Articles | Volume 25, issue 11
Hydrol. Earth Syst. Sci., 25, 5641–5665, 2021
https://doi.org/10.5194/hess-25-5641-2021
Hydrol. Earth Syst. Sci., 25, 5641–5665, 2021
https://doi.org/10.5194/hess-25-5641-2021
Research article
03 Nov 2021
Research article | 03 Nov 2021

Land use and climate change effects on water yield from East African forested water towers

Charles Nduhiu Wamucii et al.

Related authors

Linking reported drought impacts with drought indices, water scarcity, and aridity: the case of Kenya
Marleen R. Lam, Alessia Matanó, Anne F. Van Loon, Rhoda Odongo, Aklilu D. Teklesadik, Charles N. Wamucii, Marc J. C. van den Homberg, Shamton Waruru, and Adriaan J. Teuling
EGUsphere, https://doi.org/10.5194/egusphere-2022-458,https://doi.org/10.5194/egusphere-2022-458, 2022
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022,https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022,https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Hydrological concept formation inside long short-term memory (LSTM) networks
Thomas Lees, Steven Reece, Frederik Kratzert, Daniel Klotz, Martin Gauch, Jens De Bruijn, Reetik Kumar Sahu, Peter Greve, Louise Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 26, 3079–3101, https://doi.org/10.5194/hess-26-3079-2022,https://doi.org/10.5194/hess-26-3079-2022, 2022
Short summary
A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China
Huajin Lei, Hongyu Zhao, and Tianqi Ao
Hydrol. Earth Syst. Sci., 26, 2969–2995, https://doi.org/10.5194/hess-26-2969-2022,https://doi.org/10.5194/hess-26-2969-2022, 2022
Short summary
Hydrometeorological evaluation of two nowcasting systems for Mediterranean heavy precipitation events with operational considerations
Alexane Lovat, Béatrice Vincendon, and Véronique Ducrocq
Hydrol. Earth Syst. Sci., 26, 2697–2714, https://doi.org/10.5194/hess-26-2697-2022,https://doi.org/10.5194/hess-26-2697-2022, 2022
Short summary

Cited articles

Alcamo, J., Flörke, M., and Märker, M.: Future long-term changes in global water resources driven by socio-economic and climatic changes, Hydrolog. Sci. J., 52, 247–275, https://doi.org/10.1623/hysj.52.2.247, 2007. 
Aleman, J. C., Jarzyna, M. A., and Staver, A. C.: Forest extent and deforestation in tropical Africa since, Nat. Ecol. Evol., 2, 26–33, https://doi.org/10.1038/s41559-017-0406-1, 2018. 
Astuti, H. P. and Suryatmojo, H.: Water in the forest: Rain-vegetation interaction to estimate canopy interception in a tropical borneo rainforest, IOP Conf. Ser. Earth Environ. Sci., 361, 012035, https://doi.org/10.1088/1755-1315/361/1/012035, 2019. 
Bai, P., Zhang, D., and Liu, C.: Estimation of the Budyko model parameter for small basins in China, Hydrol. Process., 34, 125–138, https://doi.org/10.1002/hyp.13577, 2019. 
Booij, M. J., Schipper, T. C., and Marhaento, H.: Attributing changes in streamflow to land use and climate change for 472 catchments in australia and the United States, Water, 11, 1059, https://doi.org/10.3390/w11051059, 2019. 
Download
Short summary
East African water towers (WTs) are under pressure from human influences within and without, but the water yield (WY) is more sensitive to climate changes from within. Land use changes have greater impacts on WY in the surrounding lowlands. The WTs have seen a strong shift towards wetter conditions while, at the same time, the potential evapotranspiration is gradually increasing. The WTs were identified as non-resilient, and future WY may experience more extreme variations.