Articles | Volume 25, issue 11
https://doi.org/10.5194/hess-25-5641-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-5641-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Land use and climate change effects on water yield from East African forested water towers
Charles Nduhiu Wamucii
CORRESPONDING AUTHOR
Hydrology and Quantitative Water Management Group, Wageningen
University & Research, 6700 AA Wageningen, the Netherlands
Pieter R. van Oel
Water Resources Management Group, Wageningen University & Research, 6700 AA Wageningen, the Netherlands
Arend Ligtenberg
Laboratory of Geo-information Science and Remote Sensing,
Environmental Sciences, Wageningen University & Research, 6708 PB
Wageningen, the Netherlands
John Mwangi Gathenya
Soil, Water and Environmental Engineering Department, School of
Biosystems and Environmental Engineering, Jomo Kenyatta University of
Agriculture and Technology, P.O. Box 62000 – 00200 Nairobi, Kenya
Adriaan J. Teuling
Hydrology and Quantitative Water Management Group, Wageningen
University & Research, 6700 AA Wageningen, the Netherlands
Related authors
Charles Nduhiu Wamucii, Pieter R. van Oel, Adriaan J. Teuling, Arend Ligtenberg, John Mwangi Gathenya, Gert Jan Hofstede, Meine van Noordwijk, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3495–3518, https://doi.org/10.5194/hess-28-3495-2024, https://doi.org/10.5194/hess-28-3495-2024, 2024
Short summary
Short summary
The study explored the role of serious gaming in strengthening stakeholder engagement in addressing human–water challenges. The gaming approach guided community discussions toward implementable decisions. The results showed increased active participation, knowledge gain, and use of plural pronouns. We observed decreased individual interests and conflicts among game participants. The study presents important implications for creating a collective basis for water resources management.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Adriaan J. Teuling, Belle Holthuis, and Jasper F. D. Lammers
Hydrol. Earth Syst. Sci., 28, 3799–3806, https://doi.org/10.5194/hess-28-3799-2024, https://doi.org/10.5194/hess-28-3799-2024, 2024
Short summary
Short summary
The understanding of spatio-temporal variability of evapotranspiration (ET) is currently limited by a lack of measurement techniques that are low cost and that can be applied anywhere at any time. Here we show that evapotranspiration can be estimated accurately using observations made by smartphone sensors, suggesting that smartphone-based ET monitoring could provide a realistic and low-cost alternative for real-time ET estimation in the field.
Charles Nduhiu Wamucii, Pieter R. van Oel, Adriaan J. Teuling, Arend Ligtenberg, John Mwangi Gathenya, Gert Jan Hofstede, Meine van Noordwijk, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3495–3518, https://doi.org/10.5194/hess-28-3495-2024, https://doi.org/10.5194/hess-28-3495-2024, 2024
Short summary
Short summary
The study explored the role of serious gaming in strengthening stakeholder engagement in addressing human–water challenges. The gaming approach guided community discussions toward implementable decisions. The results showed increased active participation, knowledge gain, and use of plural pronouns. We observed decreased individual interests and conflicts among game participants. The study presents important implications for creating a collective basis for water resources management.
Devi Purnamasari, Adriaan J. Teuling, and Albrecht H. Weerts
EGUsphere, https://doi.org/10.5194/egusphere-2024-1929, https://doi.org/10.5194/egusphere-2024-1929, 2024
Short summary
Short summary
This paper introduces a method to identify irrigated areas by combining hydrology models with satellite temperature data. Our method was tested in the Rhine basin which aligns well with official statistics. It performs best in regions with large farms and less well in areas with small farms. Observed differences with existing data are influenced by data resolution and methods.
Jasper M. C. Denissen, Adriaan J. Teuling, Sujan Koirala, Markus Reichstein, Gianpaolo Balsamo, Martha M. Vogel, Xin Yu, and René Orth
Earth Syst. Dynam., 15, 717–734, https://doi.org/10.5194/esd-15-717-2024, https://doi.org/10.5194/esd-15-717-2024, 2024
Short summary
Short summary
Heat extremes have severe implications for human health and ecosystems. Heat extremes are mostly introduced by large-scale atmospheric circulation but can be modulated by vegetation. Vegetation with access to water uses solar energy to evaporate water into the atmosphere. Under dry conditions, water may not be available, suppressing evaporation and heating the atmosphere. Using climate projections, we show that regionally less water is available for vegetation, intensifying future heat extremes.
Louise Cavalcante, David W. Walker, Sarra Kchouk, Germano Ribeiro Neto, Taís Maria Nunes Carvalho, Mariana Madruga de Brito, Wieke Pot, Art Dewulf, and Pieter van Oel
EGUsphere, https://doi.org/10.5194/egusphere-2024-650, https://doi.org/10.5194/egusphere-2024-650, 2024
Short summary
Short summary
The research aimed to understand the role of society in mitigating drought impacts through policy responses in the context of northeast Brazil. Results revealed that socio-environmental-economic impacts of drought are less frequently reported, while hydrological impacts of drought were the most reported. It emphasized that public policies addressing the impacts of drought need to focus not only on increasing water availability, but also on strengthening the local economy.
Germano G. Ribeiro Neto, Sarra Kchouk, Lieke A. Melsen, Louise Cavalcante, David W. Walker, Art Dewulf, Alexandre C. Costa, Eduardo S. P. R. Martins, and Pieter R. van Oel
Hydrol. Earth Syst. Sci., 27, 4217–4225, https://doi.org/10.5194/hess-27-4217-2023, https://doi.org/10.5194/hess-27-4217-2023, 2023
Short summary
Short summary
People induce and modify droughts. However, we do not know exactly how relevant human and natural processes interact nor how to evaluate the co-evolution of people and water. Prospect theory can help us to explain the emergence of drought impacts leading to failed welfare expectations (“prospects”) due to water shortage. Our approach helps to explain socio-hydrological phenomena, such as reservoir effects, and can contribute to integrated drought management considering the local context.
Sarra Kchouk, Louise Cavalcante, Lieke A. Melsen, David W. Walker, Germano Ribeiro Neto, Rubens Gondim, Wouter J. Smolenaars, and Pieter R. van Oel
EGUsphere, https://doi.org/10.5194/egusphere-2023-2726, https://doi.org/10.5194/egusphere-2023-2726, 2023
Short summary
Short summary
Droughts impact water and people, yet monitoring often overlooks impacts on people. In Northeast Brazil, we assess official data against local experiences, finding data mismatches and blindspots. Mismatches occur due to the data's broad scope missing finer details. Blindspots arise from ignoring diverse community responses and vulnerabilities to droughts. We suggest enhanced monitoring by technical extension officers for both severe and mild droughts.
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023, https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary
Short summary
Using a new approach based on a combination of modeling and Earth observation, useful information about the filling of the Grand Ethiopian Renaissance Dam can be obtained with limited data and proper rainfall selection. While the monthly streamflow into Sudan has decreased significantly (1.2 × 109–5 × 109 m3) with respect to the non-dam scenario, the negative impact has been masked due to higher-than-average rainfall. We reveal that the dam will need 3–5 more years to complete filling.
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda A. Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
Nat. Hazards Earth Syst. Sci., 23, 2915–2936, https://doi.org/10.5194/nhess-23-2915-2023, https://doi.org/10.5194/nhess-23-2915-2023, 2023
Short summary
Short summary
There is still no full understanding of the relation between drought impacts and drought indices in the Horn of Africa where water scarcity and arid regions are also present. This study assesses their relation in Kenya. A random forest model reveals that each region, aggregated by aridity, has its own set of predictors for every impact category. Water scarcity was not found to be related to aridity. Understanding these relations contributes to the development of drought early warning systems.
Adrià Fontrodona-Bach, Bettina Schaefli, Ross Woods, Adriaan J. Teuling, and Joshua R. Larsen
Earth Syst. Sci. Data, 15, 2577–2599, https://doi.org/10.5194/essd-15-2577-2023, https://doi.org/10.5194/essd-15-2577-2023, 2023
Short summary
Short summary
We provide a dataset of snow water equivalent, the depth of liquid water that results from melting a given depth of snow. The dataset contains 11 071 sites over the Northern Hemisphere, spans the period 1950–2022, and is based on daily observations of snow depth on the ground and a model. The dataset fills a lack of accessible historical ground snow data, and it can be used for a variety of applications such as the impact of climate change on global and regional snow and water resources.
Luuk D. van der Valk, Adriaan J. Teuling, Luc Girod, Norbert Pirk, Robin Stoffer, and Chiel C. van Heerwaarden
The Cryosphere, 16, 4319–4341, https://doi.org/10.5194/tc-16-4319-2022, https://doi.org/10.5194/tc-16-4319-2022, 2022
Short summary
Short summary
Most large-scale hydrological and climate models struggle to capture the spatially highly variable wind-driven melt of patchy snow cover. In the field, we find that 60 %–80 % of the total melt is wind driven at the upwind edge of a snow patch, while it does not contribute at the downwind edge. Our idealized simulations show that the variation is due to a patch-size-independent air-temperature reduction over snow patches and also allow us to study the role of wind-driven snowmelt on larger scales.
Alessandro Montemagno, Christophe Hissler, Victor Bense, Adriaan J. Teuling, Johanna Ziebel, and Laurent Pfister
Biogeosciences, 19, 3111–3129, https://doi.org/10.5194/bg-19-3111-2022, https://doi.org/10.5194/bg-19-3111-2022, 2022
Short summary
Short summary
We investigated the biogeochemical processes that dominate the release and retention of elements (nutrients and potentially toxic elements) during litter degradation. Our results show that toxic elements are retained in the litter, while nutrients are released in solution during the first stages of degradation. This seems linked to the capability of trees to distribute the elements between degradation-resistant and non-degradation-resistant compounds of leaves according to their chemical nature.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Linqi Zhang, Yi Liu, Liliang Ren, Adriaan J. Teuling, Ye Zhu, Linyong Wei, Linyan Zhang, Shanhu Jiang, Xiaoli Yang, Xiuqin Fang, and Hang Yin
Hydrol. Earth Syst. Sci., 26, 3241–3261, https://doi.org/10.5194/hess-26-3241-2022, https://doi.org/10.5194/hess-26-3241-2022, 2022
Short summary
Short summary
In this study, three machine learning methods displayed a good detection capacity of flash droughts. The RF model was recommended to estimate the depletion rate of soil moisture and simulate flash drought by considering the multiple meteorological variable anomalies in the adjacent time to drought onset. The anomalies of precipitation and potential evapotranspiration exhibited a stronger synergistic but asymmetrical effect on flash droughts compared to slowly developing droughts.
Femke A. Jansen, Remko Uijlenhoet, Cor M. J. Jacobs, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 26, 2875–2898, https://doi.org/10.5194/hess-26-2875-2022, https://doi.org/10.5194/hess-26-2875-2022, 2022
Short summary
Short summary
We studied the controls on open water evaporation with a focus on Lake IJssel, the Netherlands, by analysing eddy covariance observations over two summer periods at two locations at the borders of the lake. Wind speed and the vertical vapour pressure gradient can explain most of the variation in observed evaporation, which is in agreement with Dalton's model. We argue that the distinct characteristics of inland waterbodies need to be taken into account when parameterizing their evaporation.
