. Hydrometeorol., 17, 1169–1184,
https://doi.org/10.1175/jhm-d-15-0158.1, 2016.
National Oceanic and Atmospheric Administration: The Drought of 1988 and
Beyond, available at:
https://repository.library.noaa.gov/view/noaa/10952/noaa_10952_DS1.pdf (last access: 2 February 2021), 1988.
Nielsen-Gammon, J.: The 2011 Texas Drought, Texas Water J., 3, 59–95,
https://doi.org/10.21423/twj.v3i1.6463, 2012.
Osman, M., Zaitchik, B. F., Badr, H. S., Christian, J. I., Tadesse, T., Otkin, J. A., and Anderson, M. C.: mosman01/Flash_Droughts: Flash Droughts – SMVI (Version v1.0.0) [Data set], Flash drought onset over the Contiguous United States: Sensitivity of inventories and trends to quantitative definitions, Zenodo, https://doi.org/10.5281/zenodo.4501775, 2021.
Otkin, J. A., Anderson, M. C., Hain, C., Mladenova, I. E., Basara, J. B., and
Svoboda, M.: Examining Rapid Onset Drought Development Using the Thermal
Infrared–Based Evaporative Stress Index, J. Hydrometeorol., 14,
1057–1074, https://doi.org/10.1175/JHM-D-12-0144.1, 2013.
Otkin, J. A., Anderson, M. C., Hain, C., Svoboda, M., Johnson, D., Mueller,
R., Tadesse, T., Wardlow, B., and Brown, J.: Assessing the evolution of soil
moisture and vegetation conditions during the 2012 United States flash
drought, Agric. For. Meteorol., 218–219, 230–242,
https://doi.org/10.1016/j.agrformet.2015.12.065, 2016.
Otkin, J. A., Svoboda, M., Hunt, E. D., Ford, T. W., Anderson, M. C., Hain,
C., Basara, J. B., Otkin, J. A., Svoboda, M., Hunt, E. D., Ford, T. W.,
Anderson, M. C., Hain, C., and Basara, J. B.: Flash Droughts: A Review and
Assessment of the Challenges Imposed by Rapid-Onset Droughts in the United
States, B. Am. Meteorol. Soc., 99, 911–919,
https://doi.org/10.1175/BAMS-D-17-0149.1, 2018.
Otkin, J. A., Zhong, Y., Hunt, E. D., Basara, J., Svoboda, M., Anderson, M.
C., and Hain, C.: Assessing the evolution of soil moisture and vegetation
conditions during a flash drought-flash recovery sequence over the
South-Central United States, J. Hydrometeorol., 20, 549–562,
https://doi.org/10.1175/JHM-D-18-0171.1, 2019.
Park Williams, A., Cook, B. I., Smerdon, J. E., Bishop, D. A., Seager, R.,
and Mankin, J. S.: The 2016 Southeastern U.S. Drought: An Extreme Departure
From Centennial Wetting and Cooling, J. Geophys. Res.-Atmos., 122,
10888–10905, https://doi.org/10.1002/2017JD027523, 2017.
Pendergrass, A. G., Meehl, G. A., Pulwarty, R., Hobbins, M., Hoell, A.,
AghaKouchak, A., Bonfils, C. J. W., Gallant, A. J. E., Hoerling, M.,
Hoffmann, D., Kaatz, L., Lehner, F., Llewellyn, D., Mote, P., Neale, R. B.,
Overpeck, J. T., Sheffield, A., Stahl, K., Svoboda, M., Wheeler, M. C.,
Wood, A. W., and Woodhouse, C. A.: Flash droughts present a new challenge for
subseasonal-to-seasonal prediction, Nat. Clim. Chang., 10, 191–199,
https://doi.org/10.1038/s41558-020-0709-0, 2020.
Ramlow, J. M. and Kuller, L. H.: Effects of the summer heat wave of 1988 on
daily mortality in Allegheny County, PA, Public Health Rep., 105,
283–289, available at:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1579995/ (last access: 24 June 2020), 1990.
