Articles | Volume 25, issue 10
https://doi.org/10.5194/hess-25-5447-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-5447-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Robustness of a parsimonious subsurface drainage model at the French national scale
INRAE, University of Paris Saclay, UR HYCAR, 1 rue Pierre Gilles de Gennes, Antony, France
Hocine Henine
INRAE, University of Paris Saclay, UR HYCAR, 1 rue Pierre Gilles de Gennes, Antony, France
Cédric Chaumont
INRAE, University of Paris Saclay, UR HYCAR, 1 rue Pierre Gilles de Gennes, Antony, France
Lila Collet
INRAE, University of Paris Saclay, UR HYCAR, 1 rue Pierre Gilles de Gennes, Antony, France
now at: EDF R&D, OSIRIS Department, 7 boulevard Gaspard Monge, 91120 Palaiseau, France
Guillaume Thirel
INRAE, University of Paris Saclay, UR HYCAR, 1 rue Pierre Gilles de Gennes, Antony, France
Julien Tournebize
INRAE, University of Paris Saclay, UR HYCAR, 1 rue Pierre Gilles de Gennes, Antony, France
Related authors
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
Alexis Jeantet, Jean-Pierre Vergnes, Simon Munier, and Florence Habets
EGUsphere, https://doi.org/10.5194/egusphere-2025-93, https://doi.org/10.5194/egusphere-2025-93, 2025
Short summary
Short summary
The AquiFR hydrogeological modelling plateform is forced by 36 climate projections in order to simulate future groundwater levels over France. The results show significant scatters between regional climate models and RCPs. Overall, a rise in groundwater levels, affecting most of the study area, is the dominant signal. Four storylines have been selected to to illustrate the impacts of worst-case scenarios and help decision-makers to adopt sustainable groundwater management policies.
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024, https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary
Short summary
Monitoring agricultural drainage flow in irrigated areas is key to water and soil management. In this paper, four simple drainage models are evaluated on two irrigated sub-basins where drainage flow is measured daily. The evaluation of their precision shows that they simulate drainage very well when calibrated with drainage data and that one of them is slightly better. The evaluation of their accuracy shows that only one model can provide rough drainage estimates without calibration data.
Léonard Santos, Anthony Thomas, Gaëlle Tallec, Laurent Mounereau, Aaron Bluche, Bruno Lemaire, Rania Louafi, and Guillaume Thirel
EGUsphere, https://doi.org/10.5194/egusphere-2025-4197, https://doi.org/10.5194/egusphere-2025-4197, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Water resources will be heavily impacted by climate change in the future, with low flows and water demand satisfaction expected to decline. This study uses an integrated water resources management model to examine future water demand scenarios, revealing that climate change will be the primary driver of changes. While adapting water uses could mitigate negative impacts, this will not be enough to adapt to climate change. The irrigation sector is expected to be the most impacted.
Guillaume Evin, Benoit Hingray, Guillaume Thirel, Agnès Ducharne, Laurent Strohmenger, Lola Corre, Yves Tramblay, Jean-Philippe Vidal, Jérémie Bonneau, François Colleoni, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Peng Huang, Matthieu Le Lay, Claire Magand, Paola Marson, Céline Monteil, Simon Munier, Alix Reverdy, Jean-Michel Soubeyroux, Yoann Robin, Jean-Pierre Vergnes, Mathieu Vrac, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2727, https://doi.org/10.5194/egusphere-2025-2727, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Explore2 provides hydrological projections for 1,735 French catchments. Using QUALYPSO, this study assesses uncertainties, including internal variability. By the end of the century, low flows are projected to decline in southern France under high emissions, while other indicators remain uncertain. Emission scenarios and regional climate models are key uncertainty sources. Internal variability is often as large as climate-driven changes.
Nicolai Brekenfeld, Solenn Cotel, Mikael Faucheux, Colin Fourtet, Yannick Hamon, Patrice Petitjean, Arnaud Blanchouin, Celine Bouillis, Marie-Claire Pierret, Hocine Henine, Anne-Catherine Pierson-Wickmann, Sophie Guillon, Paul Floury, and Ophelie Fovet
Hydrol. Earth Syst. Sci., 29, 2615–2631, https://doi.org/10.5194/hess-29-2615-2025, https://doi.org/10.5194/hess-29-2615-2025, 2025
Short summary
Short summary
In the last decade, the development of on-site field laboratories to measure water chemistry at sub-hourly measurement intervals has drastically advanced, while there is no literature that provides detailed technical, organisational and operational guidelines in running such equipment. Based on our experiences of running three French field laboratories over 7 years, we share the main stages in the deployment of this tool in the field, the difficulties encountered and the proposed solutions.