Arend Ligtenberg, Monique Simons, Marjolein Barhorst, and Laura Winkens
AGILE GIScience Ser., 3, 45, https://doi.org/10.5194/agile-giss-3-45-2022, https://doi.org/10.5194/agile-giss-3-45-2022, 2022
Sarra Kchouk, Lieke A. Melsen, David W. Walker, and Pieter R. van Oel
Nat. Hazards Earth Syst. Sci., 22, 323–344, https://doi.org/10.5194/nhess-22-323-2022, https://doi.org/10.5194/nhess-22-323-2022, 2022
Short summary
Short summary
The aim of our study was to question the validity of the assumed direct linkage between drivers of drought and its impacts on water and food securities, mainly found in the frameworks of drought early warning systems (DEWSs). We analysed more than 5000 scientific studies leading us to the conclusion that the local context can contribute to drought drivers resulting in these drought impacts. Our research aims to increase the relevance and utility of the information provided by DEWSs.
Peter T. La Follette, Adriaan J. Teuling, Nans Addor, Martyn Clark, Koen Jansen, and Lieke A. Melsen
Hydrol. Earth Syst. Sci., 25, 5425–5446, https://doi.org/10.5194/hess-25-5425-2021, https://doi.org/10.5194/hess-25-5425-2021, 2021
Short summary
Short summary
Hydrological models are useful tools that allow us to predict distributions and movement of water. A variety of numerical methods are used by these models. We demonstrate which numerical methods yield large errors when subject to extreme precipitation. As the climate is changing such that extreme precipitation is more common, we find that some numerical methods are better suited for use in hydrological models. Also, we find that many current hydrological models use relatively inaccurate methods.
Joost Buitink, Lieke A. Melsen, and Adriaan J. Teuling
Earth Syst. Dynam., 12, 387–400, https://doi.org/10.5194/esd-12-387-2021, https://doi.org/10.5194/esd-12-387-2021, 2021
Short summary
Short summary
Higher temperatures influence both evaporation and snow processes. These two processes have a large effect on discharge but have distinct roles during different seasons. In this study, we study how higher temperatures affect the discharge via changed evaporation and snow dynamics. Higher temperatures lead to enhanced evaporation but increased melt from glaciers, overall lowering the discharge. During the snowmelt season, discharge was reduced further due to the earlier depletion of snow.
Jolijn van Engelenburg, Erik van Slobbe, Adriaan J. Teuling, Remko Uijlenhoet, and Petra Hellegers
Drink. Water Eng. Sci., 14, 1–43, https://doi.org/10.5194/dwes-14-1-2021, https://doi.org/10.5194/dwes-14-1-2021, 2021
Short summary
Short summary
This study analysed the impact of extreme weather events, water quality deterioration, and a growing drinking water demand on the sustainability of drinking water supply in the Netherlands. The results of the case studies were compared to sustainability issues for drinking water supply that are experienced worldwide. This resulted in a set of sustainability characteristics describing drinking water supply on a local scale in terms of hydrological, technical, and socio-economic characteristics.
Theresa C. van Hateren, Marco Chini, Patrick Matgen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-583, https://doi.org/10.5194/hess-2020-583, 2020
Manuscript not accepted for further review
Short summary
Short summary
Agricultural droughts occur when the water content of the soil diminishes to such a level that vegetation is negatively impacted. Here we show that, although they are classified as the same type of drought, substantial differences between soil moisture and vegetation droughts exist. This duality is not included in the term agricultural drought, and thus is a potential issue in drought research. We argue that a distinction should be made between soil moisture and vegetation drought events.
Joost Buitink, Anne M. Swank, Martine van der Ploeg, Naomi E. Smith, Harm-Jan F. Benninga, Frank van der Bolt, Coleen D. U. Carranza, Gerbrand Koren, Rogier van der Velde, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 6021–6031, https://doi.org/10.5194/hess-24-6021-2020, https://doi.org/10.5194/hess-24-6021-2020, 2020
Short summary
Short summary
The amount of water stored in the soil is critical for the productivity of plants. Plant productivity is either limited by the available water or by the available energy. In this study, we infer this transition point by comparing local observations of water stored in the soil with satellite observations of vegetation productivity. We show that the transition point is not constant with soil depth, indicating that plants use water from deeper layers when the soil gets drier.
Joost Buitink, Lieke A. Melsen, James W. Kirchner, and Adriaan J. Teuling
Geosci. Model Dev., 13, 6093–6110, https://doi.org/10.5194/gmd-13-6093-2020, https://doi.org/10.5194/gmd-13-6093-2020, 2020
Short summary
Short summary
This paper presents a new distributed hydrological model: the distributed simple dynamical systems (dS2) model. The model is built with a focus on computational efficiency and is therefore able to simulate basins at high spatial and temporal resolution at a low computational cost. Despite the simplicity of the model concept, it is able to correctly simulate discharge in both small and mesoscale basins.
Jasper Foets, Carlos E. Wetzel, Núria Martínez-Carreras, Adriaan J. Teuling, Jean-François Iffly, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 4709–4725, https://doi.org/10.5194/hess-24-4709-2020, https://doi.org/10.5194/hess-24-4709-2020, 2020
Short summary
Short summary
Diatoms (microscopic algae) are regarded as useful tracers in catchment hydrology. However, diatom analysis is labour-intensive; therefore, only a limited number of samples can be analysed. To reduce this number, we explored the potential for a time-integrated mass-flux sampler to provide a representative sample of the diatom assemblage for a whole storm run-off event. Our results indicate that the Phillips sampler did indeed sample representative communities during two of the three events.
Caspar T. J. Roebroek, Lieke A. Melsen, Anne J. Hoek van Dijke, Ying Fan, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 4625–4639, https://doi.org/10.5194/hess-24-4625-2020, https://doi.org/10.5194/hess-24-4625-2020, 2020
Short summary
Short summary
Vegetation is a principal component in the Earth system models that are used for weather, climate and other environmental predictions. Water is one of the main drivers of vegetation; however, the global distribution of how water influences vegetation is not well understood. This study looks at spatial patterns of photosynthesis and water sources (rain and groundwater) to obtain a first understanding of water access and limitations for the growth of global forests (proxy for natural vegetation).
Anne J. Hoek van Dijke, Kaniska Mallick, Martin Schlerf, Miriam Machwitz, Martin Herold, and Adriaan J. Teuling
Biogeosciences, 17, 4443–4457, https://doi.org/10.5194/bg-17-4443-2020, https://doi.org/10.5194/bg-17-4443-2020, 2020
Short summary
Short summary
We investigated the link between the vegetation leaf area index (LAI) and the land–atmosphere exchange of water, energy, and carbon fluxes. We show that the correlation between the LAI and water and energy fluxes depends on the vegetation type and aridity. For carbon fluxes, however, the correlation with the LAI was strong and independent of vegetation and aridity. This study provides insight into when the vegetation LAI can be used to model or extrapolate land–atmosphere fluxes.
Femke A. Jansen and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 24, 1055–1072, https://doi.org/10.5194/hess-24-1055-2020, https://doi.org/10.5194/hess-24-1055-2020, 2020
Short summary
Short summary
We characterized the (dis)agreement between six evaporation methods from hourly to decadal timescales, focussing on the IJsselmeer region in the Netherlands. The projected changes in mean yearly water losses through evaporation between the years 2000 and 2100 range from 4 mm to 94 mm among the methods. We therefore stress that the choice of method is of great importance for water managers in their decision making.
Adriaan J. Teuling, Emile A. G. de Badts, Femke A. Jansen, Richard Fuchs, Joost Buitink, Anne J. Hoek van Dijke, and Shannon M. Sterling
Hydrol. Earth Syst. Sci., 23, 3631–3652, https://doi.org/10.5194/hess-23-3631-2019, https://doi.org/10.5194/hess-23-3631-2019, 2019
Short summary
Short summary
Over the past decades, changes in land use and climate over Europe have impacted the average flow of water flowing through rivers and reservoirs (the so-called
water yield). We quantify these changes using a simple but widely tested modelling approach constrained by observations of lysimeters across Europe. Results show that the contribution of land use to changes in water yield are of the same order as changes in climate, showing that impacts of land use changes cannot be neglected.
Sven Boese, Martin Jung, Nuno Carvalhais, Adriaan J. Teuling, and Markus Reichstein
Biogeosciences, 16, 2557–2572, https://doi.org/10.5194/bg-16-2557-2019, https://doi.org/10.5194/bg-16-2557-2019, 2019
Short summary
Short summary
This study examines how limited water availability during droughts affects water-use efficiency. This metric describes how much carbon an ecosystem can assimilate for each unit of water lost by transpiration. We test how well different water-use efficiency models can capture the dynamics of transpiration decrease due to increased soil-water limitation. Accounting for the interacting effects of radiation and water limitation is necessary to accurately predict transpiration during these periods.
Hendrik Wouters, Irina Y. Petrova, Chiel C. van Heerwaarden, Jordi Vilà-Guerau de Arellano, Adriaan J. Teuling, Vicky Meulenberg, Joseph A. Santanello, and Diego G. Miralles
Geosci. Model Dev., 12, 2139–2153, https://doi.org/10.5194/gmd-12-2139-2019, https://doi.org/10.5194/gmd-12-2139-2019, 2019
Short summary
Short summary
The free software CLASS4GL (http://class4gl.eu) is designed to investigate the dynamic atmospheric boundary layer (ABL) with weather balloons. It mines observational data from global radio soundings, satellite and reanalysis data from the last 40 years to constrain and initialize an ABL model and automizes multiple experiments in parallel. CLASS4GL aims at fostering a better understanding of land–atmosphere feedbacks and the drivers of extreme weather.
Anne J. Hoek van Dijke, Kaniska Mallick, Adriaan J. Teuling, Martin Schlerf, Miriam Machwitz, Sibylle K. Hassler, Theresa Blume, and Martin Herold
Hydrol. Earth Syst. Sci., 23, 2077–2091, https://doi.org/10.5194/hess-23-2077-2019, https://doi.org/10.5194/hess-23-2077-2019, 2019
Short summary
Short summary
Satellite images are often used to estimate land water fluxes over a larger area. In this study, we investigate the link between a well-known vegetation index derived from satellite data and sap velocity, in a temperate forest in Luxembourg. We show that the link between the vegetation index and transpiration is not constant. Therefore we suggest that the use of vegetation indices to predict transpiration should be limited to ecosystems and scales where the link has been confirmed.
Joost Buitink, Remko Uijlenhoet, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 23, 1593–1609, https://doi.org/10.5194/hess-23-1593-2019, https://doi.org/10.5194/hess-23-1593-2019, 2019
Short summary
Short summary
This study describes how the spatial resolution of hydrological models affects the model results. The high-resolution model allowed for more spatial variability than the low-resolution model. As a result, the low-resolution model failed to capture most variability that was simulated with the high-resolution model. This has implications for the interpretation of results carried out at coarse resolutions, as they may fail to represent the local small-scale variability.
Tjitske J. Geertsema, Adriaan J. Teuling, Remko Uijlenhoet, Paul J. J. F. Torfs, and Antonius J. F. Hoitink
Hydrol. Earth Syst. Sci., 22, 5599–5613, https://doi.org/10.5194/hess-22-5599-2018, https://doi.org/10.5194/hess-22-5599-2018, 2018
Short summary
Short summary
This study investigate the processes and effects of simultaneous flood peaks at a lowland confluence. The flood peaks are analyzed with the relatively new dynamic time warping method, which offers a robust means of tracing flood waves in discharge time series at confluences. The time lag between discharge peaks in the main river and its lowland tributaries is small compared to the wave duration; therefore the exact timing of discharge peaks may be little relevant to flood risk.