Senay, G. B., Budde, M. . B., Brown, J. F., and Verdin, J. P.: Mapping
Flash Drought in the U.S. Southern Great Plains, in: 22nd Conference on
Hydrology, AMS, New Orleans, LA, New Orleans, LA, available at:
https://ams.confex.com/ams/88Annual/techprogram/paper_134349.htm (last access: 2 February 2021), 2008.
Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J. J. R.
J., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D., Miskus, D.,
Stephens, S., Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K.,
Angel, J. J. R. J., Rippey, B., Tinker, R., Palecki, M., Stooksbury, D.,
Miskus, D., and Stephens, S.: The Drought Monitor, B. Am. Meteorol. Soc.,
83, 1181–1190, https://doi.org/10.1175/1520-0477-83.8.1181, 2002.
Tobin, K. J., Crow, W. T., Dong, J., and Bennett, M. E.: Validation of a New
Root-Zone Soil Moisture Product: Soil MERGE, IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens., 12, 3351–3365, https://doi.org/10.1109/JSTARS.2019.2930946, 2019.
Trenberth, K. E. and Guillemot, C. J.: Physical Processes Involved in the 1988 Drought and 1993 Floods
in North America, J. Climate, 9, 1288–1298, https://doi.org/10.1175/1520-0442(1996)009<1288:ppiitd>2.0.co;2, 1996.
Trenberth, K. E., Branstator, G. W., and Arkin, P. A.: Origins of the 1988
North American drought, Science, 242, 1640–1645,
https://doi.org/10.1126/science.242.4886.1640, 1988.
Wang, L., Yuan, X., Xie, Z., Wu, P., and Li, Y.: Increasing flash droughts
over China during the recent global warming hiatus, Sci. Rep., 6, 30571,
https://doi.org/10.1038/srep30571, 2016.
Whitman, S., Good, G., Donoghue, E. R., Benbow, N., Shou, W., and Mou, S.:
Mortality in Chicago attributed to the July 1995 heat wave, Am. J. Public
Health, 87, 1515–1518, https://doi.org/10.2105/AJPH.87.9.1515, 1997.
Wolf, S., Keenan, T. F., Fisher, J. B., Baldocchi, D. D., Desai, A. R.,
Richardson, A. D., Scott, R. L., Law, B. E., Litvak, M. E., Brunsell, N. A.,
Peters, W., and Van Der Laan-Luijkx, I. T.: Warm spring reduced carbon cycle
impact of the 2012 US summer drought, P. Natl. Acad. Sci. USA,
113, 5880–5885, https://doi.org/10.1073/pnas.1519620113, 2016.
Xia, Y., Mitchell, K., Ek, M., Cosgrove, B., Sheffield, J., Luo, L., Alonge,
C., Wei, H., Meng, J., Livneh, B., Duan, Q., and Lohmann, D.:
Continental-scale water and energy flux analysis and validation for North
American Land Data Assimilation System project phase 2 (NLDAS-2): 2.
Validation of model-simulated streamflow, J. Geophys. Res.-Atmos., 117, D03110,
https://doi.org/10.1029/2011JD016051, 2012a.
Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo,
L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V.,
Duan, Q., Mo, K., Fan, Y., and Mocko, D.: Continental-scale water and energy
flux analysis and validation for the North American Land Data Assimilation
System project phase 2 (NLDAS-2): 1. Intercomparison and application of
model products, J. Geophys. Res.-Atmos., 117, D03110, https://doi.org/10.1029/2011JD016048,
2012b.
Yuan, X., Wang, L., Wu, P., Ji, P., Sheffield, J., and Zhang, M.:
Anthropogenic shift towards higher risk of flash drought over China, Nat.
Commun., 10, 1–8, https://doi.org/10.1038/s41467-019-12692-7, 2019.
Zhang, M. and Yuan, X.: Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations, Hydrol. Earth Syst. Sci., 24, 5579–5593, https://doi.org/10.5194/hess-24-5579-2020, 2020.
Short summary
Our study of flash droughts' definitions over the United States shows that published definitions yield markedly different inventories of flash drought geography and frequency. Results suggest there are several pathways that can lead to events that are characterized as flash droughts. Lack of consensus across definitions helps to explain apparent contradictions in the literature on trends and indicates the selection of a definition is important for accurate monitoring of different mechanisms.
Our study of flash droughts' definitions over the United States shows that published definitions...