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
Yves Tramblay, Guillaume Thirel, Laurent Strohmenger, Guillaume Evin, Lola Corre, Louis Heraut, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1635, https://doi.org/10.5194/egusphere-2025-1635, 2025
Short summary
Short summary
How climate change impacts floods in France? Using simulations for 3000 rivers in climate projections, results show that flood trends vary depending on the region. In the north, floods may become more severe, but in many other areas, the trends are mixed. Floods from intense rainfall are becoming more frequent, while snowmelt floods are strongly decreasing. Overall, the study shows that understanding what causes floods is key to predicting how they are likely to change with the climate.
Léonard Santos, Vazken Andréassian, Torben O. Sonnenborg, Göran Lindström, Alban de Lavenne, Charles Perrin, Lila Collet, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 29, 683–700, https://doi.org/10.5194/hess-29-683-2025, https://doi.org/10.5194/hess-29-683-2025, 2025
Short summary
Short summary
This work investigates how hydrological models are transferred to a period in which climate conditions are different to the ones of the period in which they were set up. The robustness assessment test built to detect dependencies between model error and climatic drivers was applied to three hydrological models in 352 catchments in Denmark, France and Sweden. Potential issues are seen in a significant number of catchments for the models, even though the catchments differ for each model.
Alexis Jeantet, Jean-Pierre Vergnes, Simon Munier, and Florence Habets
EGUsphere, https://doi.org/10.5194/egusphere-2025-93, https://doi.org/10.5194/egusphere-2025-93, 2025
Short summary
Short summary
The AquiFR hydrogeological modelling plateform is forced by 36 climate projections in order to simulate future groundwater levels over France. The results show significant scatters between regional climate models and RCPs. Overall, a rise in groundwater levels, affecting most of the study area, is the dominant signal. Four storylines have been selected to to illustrate the impacts of worst-case scenarios and help decision-makers to adopt sustainable groundwater management policies.
Guillaume Thirel, Léonard Santos, Olivier Delaigue, and Charles Perrin
Hydrol. Earth Syst. Sci., 28, 4837–4860, https://doi.org/10.5194/hess-28-4837-2024, https://doi.org/10.5194/hess-28-4837-2024, 2024
Short summary
Short summary
We discuss how mathematical transformations impact calibrated hydrological model simulations. We assess how 11 transformations behave over the complete range of streamflows. Extreme transformations lead to models that are specialized for extreme streamflows but show poor performance outside the range of targeted streamflows and are less robust. We show that no a priori assumption about transformations can be taken as warranted.
Nicolai Brekenfeld, Solenn Cotel, Mikaël Faucheux, Paul Floury, Colin Fourtet, Jérôme Gaillardet, Sophie Guillon, Yannick Hamon, Hocine Henine, Patrice Petitjean, Anne-Catherine Pierson-Wickmann, Marie-Claire Pierret, and Ophélie Fovet
Hydrol. Earth Syst. Sci., 28, 4309–4329, https://doi.org/10.5194/hess-28-4309-2024, https://doi.org/10.5194/hess-28-4309-2024, 2024
Short summary
Short summary
The proposed methodology consists of simultaneously analysing the concentration variation of solute pairs during a storm event by plotting the concentration variation of one solute against the variation of another solute. This can reveal whether two or more end-members contribute to streamflow during a storm event. Furthermore, the variation of the solute ratios during the events can indicate which catchment processes are dominant and which are negligible.
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024, https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary
Short summary
Monitoring agricultural drainage flow in irrigated areas is key to water and soil management. In this paper, four simple drainage models are evaluated on two irrigated sub-basins where drainage flow is measured daily. The evaluation of their precision shows that they simulate drainage very well when calibrated with drainage data and that one of them is slightly better. The evaluation of their accuracy shows that only one model can provide rough drainage estimates without calibration data.
Bruno J. Lemaire, Cédric Chaumont, Julien Tournebize, and Hocine Henine
Proc. IAHS, 385, 135–140, https://doi.org/10.5194/piahs-385-135-2024, https://doi.org/10.5194/piahs-385-135-2024, 2024
Short summary
Short summary
The potential of constructed wetland to remove nitrate and pesticides increases with the residence time. The aim of this work is to investigate how the hydraulic performance changes with the flow rate in a party vegetated wetland, using the 3D hydrodynamic model. It was calibrated on continuous outflow concentration and tracing experiment. The simulation matched satisfactorily with observation. Results showed a limited increase of the hydraulic performance with the flow rate.