Lieke A. Melsen, Nans Addor, Naoki Mizukami, Andrew J. Newman, Paul J. J. F. Torfs, Martyn P. Clark, Remko Uijlenhoet, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 22, 1775–1791, https://doi.org/10.5194/hess-22-1775-2018, https://doi.org/10.5194/hess-22-1775-2018, 2018
Short summary
Short summary
Long-term hydrological predictions are important for water management planning, but are also prone to uncertainty. This study investigates three sources of uncertainty for long-term hydrological predictions in the US: climate models, hydrological models, and hydrological model parameters. Mapping the results revealed spatial patterns in the three sources of uncertainty: different sources of uncertainty dominate in different regions.
Marit Van Tiel, Adriaan J. Teuling, Niko Wanders, Marc J. P. Vis, Kerstin Stahl, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 22, 463–485, https://doi.org/10.5194/hess-22-463-2018, https://doi.org/10.5194/hess-22-463-2018, 2018
Short summary
Short summary
Glaciers are important hydrological reservoirs. Short-term variability in glacier melt and also glacier retreat can cause droughts in streamflow. In this study, we analyse the effect of glacier changes and different drought threshold approaches on future projections of streamflow droughts in glacierised catchments. We show that these different methodological options result in different drought projections and that these options can be used to study different aspects of streamflow droughts.
Joost Buitink, Remko Uijlenhoet, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-629, https://doi.org/10.5194/hess-2017-629, 2017
Revised manuscript not accepted
Short summary
Short summary
We compared the hydrological response simulated at two different spatial resolutions. The low resolution model was not able to simulate the complex response as was simulated with the high resolution model. The low resolution model underestimated the anomalies when compared with the high resolution model. This has implications on the interpretation of global scale impact studies (low resolution) on local or regional scales (high resolution).
Hidayat Hidayat, Adriaan J. Teuling, Bart Vermeulen, Muh Taufik, Karl Kastner, Tjitske J. Geertsema, Dinja C. C. Bol, Dirk H. Hoekman, Gadis Sri Haryani, Henny A. J. Van Lanen, Robert M. Delinom, Roel Dijksma, Gusti Z. Anshari, Nining S. Ningsih, Remko Uijlenhoet, and Antonius J. F. Hoitink
Hydrol. Earth Syst. Sci., 21, 2579–2594, https://doi.org/10.5194/hess-21-2579-2017, https://doi.org/10.5194/hess-21-2579-2017, 2017
Short summary
Short summary
Hydrological prediction is crucial but in tropical lowland it is difficult, considering data scarcity and river system complexity. This study offers a view of the hydrology of two tropical lowlands in Indonesia. Both lowlands exhibit the important role of upstream wetlands in regulating the flow downstream. We expect that this work facilitates a better prediction of fire-prone conditions in these regions.
Guillaume Nord, Brice Boudevillain, Alexis Berne, Flora Branger, Isabelle Braud, Guillaume Dramais, Simon Gérard, Jérôme Le Coz, Cédric Legoût, Gilles Molinié, Joel Van Baelen, Jean-Pierre Vandervaere, Julien Andrieu, Coralie Aubert, Martin Calianno, Guy Delrieu, Jacopo Grazioli, Sahar Hachani, Ivan Horner, Jessica Huza, Raphaël Le Boursicaud, Timothy H. Raupach, Adriaan J. Teuling, Magdalena Uber, Béatrice Vincendon, and Annette Wijbrans
Earth Syst. Sci. Data, 9, 221–249, https://doi.org/10.5194/essd-9-221-2017, https://doi.org/10.5194/essd-9-221-2017, 2017
Short summary
Short summary
A high space–time resolution dataset linking hydrometeorological forcing and hydro-sedimentary response in a mesoscale catchment (Auzon, 116 km2) of the Ardèche region (France) is presented. This region is subject to precipitating systems of Mediterranean origin, which can result in significant rainfall amount. The data presented cover a period of 4 years (2011–2014) and aim at improving the understanding of processes triggering flash floods.
Anne F. Van Loon, Kerstin Stahl, Giuliano Di Baldassarre, Julian Clark, Sally Rangecroft, Niko Wanders, Tom Gleeson, Albert I. J. M. Van Dijk, Lena M. Tallaksen, Jamie Hannaford, Remko Uijlenhoet, Adriaan J. Teuling, David M. Hannah, Justin Sheffield, Mark Svoboda, Boud Verbeiren, Thorsten Wagener, and Henny A. J. Van Lanen
Hydrol. Earth Syst. Sci., 20, 3631–3650, https://doi.org/10.5194/hess-20-3631-2016, https://doi.org/10.5194/hess-20-3631-2016, 2016
Short summary
Short summary
In the Anthropocene, drought cannot be viewed as a natural hazard independent of people. Drought can be alleviated or made worse by human activities and drought impacts are dependent on a myriad of factors. In this paper, we identify research gaps and suggest a framework that will allow us to adequately analyse and manage drought in the Anthropocene. We need to focus on attribution of drought to different drivers, linking drought to its impacts, and feedbacks between drought and society.
Lieke Melsen, Adriaan Teuling, Paul Torfs, Massimiliano Zappa, Naoki Mizukami, Martyn Clark, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 20, 2207–2226, https://doi.org/10.5194/hess-20-2207-2016, https://doi.org/10.5194/hess-20-2207-2016, 2016
Short summary
Short summary
In this study we investigated the sensitivity of a large-domain hydrological model for spatial and temporal resolution. We evaluated the results on a mesoscale catchment in Switzerland. Our results show that the model was hardly sensitive for the spatial resolution, which implies that spatial variability is likely underestimated. Our results provide a motivation to improve the representation of spatial variability in hydrological models in order to increase their credibility on a smaller scale.
Rohini Kumar, Jude L. Musuuza, Anne F. Van Loon, Adriaan J. Teuling, Roland Barthel, Jurriaan Ten Broek, Juliane Mai, Luis Samaniego, and Sabine Attinger
Hydrol. Earth Syst. Sci., 20, 1117–1131, https://doi.org/10.5194/hess-20-1117-2016, https://doi.org/10.5194/hess-20-1117-2016, 2016
Short summary
Short summary
In a maiden attempt, we performed a multiscale evaluation of the widely used SPI to characterize local- and regional-scale groundwater (GW) droughts using observations at 2040 groundwater wells in Germany and the Netherlands. From this data-based exploratory analysis, we provide sufficient evidence regarding the inability of the SPI to characterize GW drought events, and stress the need for more GW observations and accounting for regional hydrogeological characteristics in GW drought monitoring.
Lieke A. Melsen, Adriaan J. Teuling, Paul J. J. F. Torfs, Remko Uijlenhoet, Naoki Mizukami, and Martyn P. Clark
Hydrol. Earth Syst. Sci., 20, 1069–1079, https://doi.org/10.5194/hess-20-1069-2016, https://doi.org/10.5194/hess-20-1069-2016, 2016
Short summary
Short summary
A meta-analysis on 192 peer-reviewed articles reporting applications of a land surface model in a distributed way reveals that the spatial resolution at which the model is applied has increased over the years, while the calibration and validation time interval has remained unchanged. We argue that the calibration and validation time interval should keep pace with the increase in spatial resolution in order to resolve the processes that are relevant at the applied spatial resolution.
A. I. Stegehuis, R. Vautard, P. Ciais, A. J. Teuling, D. G. Miralles, and M. Wild
Geosci. Model Dev., 8, 2285–2298, https://doi.org/10.5194/gmd-8-2285-2015, https://doi.org/10.5194/gmd-8-2285-2015, 2015
Short summary
Short summary
Many climate models have difficulties in properly reproducing climate extremes such as heat wave conditions. We use a regional climate model with different atmospheric physics schemes to simulate the heat wave events of 2003 in western Europe and 2010 in Russia. The five best-performing and diverse physics scheme combinations may be used in the future to perform heat wave analysis and to investigate the impact of climate change in summer in Europe.
C. C. van Heerwaarden and A. J. Teuling
Biogeosciences, 11, 6159–6171, https://doi.org/10.5194/bg-11-6159-2014, https://doi.org/10.5194/bg-11-6159-2014, 2014
Short summary
Short summary
This study disentangles the response of forest and grassland to heatwaves, to interpret the findings of Teuling et al. (2010), who found systematically higher temperatures over forests than over grasslands in European heatwaves. By means of a study with a simple coupled land–atmosphere model, we show that the increase in stomatal resistance of vegetation under high values of vapor pressure deficit explains most of the differences and that this increase is enhanced by boundary layer feedbacks.
C. C. Brauer, A. J. Teuling, P. J. J. F. Torfs, and R. Uijlenhoet
Geosci. Model Dev., 7, 2313–2332, https://doi.org/10.5194/gmd-7-2313-2014, https://doi.org/10.5194/gmd-7-2313-2014, 2014
C. C. Brauer, P. J. J. F. Torfs, A. J. Teuling, and R. Uijlenhoet
Hydrol. Earth Syst. Sci., 18, 4007–4028, https://doi.org/10.5194/hess-18-4007-2014, https://doi.org/10.5194/hess-18-4007-2014, 2014
A. I. Gevaert, A. J. Teuling, R. Uijlenhoet, S. B. DeLong, T. E. Huxman, L. A. Pangle, D. D. Breshears, J. Chorover, J. D. Pelletier, S. R. Saleska, X. Zeng, and P. A. Troch
Hydrol. Earth Syst. Sci., 18, 3681–3692, https://doi.org/10.5194/hess-18-3681-2014, https://doi.org/10.5194/hess-18-3681-2014, 2014
B. P. Guillod, B. Orlowsky, D. Miralles, A. J. Teuling, P. D. Blanken, N. Buchmann, P. Ciais, M. Ek, K. L. Findell, P. Gentine, B. R. Lintner, R. L. Scott, B. Van den Hurk, and S. I. Seneviratne
Atmos. Chem. Phys., 14, 8343–8367, https://doi.org/10.5194/acp-14-8343-2014, https://doi.org/10.5194/acp-14-8343-2014, 2014
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Downscaling precipitation over High-mountain Asia using multi-fidelity Gaussian processes: improved estimates from ERA5
Mapping soil moisture across the UK: assimilating cosmic-ray neutron sensors, remotely sensed indices, rainfall radar and catchment water balance data in a Bayesian hierarchical model
Assessing rainfall radar errors with an inverse stochastic modelling framework
Multi-objective calibration and evaluation of the ORCHIDEE land surface model over France at high resolution
Spatiotemporal responses of runoff to climate change in the southern Tibetan Plateau
FROSTBYTE: a reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
On the combined use of rain gauges and GPM IMERG satellite rainfall products for hydrological modelling: impact assessment of the cellular-automata-based methodology in the Tanaro River basin in Italy
An increase in the spatial extent of European floods over the last 70 years
140-year daily ensemble streamflow reconstructions over 661 catchments in France
The agricultural expansion in South America's Dry Chaco: regional hydroclimate effects
Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China
Improving runoff simulation in the Western United States with Noah-MP and variable infiltration capacity
Spatial variability in the seasonal precipitation lapse rates in complex topographical regions – application in France
Downscaling the probability of heavy rainfall over the Nordic countries
Modelling convective cell lifecycles with a copula-based approach
What Are the Key Soil Hydrological Processes to Control Soil Moisture Memory?
Assessing downscaling methods to simulate hydrologically relevant weather scenarios from a global atmospheric reanalysis: case study of the upper Rhône River (1902–2009)
Global total precipitable water variations and trends over the period 1958–2021
Assessing decadal- to centennial-scale nonstationary variability in meteorological drought trends
Identification of compound drought and heatwave events on a daily scale and across four seasons
Observation-driven model for calculating water harvesting potential from advective fog in (semi-)arid coastal regions
Potential for historically unprecedented Australian droughts from natural variability and climate change
Review of Gridded Climate Products and Their Use in Hydrological Analyses Reveals Overlaps, Gaps, and Need for More Objective Approach to Model Forcings
Flood risk assessment for Indian sub-continental river basins
Key ingredients in regional climate modelling for improving the representation of typhoon tracks and intensities
Divergent future drought projections in UK river flows and groundwater levels
Predicting extreme sub-hourly precipitation intensification based on temperature shifts
Hydroclimatic processes as the primary drivers of the Early Khvalynian transgression of the Caspian Sea: new developments
Accounting for hydroclimatic properties in flood frequency analysis procedures
Understanding the influence of “hot” models in climate impact studies: a hydrological perspective
A semi-parametric hourly space–time weather generator
A principal-component-based strategy for regionalisation of precipitation intensity–duration–frequency (IDF) statistics
Accounting for precipitation asymmetry in a multiplicative random cascade disaggregation model
Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-range meteorological forecasts in a land surface modelling approach
A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates
Investigating the response of land–atmosphere interactions and feedbacks to spatial representation of irrigation in a coupled modeling framework
Validation of precipitation reanalysis products for rainfall-runoff modelling in Slovenia
Statistical post-processing of precipitation forecasts using circulation classifications and spatiotemporal deep neural networks
Sensitivity of the pseudo-global warming method under flood conditions: a case study from the northeastern US
Hybrid forecasting: blending climate predictions with AI models
Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorado River basin
Local moisture recycling across the globe
How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation?
Regionalisation of rainfall depth–duration–frequency curves with different data types in Germany
The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Ensemble streamflow prediction considering the influence of reservoirs in Narmada River Basin, India
Declining water resources in response to global warming and changes in atmospheric circulation patterns over southern Mediterranean France
Kenza Tazi, Andrew Orr, Javier Hernandez-González, Scott Hosking, and Richard E. Turner
Hydrol. Earth Syst. Sci., 28, 4903–4925, https://doi.org/10.5194/hess-28-4903-2024, https://doi.org/10.5194/hess-28-4903-2024, 2024
Short summary
Short summary
This work aims to improve the understanding of precipitation patterns in High-mountain Asia, a crucial water source for around 1.9 billion people. Through a novel machine learning method, we generate high-resolution precipitation predictions, including the likelihoods of floods and droughts. Compared to state-of-the-art methods, our method is simpler to implement and more suitable for small datasets. The method also shows accuracy comparable to or better than existing benchmark datasets.
Peter E. Levy and the COSMOS-UK team
Hydrol. Earth Syst. Sci., 28, 4819–4836, https://doi.org/10.5194/hess-28-4819-2024, https://doi.org/10.5194/hess-28-4819-2024, 2024
Short summary
Short summary
Having accurate up-to-date maps of soil moisture is important for many purposes. However, current modelled and remotely sensed maps are rather coarse and not very accurate. Here, we demonstrate a simple but accurate approach that is closely linked to direct measurements of soil moisture at a network sites across the UK, to the water balance (precipitation minus drainage and evaporation) measured at a large number of catchments (1212) and to remotely sensed satellite estimates.
Amy C. Green, Chris Kilsby, and András Bárdossy
Hydrol. Earth Syst. Sci., 28, 4539–4558, https://doi.org/10.5194/hess-28-4539-2024, https://doi.org/10.5194/hess-28-4539-2024, 2024
Short summary
Short summary
Weather radar is a crucial tool in rainfall estimation, but radar rainfall estimates are subject to many error sources, with the true rainfall field unknown. A flexible model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard processing methods. This flexible and efficient model performs well in generating realistic weather radar images visually for a large range of event types.
Peng Huang, Agnès Ducharne, Lucia Rinchiuso, Jan Polcher, Laure Baratgin, Vladislav Bastrikov, and Eric Sauquet
Hydrol. Earth Syst. Sci., 28, 4455–4476, https://doi.org/10.5194/hess-28-4455-2024, https://doi.org/10.5194/hess-28-4455-2024, 2024
Short summary
Short summary
We conducted a high-resolution hydrological simulation from 1959 to 2020 across France. We used a simple trial-and-error calibration to reduce the biases of the simulated water budget compared to observations. The selected simulation satisfactorily reproduces water fluxes, including their spatial contrasts and temporal trends. This work offers a reliable historical overview of water resources and a robust configuration for climate change impact analysis at the nationwide scale of France.
He Sun, Tandong Yao, Fengge Su, Wei Yang, and Deliang Chen
Hydrol. Earth Syst. Sci., 28, 4361–4381, https://doi.org/10.5194/hess-28-4361-2024, https://doi.org/10.5194/hess-28-4361-2024, 2024
Short summary
Short summary
Our findings show that runoff in the Yarlung Zangbo (YZ) basin is primarily driven by rainfall, with the largest glacier runoff contribution in the downstream sub-basin. Annual runoff increased in the upper stream but decreased downstream due to varying precipitation patterns. It is expected to rise throughout the 21st century, mainly driven by increased rainfall.
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024, https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary
Short summary
Forecasting river flow months in advance is crucial for water sectors and society. In North America, snowmelt is a key driver of flow. This study presents a statistical workflow using snow data to forecast flow months ahead in North American snow-fed rivers. Variations in the river flow predictability across the continent are evident, raising concerns about future predictability in a changing (snow) climate. The reproducible workflow hosted on GitHub supports collaborative and open science.
Annalina Lombardi, Barbara Tomassetti, Valentina Colaiuda, Ludovico Di Antonio, Paolo Tuccella, Mario Montopoli, Giovanni Ravazzani, Frank Silvio Marzano, Raffaele Lidori, and Giulia Panegrossi
Hydrol. Earth Syst. Sci., 28, 3777–3797, https://doi.org/10.5194/hess-28-3777-2024, https://doi.org/10.5194/hess-28-3777-2024, 2024
Short summary
Short summary
The accurate estimation of precipitation and its spatial variability within a watershed is crucial for reliable discharge simulations. The study is the first detailed analysis of the potential usage of the cellular automata technique to merge different rainfall data inputs to hydrological models. This work shows an improvement in the performance of hydrological simulations when satellite and rain gauge data are merged.
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024, https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
Short summary
We use grid-based runoff from a hydrological model to identify large spatiotemporally connected flood events in Europe, assess extent trends over the last 70 years, and attribute the trends to different drivers. Our findings reveal a general increase in flood extent, with regional variations driven by diverse factors. The study not only enables a thorough examination of flood events across multiple basins but also highlights the potential challenges arising from changing flood extents.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024, https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
Short summary
Daily streamflow series for 661 near-natural French catchments are reconstructed over 1871–2012 using two ensemble datasets: HydRE and HydREM. They include uncertainties coming from climate forcings, streamflow measurement, and hydrological model error (for HydrREM). Comparisons with other hydrological reconstructions and independent/dependent observations show the added value of the two reconstructions in terms of quality, uncertainty estimation, and representation of extremes.
María Agostina Bracalenti, Omar V. Müller, Miguel A. Lovino, and Ernesto Hugo Berbery
Hydrol. Earth Syst. Sci., 28, 3281–3303, https://doi.org/10.5194/hess-28-3281-2024, https://doi.org/10.5194/hess-28-3281-2024, 2024
Short summary
Short summary
The Gran Chaco is a large, dry forest in South America that has been heavily deforested, particularly in the dry Chaco subregion. This deforestation, mainly driven by the expansion of the agricultural frontier, has changed the land's characteristics, affecting the local and regional climate. The study reveals that deforestation has resulted in reduced precipitation, soil moisture, and runoff, and if intensive agriculture continues, it could make summers in this arid region even drier and hotter.
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024, https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using five bias-corrected global climate model outputs under three shared socioeconomic pathways, five hydrological models, and a deep-learning model.
Lu Su, Dennis P. Lettenmaier, Ming Pan, and Benjamin Bass
Hydrol. Earth Syst. Sci., 28, 3079–3097, https://doi.org/10.5194/hess-28-3079-2024, https://doi.org/10.5194/hess-28-3079-2024, 2024
Short summary
Short summary
We fine-tuned the variable infiltration capacity (VIC) and Noah-MP models across 263 river basins in the Western US. We developed transfer relationships to similar basins and extended the fine-tuned parameters to ungauged basins. Both models performed best in humid areas, and the skills improved post-calibration. VIC outperforms Noah-MP in all but interior dry basins following regionalization. VIC simulates annual mean streamflow and high flow well, while Noah-MP performs better for low flows.
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot
Hydrol. Earth Syst. Sci., 28, 2579–2601, https://doi.org/10.5194/hess-28-2579-2024, https://doi.org/10.5194/hess-28-2579-2024, 2024
Short summary
Short summary
The increase in precipitation as a function of elevation is poorly understood in areas with complex topography. In this article, the reproduction of these orographic gradients is assessed with several precipitation products. The best product is a simulation from a convection-permitting regional climate model. The corresponding seasonal gradients vary significantly in space, with higher values for the first topographical barriers exposed to the dominant air mass circulations.
Rasmus E. Benestad, Kajsa M. Parding, and Andreas Dobler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1463, https://doi.org/10.5194/egusphere-2024-1463, 2024
Short summary
Short summary
The paper presents a method for deriving the chance of heavy downpour, the maximum amount expected at various intervals, and explain how the rainfall changes. It suggests that increases are more due to increased amounts on wet days rather than more wet days, and the rainfall intensity is found to be sensitive to future greenhouse gas emissions while the number of wet days appears to be less affected.
Chien-Yu Tseng, Li-Pen Wang, and Christian Onof
EGUsphere, https://doi.org/10.5194/egusphere-2024-1540, https://doi.org/10.5194/egusphere-2024-1540, 2024
Short summary
Short summary
This study presents a new algorithm to better model convective storms. We used advanced tracking methods to analyse 165 storm events in Birmingham (UK) and to reconstruct storm cell lifecycles. We found that cell properties like intensity and size are interrelated and vary over time. The new algorithm, based on vine copulas, accurately simulates these properties and their evolution. It also integrates an exponential model for realistic rainfall patterns, enhancing its hydrological applicability.
Mohammad Ali Farmani, Ali Behrangi, Aniket Gupta, Ahmad Tavakoly, Matthew Geheran, and Guo-Yue Niu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1256, https://doi.org/10.5194/egusphere-2024-1256, 2024
Short summary
Short summary
This study investigates how key hydrological processes enhance soil water retention and release in land surface models, crucial for accurate weather and climate forecasting. Experiments show that soil hydraulics effectively sustain soil moisture. Additionally, allowing surface water ponding and improving soil permeability through macropores both enhance soil moisture persistency in the models.
Caroline Legrand, Benoît Hingray, Bruno Wilhelm, and Martin Ménégoz
Hydrol. Earth Syst. Sci., 28, 2139–2166, https://doi.org/10.5194/hess-28-2139-2024, https://doi.org/10.5194/hess-28-2139-2024, 2024
Short summary
Short summary
Climate change is expected to increase flood hazard worldwide. The evolution is typically estimated from multi-model chains, where regional hydrological scenarios are simulated from weather scenarios derived from coarse-resolution atmospheric outputs of climate models. We show that two such chains are able to reproduce, from an atmospheric reanalysis, the 1902–2009 discharge variations and floods of the upper Rhône alpine river, provided that the weather scenarios are bias-corrected.
Nenghan Wan, Xiaomao Lin, Roger A. Pielke Sr., Xubin Zeng, and Amanda M. Nelson
Hydrol. Earth Syst. Sci., 28, 2123–2137, https://doi.org/10.5194/hess-28-2123-2024, https://doi.org/10.5194/hess-28-2123-2024, 2024
Short summary
Short summary
Global warming occurs at a rate of 0.21 K per decade, resulting in about 9.5 % K−1 of water vapor response to temperature from 1993 to 2021. Terrestrial areas experienced greater warming than the ocean, with a ratio of 2 : 1. The total precipitable water change in response to surface temperature changes showed a variation around 6 % K−1–8 % K−1 in the 15–55° N latitude band. Further studies are needed to identify the mechanisms leading to different water vapor responses.
Kyungmin Sung, Max C. A. Torbenson, and James H. Stagge
Hydrol. Earth Syst. Sci., 28, 2047–2063, https://doi.org/10.5194/hess-28-2047-2024, https://doi.org/10.5194/hess-28-2047-2024, 2024
Short summary
Short summary
This study examines centuries of nonstationary trends in meteorological drought and pluvial climatology. A novel approach merges tree-ring proxy data (North American Seasonal Precipitation Atlas – NASPA) with instrumental precipitation datasets by temporally downscaling proxy data, correcting biases, and analyzing shared trends in normal and extreme precipitation anomalies. We identify regions experiencing recent unprecedented shifts towards drier or wetter conditions and shifts in seasonality.
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024, https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary
Short summary
This study developed a convenient and new method to identify the occurrence of droughts, heatwaves, and co-occurring droughts and heatwaves (CDHW) across four seasons. Using this method, we could establish the start and/or end dates of drought (or heatwave) events. We found an increase in the frequency of heatwaves and CDHW events in Belgium caused by climate change. We also found that different months have different chances of CDHW events.
Felipe Lobos-Roco, Jordi Vilà-Guerau de Arellano, and Camilo de Rio
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-110, https://doi.org/10.5194/hess-2024-110, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Water resources are fundamental for social, economic, and natural development of (semi-)arid regions. Precipitation decreases due to climate change obligates us to find new water resources. Fog harvesting emerges as a complementary one in regions where it is abundant but untapped. This research proposes a model to estimate fog harvesting potential in coastal (semi-)arid regions. This model could have broader applicability worldwide in regions where fog harvesting could be a viable water source.
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024, https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Short summary
Multi-year droughts have severe environmental and economic impacts, but the instrumental record is too short to characterise multi-year drought variability. We assessed the nature of Australian multi-year droughts using simulations of the past millennium from 11 climate models. We show that multi-decadal
megadroughtsare a natural feature of the Australian hydroclimate. Human-caused climate change is also driving a tendency towards longer droughts in eastern and southwestern Australia.
Kyle R. Mankin, Sushant Mehan, Timothy R. Green, and David M. Barnard
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-58, https://doi.org/10.5194/hess-2024-58, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We assess 60 gridded climate datasets [ground- (G), satellite- (S), reanalysis-based (R)]. Higher-density station data and less-hilly terrain improved climate data. In mountainous and humid regions, dataset types performed similarly; but R outperformed G when underlying data had low station density. G outperformed S or R datasets, though better streamflow modeling did not always follow. Hydrologic analyses need datasets that better represent climate variable dependencies and complex topography.
Urmin Vegad, Yadu Pokhrel, and Vimal Mishra
Hydrol. Earth Syst. Sci., 28, 1107–1126, https://doi.org/10.5194/hess-28-1107-2024, https://doi.org/10.5194/hess-28-1107-2024, 2024
Short summary
Short summary
A large population is affected by floods, which leave their footprints through human mortality, migration, and damage to agriculture and infrastructure, during almost every summer monsoon season in India. Despite the massive damage of floods, sub-basin level flood risk assessment is still in its infancy and needs to be improved. Using hydrological and hydrodynamic models, we reconstructed sub-basin level observed floods for the 1901–2020 period.
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci., 28, 761–780, https://doi.org/10.5194/hess-28-761-2024, https://doi.org/10.5194/hess-28-761-2024, 2024
Short summary
Short summary
Tropical cyclones (TCs) often cause high economic loss due to heavy winds and rainfall, particularly in densely populated regions such as the Pearl River Delta (China). This study provides a reference to set up regional climate models for TC simulations. They contribute to a better TC process understanding and assess the potential changes and risks of TCs in the future. This lays the foundation for hydrodynamical modelling, from which the cities' disaster management and defence could benefit.
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024, https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Short summary
We studied drought in a dataset of possible future river flows and groundwater levels in the UK and found different outcomes for these two sources of water. Throughout the UK, river flows are likely to be lower in future, with droughts more prolonged and severe. However, whilst these changes are also found in some boreholes, in others, higher levels and less severe drought are indicated for the future. This has implications for the future balance between surface water and groundwater below.
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024, https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary
Short summary
We present a new physical-based method for estimating extreme sub-hourly precipitation return levels (i.e., intensity–duration–frequency, IDF, curves), which are critical for the estimation of future floods. The proposed model, named TENAX, incorporates temperature as a covariate in a physically consistent manner. It has only a few parameters and can be easily set for any climate station given sub-hourly precipitation and temperature data are available.
Alexander Gelfan, Andrey Panin, Andrey Kalugin, Polina Morozova, Vladimir Semenov, Alexey Sidorchuk, Vadim Ukraintsev, and Konstantin Ushakov
Hydrol. Earth Syst. Sci., 28, 241–259, https://doi.org/10.5194/hess-28-241-2024, https://doi.org/10.5194/hess-28-241-2024, 2024
Short summary
Short summary
Paleogeographical data show that 17–13 ka BP, the Caspian Sea level was 80 m above the current level. There are large disagreements on the genesis of this “Great” Khvalynian transgression of the sea, and we tried to shed light on this issue. Using climate and hydrological models as well as the paleo-reconstructions, we proved that the transgression could be initiated solely by hydroclimatic factors within the deglaciation period in the absence of the glacial meltwater effect.
Joeri B. Reinders and Samuel E. Munoz
Hydrol. Earth Syst. Sci., 28, 217–227, https://doi.org/10.5194/hess-28-217-2024, https://doi.org/10.5194/hess-28-217-2024, 2024
Short summary
Short summary
Flooding presents a major hazard for people and infrastructure along waterways; however, it is challenging to study the likelihood of a flood magnitude occurring regionally due to a lack of long discharge records. We show that hydroclimatic variables like Köppen climate regions and precipitation intensity explain part of the variance in flood frequency distributions and thus reduce the uncertainty of flood probability estimates. This gives water managers a tool to locally improve flood analysis.
Mehrad Rahimpour Asenjan, Francois Brissette, Jean-Luc Martel, and Richard Arsenault
Hydrol. Earth Syst. Sci., 27, 4355–4367, https://doi.org/10.5194/hess-27-4355-2023, https://doi.org/10.5194/hess-27-4355-2023, 2023
Short summary
Short summary
Climate models are central to climate change impact studies. Some models project a future deemed too hot by many. We looked at how including hot models may skew the result of impact studies. Applied to hydrology, this study shows that hot models do not systematically produce hydrological outliers.
Ross Pidoto and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 3957–3975, https://doi.org/10.5194/hess-27-3957-2023, https://doi.org/10.5194/hess-27-3957-2023, 2023
Short summary
Short summary
Long continuous time series of meteorological variables (i.e. rainfall, temperature) are required for the modelling of floods. Observed time series are generally too short or not available. Weather generators are models that reproduce observed weather time series. This study extends an existing station-based rainfall model into space by enforcing observed spatial rainfall characteristics. To model other variables (i.e. temperature) the model is then coupled to a simple resampling approach.
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci., 27, 3719–3732, https://doi.org/10.5194/hess-27-3719-2023, https://doi.org/10.5194/hess-27-3719-2023, 2023
Short summary
Short summary
Intensity–duration–frequency (IDF) curves describe the likelihood of extreme rainfall and are used in hydrology and engineering, for example, for flood forecasting and water management. We develop a model to estimate IDF curves from daily meteorological observations, which are more widely available than the observations on finer timescales (minutes to hours) that are needed for IDF calculations. The method is applied to all data at once, making it efficient and robust to individual errors.
Kaltrina Maloku, Benoit Hingray, and Guillaume Evin
Hydrol. Earth Syst. Sci., 27, 3643–3661, https://doi.org/10.5194/hess-27-3643-2023, https://doi.org/10.5194/hess-27-3643-2023, 2023
Short summary
Short summary
High-resolution precipitation data, needed for many applications in hydrology, are typically rare. Such data can be simulated from daily precipitation with stochastic disaggregation. In this work, multiplicative random cascades are used to disaggregate time series of 40 min precipitation from daily precipitation for 81 Swiss stations. We show that very relevant statistics of precipitation are obtained when precipitation asymmetry is accounted for in a continuous way in the cascade generator.
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Yuanhong You, Chunlin Huang, Zuo Wang, Jinliang Hou, Ying Zhang, and Peipei Xu
Hydrol. Earth Syst. Sci., 27, 2919–2933, https://doi.org/10.5194/hess-27-2919-2023, https://doi.org/10.5194/hess-27-2919-2023, 2023
Short summary
Short summary
This study aims to investigate the performance of a genetic particle filter which was used as a snow data assimilation scheme across different snow climates. The results demonstrated that the genetic algorithm can effectively solve the problem of particle degeneration and impoverishment in a particle filter algorithm. The system has revealed a low sensitivity to the particle number in point-scale application of the ground snow depth measurement.
Patricia Lawston-Parker, Joseph A. Santanello Jr., and Nathaniel W. Chaney
Hydrol. Earth Syst. Sci., 27, 2787–2805, https://doi.org/10.5194/hess-27-2787-2023, https://doi.org/10.5194/hess-27-2787-2023, 2023
Short summary
Short summary
Irrigation has been shown to impact weather and climate, but it has only recently been considered in prediction models. Prescribing where (globally) irrigation takes place is important to accurately simulate its impacts on temperature, humidity, and precipitation. Here, we evaluated three different irrigation maps in a weather model and found that the extent and intensity of irrigated areas and their boundaries are important drivers of weather impacts resulting from human practices.
Marcos Julien Alexopoulos, Hannes Müller-Thomy, Patrick Nistahl, Mojca Šraj, and Nejc Bezak
Hydrol. Earth Syst. Sci., 27, 2559–2578, https://doi.org/10.5194/hess-27-2559-2023, https://doi.org/10.5194/hess-27-2559-2023, 2023
Short summary
Short summary
For rainfall-runoff simulation of a certain area, hydrological models are used, which requires precipitation data and temperature data as input. Since these are often not available as observations, we have tested simulation results from atmospheric models. ERA5-Land and COSMO-REA6 were tested for Slovenian catchments. Both lead to good simulations results. Their usage enables the use of rainfall-runoff simulation in unobserved catchments as a requisite for, e.g., flood protection measures.
Tuantuan Zhang, Zhongmin Liang, Wentao Li, Jun Wang, Yiming Hu, and Binquan Li
Hydrol. Earth Syst. Sci., 27, 1945–1960, https://doi.org/10.5194/hess-27-1945-2023, https://doi.org/10.5194/hess-27-1945-2023, 2023
Short summary
Short summary
We use circulation classifications and spatiotemporal deep neural networks to correct raw daily forecast precipitation by combining large-scale circulation patterns with local spatiotemporal information. We find that the method not only captures the westward and northward movement of the western Pacific subtropical high but also shows substantially higher bias-correction capabilities than existing standard methods in terms of spatial scale, timescale, and intensity.
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023, https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Short summary
We examine the sensitivity and robustness of conclusions drawn from the PGW method over the NEUS by conducting multiple PGW experiments and varying the perturbation spatial scales and choice of perturbed meteorological variables to provide a guideline for this increasingly popular regional modeling method. Overall, we recommend PGW experiments be performed with perturbations to temperature or the combination of temperature and wind at the gridpoint scale, depending on the research question.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023, https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Bora Shehu, Winfried Willems, Henrike Stockel, Luisa-Bianca Thiele, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 1109–1132, https://doi.org/10.5194/hess-27-1109-2023, https://doi.org/10.5194/hess-27-1109-2023, 2023
Short summary
Short summary
Rainfall volumes at varying duration and frequencies are required for many engineering water works. These design volumes have been provided by KOSTRA-DWD in Germany. However, a revision of the KOSTRA-DWD is required, in order to consider the recent state-of-the-art and additional data. For this purpose, in our study, we investigate different methods and data available to achieve the best procedure that will serve as a basis for the development of the new KOSTRA-DWD product.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023, https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Short summary
Real-time river discharge forecasts and reforecasts from the Global Flood Awareness System (GloFAS) have been made publicly available, together with an evaluation of forecast skill at the global scale. Results show that GloFAS is skillful in over 93 % of catchments in the short (1–3 d) and medium range (5–15 d) and skillful in over 80 % of catchments in the extended lead time (16–30 d). Skill is summarised in a new layer on the GloFAS Web Map Viewer to aid decision-making.
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022, https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary
Short summary
Floods cause enormous damage to infrastructure and agriculture in India. However, the utility of ensemble meteorological forecast for hydrologic prediction has not been examined. Moreover, Indian river basins have a considerable influence of reservoirs that alter the natural flow variability. We developed a hydrologic modelling-based streamflow prediction considering the influence of reservoirs in India.
Camille Labrousse, Wolfgang Ludwig, Sébastien Pinel, Mahrez Sadaoui, Andrea Toreti, and Guillaume Lacquement
Hydrol. Earth Syst. Sci., 26, 6055–6071, https://doi.org/10.5194/hess-26-6055-2022, https://doi.org/10.5194/hess-26-6055-2022, 2022
Short summary
Short summary
The interest of this study is to demonstrate that we identify two zones in our study area whose hydroclimatic behaviours are uneven. By investigating relationships between the hydroclimatic conditions in both clusters for past observations with the overall atmospheric functioning, we show that the inequalities are mainly driven by a different control of the atmospheric teleconnection patterns over the area.
Cited articles
Alcamo, J., Flörke, M., and Märker, M.: Future long-term changes in
global water resources driven by socio-economic and climatic changes,
Hydrolog. Sci. J., 52, 247–275, https://doi.org/10.1623/hysj.52.2.247, 2007.
Aleman, J. C., Jarzyna, M. A., and Staver, A. C.: Forest extent and
deforestation in tropical Africa since, Nat. Ecol. Evol., 2, 26–33,
https://doi.org/10.1038/s41559-017-0406-1, 2018.
Astuti, H. P. and Suryatmojo, H.: Water in the forest: Rain-vegetation
interaction to estimate canopy interception in a tropical borneo rainforest,
IOP Conf. Ser. Earth Environ. Sci., 361, 012035,
https://doi.org/10.1088/1755-1315/361/1/012035, 2019.
Bai, P., Zhang, D., and Liu, C.: Estimation of the Budyko model parameter
for small basins in China, Hydrol. Process., 34, 125–138,
https://doi.org/10.1002/hyp.13577, 2019.
Booij, M. J., Schipper, T. C., and Marhaento, H.: Attributing changes in
streamflow to land use and climate change for 472 catchments in australia
and the United States, Water, 11, 1059, https://doi.org/10.3390/w11051059, 2019.
Bosch, J. M. and Hewlett, J. D.: A review of catchment experiments to
determine the effect of vegetation changes on water yield and
evapotranspiration, J. Hydrol., 55, 3–23,
https://doi.org/10.1016/0022-1694(82)90117-2, 1982.
Budyko, M. I.: Climate and Life, Acad. Press, New York, 18, 1st Edition, 1974.
Chebet, C.: Environmental degradation to blame for swelling of Rift Valley
lakes, Stand. Media, Kenya, 2020.
Chepkoech, A.: Kenya: Rift Valley Lakes Water Levels Rise Dangerously, Dly.
Nation, Kenya, 2020.
Climatic Research Unit (University of East Anglia) and NCAS: High-resolution gridded datasets (and derived products), available at: https://crudata.uea.ac.uk/cru/data/hrg/, last access: 22 July 2020.
Convention on Biological Diversity: Biodiversity of Dry and Sub-Humid Land Ecosystems, Secr. Conv. Biol. Divers., available at: https://www.cbd.int/gbo1/chap-01.shtml (last access: 20 May 2021), 2007.
Creed, I. and Spargo, A.: Application of the Budyko curve to explore
sustainability of water yields from headwater catchments under changing
environmental conditions, in: Ecological Society of America, 5–10 August 2012, Portland, 2012a.
Creed, I. and Spargo, A.: Budyko guide to exploring sustainability of water
yields from catchments under changing environmental conditions, Meet.
IAHS-PUB (Prediction Ungauged Basins) Symp. “Completion IAHS Decad.
Predict. Ungauged Basins W. ahead”, 59, 2012b.
Creed, I., Spargo, A., Jones, J., Buttle, J., Adams, M., Beall, F. D.,
Booth, E. G., Campbell, J. L., Clow, D., Elder, K., Green, M. B., Grimm, N.
B., Miniat, C., Ramlal, P., Saha, A., Sebestyen, S., Spittlehouse, D.,
Sterling, S., Williams, M. W., Winkler, R., and Yao, H.: Changing forest
water yields in response to climate warming: Results from long-term
experimental watershed sites across North America, Glob. Change Biol., 20,
3191–3208, https://doi.org/10.1111/gcb.12615, 2014.
Daron, J. D.: Regional Climate Messages: East Africa, Scientific report from the CARIAA Adaptation at Scale in Semi-Arid Regions (ASSAR), Project Report, University of Cape Town, South Africa, 2014.
Dawson, J. B.: The Gregory Rift Valley and Neogene-recent Volcanoes of
Northern Tanzania, Geological Society, Memoir 13, 2008.
Dewi, S., Van Noordwijk, M., Zulkarnain, M. T., Dwiputra, A., Hyman, G.,
Prabhu, R., Gitz, V., and Nasi, R.: Tropical forest-transition landscapes: a
portfolio for studying people, tree crops and agro-ecological change in
context, Int. J. Biodivers. Sci. Ecosyst. Serv. Manag., 13, 312–329,
https://doi.org/10.1080/21513732.2017.1360394, 2017.
Dey, P. and Mishra, A.: Separating the impacts of climate change and human
activities on streamflow: A review of methodologies and critical
assumptions, J. Hydrol., 548, 278–290,
https://doi.org/10.1016/j.jhydrol.2017.03.014, 2017.
Donohue, R. J., Roderick, M. L., and McVicar, T. R.: On the importance of including vegetation dynamics in Budyko's hydrological model, Hydrol. Earth Syst. Sci., 11, 983–995, https://doi.org/10.5194/hess-11-983-2007, 2007.
Du, C., Sun, F., Yu, J., Liu, X., and Chen, Y.: New interpretation of the role of water balance in an extended Budyko hypothesis in arid regions, Hydrol. Earth Syst. Sci., 20, 393–409, https://doi.org/10.5194/hess-20-393-2016, 2016.
EAC, UNEP, and GRID-Arendal: Sustainable Mountain Development in East Africa
in a Changing Climate, East African Community, United Nations Environment
Programme and GRID-Arendal, Arusha, Nairobi and Arendal, 100 pp., 2016.
El Tom, M. A.: The Reliability of Rainfall over the Sudan, Geogr. Ann.
Ser. A , 54, 28–31, 1972.
Ekström, M., Jones, P. D., Fowler, H. J., Lenderink, G., Buishand, T. A., and Conway, D.: Regional climate model data used within the SWURVE project – 1: projected changes in seasonal patterns and estimation of PET, Hydrol. Earth Syst. Sci., 11, 1069–1083, https://doi.org/10.5194/hess-11-1069-2007, 2007.
Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso,
D., Gutierrez, V., Noordwijk, M. van, Creed, I. F., Pokorny, J., Gaveau, D.,
Spracklen, D. V., Tobella, A. B., Ilstedt, U., Teuling, A. J., Gebrehiwot,
S. G., Sands, D. C., Muys, B., Verbist, B., Springgay, E., Sugandi, Y., and
Sullivan, C. A.: Trees, forests and water: Cool insights for a hot world,
Global Environ. Chang., 43, 51–61,
https://doi.org/10.1016/j.gloenvcha.2017.01.002, 2017.
Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: High-resolution
fields of global runoff combining observed river discharge and simulated
water balances, Global Biogeochem. Cy., 16, 15-1–15-10,
https://doi.org/10.1029/1999gb001254, 2002.
Frank, D. C., Poulter, B., Saurer, M., Esper, J., Huntingford, C., Helle,
G., and Treydte, K.: Water-use efficiency and transpiration across European
forests during the Anthropocene, Nat. Clim. Change, 5, 579–584, https://doi.org/10.1038/NCLIMATE2614,
2015.
Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S.,
Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.: The
climate hazards infrared precipitation with stations – A new environmental
record for monitoring extremes, Sci. Data, 2, 1–21,
https://doi.org/10.1038/sdata.2015.66, 2015.
Gabiri, G., Diekkrüger, B., Näschen, K., Leemhuis, C., van der
Linden, R., Mwanjalolo Majaliwa, J. G., and Obando, J. A.: Impact of Climate
and Land Use/Land Cover Change on the Water Resources of a Tropical Inland
Valley, 83, 1–25, 2020.
Gash, J. H. C., Wright, I. R., and Lloyd, C. R.: Comparative estimates of
interception loss from three coniferous forests in Great Britain, J.
Hydrol., 48, 89–105, https://doi.org/10.1016/0022-1694(80)90068-2, 1980.
Gebrehiwot, S. G., Gärdenäs, A. I., Bewket, W., Seibert, J.,
Ilstedt, U., and Bishop, K.: The long-term hydrology of East Africa's water
tower: Statistical change detection in the watersheds of the Abbay Basin,
Reg. Environ. Change, 14, 321–331,
https://doi.org/10.1007/s10113-013-0491-x, 2014.
Giannini, A., Lyon, B., Seager, R., and Vigaud, N.: Dynamical and
Thermodynamic Elements of Modeled Climate Change at the East African Margin
of Convection, Geophys. Res. Lett., 45, 992–1000,
https://doi.org/10.1002/2017GL075486, 2018.
Gunkel, A. and Lange, J.: Water scarcity, data scarcity and the Budyko
curve – An application in the Lower Jordan River Basin, J. Hydrol. Reg.
Stud., 12, 136–149, https://doi.org/10.1016/j.ejrh.2017.04.004, 2017.
Guzha, A. C., Rufino, M. C., Okoth, S., Jacobs, S., and Nóbrega, R. L.
B.: Impacts of land use and land cover change on surface runoff, discharge
and low flows: Evidence from East Africa, J. Hydrol. Reg. Stud., 15, 49–67,
https://doi.org/10.1016/j.ejrh.2017.11.005, 2018.
Han, J., Yang, Y., and Roderick, M. L.: Assessing the Steady – State
Assumption in Water Balance Calculation Across Global Catchments, Water
Resour. Res., 1–16, https://doi.org/10.1029/2020WR027392, 2020.
Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU
TS monthly high-resolution gridded multivariate climate dataset, Sci. Data,
7, 1–18, https://doi.org/10.1038/s41597-020-0453-3, 2020.
Heidari, H., Warziniack, T., Brown, T. C., and Arabi, M.: Impacts of Climate
Change on Hydroclimatic Conditions of U.S. National Forests and Grasslands, Forests,
12, 1–17, https://doi.org/10.3390/f12020139, 2021.
Helman, D., Lensky, I. M., Yakir, D., and Osem, Y.: Forests growing under
dry conditions have higher hydrological resilience to drought than do more
humid forests, Glob. Change Biol., 23, 2801–2817,
https://doi.org/10.1111/gcb.13551, 2017.
Hulme, M.: The Changing Rainfall Resources of Sudan, R. Geogr. Soc., 15, 21–34,
https://doi.org/10.2307/623090, 1990.
Huntington, T. G.: CO2-induced suppression of transpiration cannot explain
increasing runoff, Hydrol. Process., 22, 311–314,
https://doi.org/10.1002/hyp.6925, 2008.
Hyandye, C. B., Worqul, A., Martz, L. W., and Muzuka, A. N. N.: The impact
of future climate and land use/cover change on water resources in the
Ndembera watershed and their mitigation and adaptation strategies, Environ.
Syst. Res., 7, 7, https://doi.org/10.1186/s40068-018-0110-4, 2018.
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch,
T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M.,
Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink,
P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter,
T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A.
B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.:
Importance and vulnerability of the world's water towers, Nature, 577,
364–369, https://doi.org/10.1038/s41586-019-1822-y, 2020.
Integrating Population, Health, and Environment in Ethiopia's Bale
Mountains:
https://www.newsecuritybeat.org/2010/04/integrating-population-health-and-environment-in-ethiopias-bale-mountains, last access: 19 May 2021.
Jacobs, S. R., Timbe, E., Weeser, B., Rufino, M. C., Butterbach-Bahl, K., and Breuer, L.: Assessment of hydrological pathways in East African montane catchments under different land use, Hydrol. Earth Syst. Sci., 22, 4981–5000, https://doi.org/10.5194/hess-22-4981-2018, 2018.
Jiang, C., Xiong, L., Wang, D., Liu, P., Guo, S., and Xu, C. Y.: Separating
the impacts of climate change and human activities on runoff using the
Budyko-type equations with time-varying parameters, J. Hydrol., 522, 326–338,
https://doi.org/10.1016/j.jhydrol.2014.12.060, 2015.
Kalisa, W., Igbawua, T., Henchiri, M., Ali, S., Zhang, S., Bai, Y., and
Zhang, J.: Assessment of climate impact on vegetation dynamics over East
Africa from 1982 to 2015, Sci. Rep.-UK, 9, 1–20,
https://doi.org/10.1038/s41598-019-53150-0, 2019.
Keys, P. W., Barnes, E. A., van der Ent, R. J., and Gordon, L. J.: Variability of moisture recycling using a precipitationshed framework, Hydrol. Earth Syst. Sci., 18, 3937–3950, https://doi.org/10.5194/hess-18-3937-2014, 2014.
Kirkby, M., Bracken, L., and Reaney, S.: The influence of land use, soils
and topography on the delivery of hillslope runoff to channels in SE Spain,
Earth Surf. Proc. Land., 27, 1459–1473,
https://doi.org/10.1002/esp.441, 2002.
Kiteme, B. P., Liniger, H., and Notter, B.: Dimensions of Global Change in African Mountains : The Example of Mount Kenya, IHDP, 2, 18–22, 2008.
Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019.
Krakauer, N. Y., Lakhankar, T., and Anadón, J. D.: Mapping and
Attributing Normalized Difference Vegetation Index Trends for Nepal, Remote Sens., 9, 1–15,
https://doi.org/10.3390/rs9100986, 2017.
Lambrechts, C., Woodley, B., Hemp, A., Hemp, C., and Nnyiti, P.: Aerial Survey of the Threats to Mt. Kilimanjaro Forests. Community Management of Protected Areas Conservation Project, The GEF Small Grants Programme Report, 2002.
Li, C., Chai, Y., Yang, L., and Li, H.: Spatio-temporal
distribution of flood disasters and analysis of influencing factors in
Africa, Nat. Hazards, 82, 721–731,
https://doi.org/10.1007/s11069-016-2181-8, 2016.
Li, D., Pan, M., Cong, Z., Zhang, L., and Wood, E.: Vegetation control on
water and energy balance within the Budyko framework, Water Resour. Res.,
49, 969–976, https://doi.org/10.1002/wrcr.20107, 2013.
Liniger, H., Gikonyo, J., Kiteme, B., and Wiesmann, U.: Assessing and
Managing Scarce Tropical Mountain Water Resources, Mt. Res. Dev., 25,
163–173,
https://doi.org/10.1659/0276-4741(2005)025[0163:AAMSTM]2.0.CO;2,
2005.
Liu, X., Liu, W., and Xia, J.: Comparison of the streamflow sensitivity to
aridity index between the Danjiangkou Reservoir basin and Miyun Reservoir
basin, China, Theor. Appl. Climatol., 111, 683–691,
https://doi.org/10.1007/s00704-012-0701-3, 2013.
Ma, X., Lu, X. X., van Noordwijk, M., Li, J. T., and Xu, J. C.: Attribution of climate change, vegetation restoration, and engineering measures to the reduction of suspended sediment in the Kejie catchment, southwest China, Hydrol. Earth Syst. Sci., 18, 1979–1994, https://doi.org/10.5194/hess-18-1979-2014, 2014.
Mamuye, M.: Review on Impacts of Climate Change on Watershed Hydrology, J. Environ. Earth Sci., 8,
91–99, 2018.
Mango, L. M., Melesse, A. M., McClain, M. E., Gann, D., and Setegn, S. G.: Land use and climate change impacts on the hydrology of the upper Mara River Basin, Kenya: results of a modeling study to support better resource management, Hydrol. Earth Syst. Sci., 15, 2245–2258, https://doi.org/10.5194/hess-15-2245-2011, 2011.
Marhaento, H., Booij, M. J., and Hoekstra, A. Y.: Attribution of changes in
stream flow to land use change and climate change in a mesoscale tropical
catchment in Java, Indonesia, Hydrol. Res., 48, 1143–1155,
https://doi.org/10.2166/nh.2016.110, 2017.
Mianabadi, A., Davary, K., Pourreza-Bilondi, M., and Coenders-Gerrits, A. M.
J.: Budyko framework; towards non-steady state conditions, J. Hydrol., 588,
125089, https://doi.org/10.1016/j.jhydrol.2020.125089, 2020.
Muthoni, F. K., Odongo, V. O., Ochieng, J., Mugalavai, E. M., Mourice, S.
K., Hoesche-Zeledon, I., Mwila, M., and Bekunda, M.: Long-term
spatial-temporal trends and variability of rainfall over Eastern and
Southern Africa, Theor. Appl. Climatol., 137, 1869–1882,
https://doi.org/10.1007/s00704-018-2712-1, 2019.
Mwangi, H. M., Julich, S., Patil, S. D., McDonald, M. A., and Feger, K. H.:
Relative contribution of land use change and climate variability on
discharge of upper Mara River, Kenya, J. Hydrol. Reg. Stud., 5, 244–260,
https://doi.org/10.1016/j.ejrh.2015.12.059, 2016.
National Center for Atmospheric Research Staff (Eds.): The Climate Data Guide: NDVI: Normalized Difference Vegetation Index-3rd generation: NASA/GFSC GIMMS, available at: https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms (last access: 12 July 2020), 2018.
Ndomba, O. A., Bakengesa, S., Petro, R., Maguzu, J., Chamshama, S. A. O.,
Kiimu, H. R., and Lema, M.: Perils of taungya to the productivity of forest
plantations and need for modification: case study of Meru forest plantation
in Tanzania., Int. J. Agric. For., 5, 267–275,
2015.
Niang, I., Ruppel, O. C., Abdrabo, M. A., Essel, A., Lennard, C., Padgham,
J., and Urquhart, P.: Africa, in: Climate Change 2014: Impacts, Adaptation,
and Vulnerability, in: Part B: Regional Aspects. Contribution of Working
Group II to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Barros, V. R., Field, C. B., Dokken, D. J., Mastrandrea, M. D.,
Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estr, Y. O., edited by:
Barros, V. R., Field, C. B., Dokken, D. J., Mastrandrea, M. D., and Mach, K.
J., Cambridge University Press, Cambridge, 1199–1265,
https://doi.org/10.1017/CBO9781107415386.002, 2014.
Nicholson, S. E.: Climate and climatic variability of rainfall over eastern
Africa, Rev. Geophys., 55, 590–635, https://doi.org/10.1002/2016RG000544,
2017.
Nyongesa, K. W. and Vacik, H.: Evaluating management strategies for Mount
Kenya Forest Reserve and National Park to reduce fire danger and address
interests of various stakeholders, 10, 426, https://doi.org/10.3390/f10050426,
2019.
Omambia, A. N., Shemsanga, C., and Hernandez, I. A. S.: Climate Change
Impacts, Vulnerability, and Adaptation in East Africa (EA) and South America
(SA), B. Handb. Clim. Chang. Mitig., 1–4, 573–620,
https://doi.org/10.1007/978-1-4419-7991-9_17, 2012.
Otieno, V. O. and Anyah, R. O.: Effects of land use changes on climate in
the Greater Horn of Africa, Clim. Res., 52, 77–95,
https://doi.org/10.3354/cr01050, 2012.
Patel, K.: Rising Waters on Kenya's Great Rift Valley Lakes, Earth Obs. NASA, available at: https://earthobservatory.nasa.gov/images/147226/rising-waters-on-kenyas-great-rift-valley-lakes (last access: 15 May 2021), 2020.
Pinzon, J. E. and Tucker, C. J.: A non-stationary 1981–2012 AVHRR NDVI3g
time series, Remote Sens., 6, 6929–6960, https://doi.org/10.3390/rs6086929,
2014.
Redhead, J. W., Stratford, C., Sharps, K., Jones, L., Ziv, G., Clarke, D.,
Oliver, T. H., and Bullock, J. M.: Empirical validation of the InVEST water
yield ecosystem service model at a national scale, Sci. Total Environ.,
569–570, 1418–1426, https://doi.org/10.1016/j.scitotenv.2016.06.227, 2016.
Roderick, M. L. and Farquhar, G. D.: A simple framework for relating
variations in runoff to variations in climatic conditions and catchment
properties, Water Resour. Res., 47, 1–11,
https://doi.org/10.1029/2010WR009826, 2011.
Røhr, P. C. and Killingtveit, Å.: Rainfall distribution on the slopes
of Mt Kilimanjaro, Hydrolog. Sci. J., 48, 65–77,
https://doi.org/10.1623/hysj.48.1.65.43483, 2003.
Sankarasubramanian, A., Vogel, R. M., and Limbrunner, J. F.: Climate
elasticity of streamflow in the United States, Water Resour. Res., 37,
1771–1781, https://doi.org/10.1029/2000WR900330, 2001.
Schaake, J. S.: From climate to flow, in: Climate Change and US Water Resources, edited by: Waggoner, P. E., John Wiley, New York, 177–206, 1990.
Scoon, R. N.: Geotourism, Iconic Landforms and Island-Style Speciation
Patterns in National Parks of East Africa, 12, 66,
https://doi.org/10.1007/s12371-020-00486-z, 2020.
Sinha, J., Sharma, A., Khan, M., and Goyal, M. K.: Assessment of the impacts
of climatic variability and anthropogenic stress on hydrologic resilience to
warming shifts in Peninsular India, Sci. Rep.-UK, 8, 1–14,
https://doi.org/10.1038/s41598-018-32091-0, 2018.
Sun, Y., Tian, F., Yang, L., and Hu, H.: Exploring the spatial variability
of contributions from climate variation and change in catchment properties
to streamflow decrease in a mesoscale basin by three different methods, J.
Hydrol., 508, 170–180, https://doi.org/10.1016/j.jhydrol.2013.11.004, 2014.
Tallents, L. A. and Macdonald, D. W.: Mapping high-altitude vegetation in the Bale Mountains, Ethiopia, in: Walia—Special Edition on the Bale Mountains, edited by: Randall, D., Thirgood, S., and Kinahan, A., Frankfurt Zoological Society, Addis Ababa, 97–117, 2011.
Tech, J.: About SWAT+ − SWAT+ Documentation, Texas A&M Univ. – TAMU, 126, available at: https://swatplus.gitbook.io/docs/ (last access: 31 May 2021), 2019.
Teng, J., Chiew, F. H. S., Vaze, J., Marvanek, S., and Kirono, D. G. C.:
Estimation of climate change impact on mean annual runoff across continental
Australia using Budyko and Fu equations and hydrological models, J.
Hydrometeorol., 13, 1094–1106, https://doi.org/10.1175/JHM-D-11-097.1,
2012.
Teuling, A. J.: A Forest Evapotranspiration Paradox Investigated Using
Lysimeter Data, Vadose Zone J., 17, 170031,
https://doi.org/10.2136/vzj2017.01.0031, 2018.
Teuling, A. J. and Hoek van Dijke, A. J.: Forest age and water yield,
Nature, 578, E16–E18, https://doi.org/10.1038/s41586-020-1941-5, 2020.
Teuling, A. J., de Badts, E. A. G., Jansen, F. A., Fuchs, R., Buitink, J., Hoek van Dijke, A. J., and Sterling, S. M.: Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe, Hydrol. Earth Syst. Sci., 23, 3631–3652, https://doi.org/10.5194/hess-23-3631-2019, 2019.
The Nature Conservancy: Global Ecoregions, Major Habitat Types, Biogeographical Realms and The Nature Conservancy Terrestrial Assessment Units, Nat. Conserv, available at: https://tnc.maps.arcgis.com/apps/mapviewer/index.html?layers=7b7fb9d945544d41b3e7a91494c42930 (last access: 26 July 2020), 2012.
Troch, P. A., Carrillo, G., Sivapalan, M., Wagener, T., and Sawicz, K.: Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution, Hydrol. Earth Syst. Sci., 17, 2209–2217, https://doi.org/10.5194/hess-17-2209-2013, 2013.
Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, A., Pak, E. W.,
Mahoney, R., Vermote, E. F., and Saleous, N. E. L.: An extended AVHRR 8-kni
NDVI dataset compatible with MODISand SPOT vegetation NDVI data, Int. J.
Remote Sens., 26, 4485–4498, 2005.
Ulrich, A., Ifejika Speranza, C., Roden, P., Kiteme, B., Wiesmann, U., and
Nüsser, M.: Small-scale farming in semi-arid areas: Livelihood dynamics
between 1997 and 2010 in Laikipia, Kenya, J. Rural Stud., 28, 241–251,
https://doi.org/10.1016/j.jrurstud.2012.02.003, 2012.
UNEP: “Africa Water Atlas”. Division of Early Warning and Assessment
(DEWA), United Nations Environ. Program, (UNEP), Nairobi, Kenya, 2010.
UNEP: Africa Mountains Atlas, United Nations Environment Programme (2014),
available at: https://wedocs.unep.org/handle/20.500.11822/9301 (last access: 24 April 2021), 310 pp.,
2014.
University of California: CHIRPS: Rainfall Estimates from Rain Gauge and Satellite Observations, available at: https://www.chc.ucsb.edu/data/chirps, last access: 31 July 2020.
USAID: Virunga Landscape Factsheet, available at: https://carpe.umd.edu/sites/default/files/documentsarchive/CAFEC_Virunga Fact Sheet.pdf (last access: 24 April 2021), 2013.
Van der Velde, Y., Vercauteren, N., Jaramillo, F., Dekker, S. C., Destouni,
G., and Lyon, S. W.: Exploring hydroclimatic change disparity via the Budyko
framework, Hydrol. Process., 28, 4110–4118,
https://doi.org/10.1002/hyp.9949, 2014.
Van den Hende, C., Van Schaeybroeck, B., Nyssen, J., Van Vooren, S., Van
Ginderachter, M., and Termonia, P.: Analysis of rain-shadows in the
Ethiopian Mountains using climatological model data, Clim. Dynam., 56,
1663–1679, https://doi.org/10.1007/s00382-020-05554-2, 2021.
Van Dijk, A. I. J. M., Gash, J. H., Van Gorsel, E., Blanken, P. D.,
Cescatti, A., Emmel, C., Gielen, B., Harman, I. N., Kiely, G., Merbold, L.,
Montagnani, L., Moors, E., Sottocornola, M., Varlagin, A., Williams, C. A.,
and Wohlfahrt, G.: Rainfall interception and the coupled surface water and
energy balance, Agr. Forest Meteorol., 214–215, 402–415,
https://doi.org/10.1016/j.agrformet.2015.09.006, 2015.
Van Noordwijk, M., Speelman, E., Hofstede, G. J., Farida, A., Wamucii, C. N., Kimbowa, G., Geraud, G., Assogba, C., Best, L., Tanika, L., Githinji, M., Rosero, P., Sari, R. R., Satnarain, U., Adiwibowo, S., Ligtenberg, A., Muthuri, C., Marielos Purwanto, E. P.-C., van Oel, P., Rozendaal, D., Suprayogo, D., and Teuling, A. J.: Sustainable Agroforestry Landscape Management: Changing the Game, Land, 9, 1–38, https://doi.org/10.3390/land9080243, 2020.
Viviroli, D. and Weingartner, R.: The hydrological significance of mountains: from regional to global scale, Hydrol. Earth Syst. Sci., 8, 1017–1030, https://doi.org/10.5194/hess-8-1017-2004, 2004.
Viviroli, D., Dürr, H. H., Messerli, B., Meybeck, M., and Weingartner,
R.: Mountains of the world, water towers for humanity: Typology, mapping,
and global significance, Water Resour. Res., 43, 1–13,
https://doi.org/10.1029/2006WR005653, 2007.
Vye-Brown, C., Crummy, J., Smith, K., Mruma, A., and Kabelwa, H.: Mt Meru case study, Earthwise, available at: http://earthwise.bgs.ac.uk/index.php/OR/14/005_Mt_Meru_case_study (last access: 18 May 2021), 2014.
Wambua, C.: Why Kenya’s Rift Valley lakes are going through a crisis, Aljazeera, available at: https://www.aljazeera.com/news/2020/08/30/why-kenyas-rift-valley-lakes-are-going-through-a-crisis/ (last access: 2 July 2021), 2020.
Wei, X. and Zhang, M.: Research Methods for Assessing the Impacts of Forest
Disturbance on Hydrology at Large-scale Watersheds, Landsc. Ecol. For.
Manag. Conserv., 119–147,
https://doi.org/10.1007/978-3-642-12754-0_6, 2011.
Western, A. W., Zhou, S. L., Grayson, R. B., McMahon, T. A., Blöschl,
G., and Wilson, D. J.: Spatial correlation of soil moisture in small
catchments and its relationship to dominant spatial hydrological processes,
J. Hydrol., 286, 113–134, https://doi.org/10.1016/j.jhydrol.2003.09.014,
2004.
Woods, R.: The relative roles of climate, soil, vegetation and topography in
determining seasonal and long-term catchment dynamics, Adv. Water Resour.,
30, 1061, https://doi.org/10.1016/j.advwatres.2006.10.010, 2002.
WWF: Water towers of eastern Africa Policy, issues and vision for community-based protection and management of montane forests report, Nairobi, Kenya, available at: http://awsassets.panda.org/downloads/water_towers_policy_report_1.pdf (last access: 13 September 2020), 2005.
Xu, X., Liu, W., Scanlon, B. R., Zhang, L., and Pan, M.: Local and global
factors controlling water-energy balances within the Budyko framework,
Geophys. Res. Lett., 40, 6123–6129, https://doi.org/10.1002/2013GL058324,
2013.
Yan, D., Lai, Z., and Ji, G.: Using Budyko-type equations for separating the
impacts of climate and vegetation change on runoff in the source area of the
yellow river, Water, 12, 1–15, https://doi.org/10.3390/w12123418, 2020.
Yang, D., Shao, W., Yeh, P. J. F., Yang, H., Kanae, S., and Oki, T.: Impact
of vegetation coverage on regional water balance in the nonhumid regions of
China, Water Resour. Res., 45, 1–13, https://doi.org/10.1029/2008WR006948,
2009.
Yang, H., Qi, J., Xu, X., Yang, D., and Lv, H.: The regional variation in
climate elasticity and climate contribution to runoff across China, J.
Hydrol., 517, 607–616, https://doi.org/10.1016/j.jhydrol.2014.05.062, 2014.
Yuan, W., Piao, S., Qin, D., Dong, W., Xia, J., Lin, H., and Chen, M.:
Influence of Vegetation Growth on the Enhanced Seasonality of Atmospheric
CO2, Global Biogeochem. Cy., 32, 32–41,
https://doi.org/10.1002/2017GB005802, 2017.
Yichuan, S.: Rwenzori Mountains National Park, 2017 Int. Union Conserv. Nat. UN Environ. World Conserv. Monit. Cent, available at: http://world-heritage-datasheets.unep-wcmc.org/datasheet/output/site/rwenzori-mountains-national-park/#:~:text=Local Human Population,-In 1910%2C the&text=The region is one of,people (Loefler%2C 1997, (last access: 18 May 2021), 2011.
Zeng, F., Ma, M. G., Di, D. R., and Shi, W. Y.: Separating the impacts of
climate change and human activities on runoff: A review of method and
application, Water, 12, 1–17, https://doi.org/10.3390/W12082201, 2020.
Zhang, L., Dawes, W. R., and Walker, G. R.: Response of mean annual
evapotranspiration to vegetation changes at catchment scale, Water Resour.
Res., 37, 701–708, https://doi.org/10.1029/2000WR900325, 2001.
Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western, A. W., and
Briggs, P. R.: A rational function approach for estimating mean annual
evapotranspiration, Water Resour. Res., 40, 1–14,
https://doi.org/10.1029/2003WR002710, 2004.
Zhang, M., Wei, X., Sun, P., and Liu, S.: The effect of forest harvesting
and climatic variability on runoff in a large watershed: The case study in
the Upper Minjiang River of Yangtze River basin, J. Hydrol., 464–465,
1–11, https://doi.org/10.1016/j.jhydrol.2012.05.050, 2012.
Zimmermann, L., Frühauf, C., and Bernhofer, C.: The role of interception
in the water budget of spruce stands in the Eastern Ore Mountains/Germany,
Phys. Chem. Earth, Pt. B, 24, 809–812,
https://doi.org/10.1016/S1464-1909(99)00085-4, 1999.
Short summary
East African water towers (WTs) are under pressure from human influences within and without, but the water yield (WY) is more sensitive to climate changes from within. Land use changes have greater impacts on WY in the surrounding lowlands. The WTs have seen a strong shift towards wetter conditions while, at the same time, the potential evapotranspiration is gradually increasing. The WTs were identified as non-resilient, and future WY may experience more extreme variations.
East African water towers (WTs) are under pressure from human influences within and without, but...