Cyril Thébault, Charles Perrin, Vazken Andréassian, Guillaume Thirel, Sébastien Legrand, and Olivier Delaigue
Hydrol. Earth Syst. Sci., 28, 1539–1566, https://doi.org/10.5194/hess-28-1539-2024, https://doi.org/10.5194/hess-28-1539-2024, 2024
Short summary
Short summary
Streamflow forecasting is useful for many applications, ranging from population safety (e.g. floods) to water resource management (e.g. agriculture or hydropower). To this end, hydrological models must be optimized. However, a model is inherently wrong. This study aims to analyse the contribution of a multi-model approach within a variable spatial framework to improve streamflow simulations. The underlying idea is to take advantage of the strength of each modelling framework tested.
Nils Poncet, Philippe Lucas-Picher, Yves Tramblay, Guillaume Thirel, Humberto Vergara, Jonathan Gourley, and Antoinette Alias
Nat. Hazards Earth Syst. Sci., 24, 1163–1183, https://doi.org/10.5194/nhess-24-1163-2024, https://doi.org/10.5194/nhess-24-1163-2024, 2024
Short summary
Short summary
High-resolution convection-permitting climate models (CPMs) are now available to better simulate rainstorm events leading to flash floods. In this study, two hydrological models are compared to simulate floods in a Mediterranean basin, showing a better ability of the CPM to reproduce flood peaks compared to coarser-resolution climate models. Future projections are also different, with a projected increase for the most severe floods and a potential decrease for the most frequent events.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Olivier Delaigue, Pierre Brigode, Guillaume Thirel, and Laurent Coron
Hydrol. Earth Syst. Sci., 27, 3293–3327, https://doi.org/10.5194/hess-27-3293-2023, https://doi.org/10.5194/hess-27-3293-2023, 2023
Short summary
Short summary
Teaching hydrological modeling is an important, but difficult, matter. It requires appropriate tools and teaching material. In this article, we present the airGRteaching package, which is an open-source software tool relying on widely used hydrological models. This tool proposes an interface and numerous hydrological modeling exercises representing a wide range of hydrological applications. We show how this tool can be applied to simple but real-life cases.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Thibault Lemaitre-Basset, Ludovic Oudin, Guillaume Thirel, and Lila Collet
Hydrol. Earth Syst. Sci., 26, 2147–2159, https://doi.org/10.5194/hess-26-2147-2022, https://doi.org/10.5194/hess-26-2147-2022, 2022
Short summary
Short summary
Increasing temperature will impact evaporation and water resource management. Hydrological models are fed with an estimation of the evaporative demand of the atmosphere, called potential evapotranspiration (PE). The objectives of this study were (1) to compute the future PE anomaly over France and (2) to determine the impact of the choice of the method to estimate PE. Our results show that all methods present similar future trends. No method really stands out from the others.
Paul Royer-Gaspard, Vazken Andréassian, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 25, 5703–5716, https://doi.org/10.5194/hess-25-5703-2021, https://doi.org/10.5194/hess-25-5703-2021, 2021
Short summary
Short summary
Most evaluation studies based on the differential split-sample test (DSST) endorse the consensus that rainfall–runoff models lack climatic robustness. In this technical note, we propose a new performance metric to evaluate model robustness without applying the DSST and which can be used with a single hydrological model calibration. Our work makes it possible to evaluate the temporal transferability of any hydrological model, including uncalibrated models, at a very low computational cost.
Pierre Nicolle, Vazken Andréassian, Paul Royer-Gaspard, Charles Perrin, Guillaume Thirel, Laurent Coron, and Léonard Santos
Hydrol. Earth Syst. Sci., 25, 5013–5027, https://doi.org/10.5194/hess-25-5013-2021, https://doi.org/10.5194/hess-25-5013-2021, 2021
Short summary
Short summary
In this note, a new method (RAT) is proposed to assess the robustness of hydrological models. The RAT method is particularly interesting because it does not require multiple calibrations (it is therefore applicable to uncalibrated models), and it can be used to determine whether a hydrological model may be safely used for climate change impact studies. Success at the robustness assessment test is a necessary (but not sufficient) condition of model robustness.
Paul C. Astagneau, Guillaume Thirel, Olivier Delaigue, Joseph H. A. Guillaume, Juraj Parajka, Claudia C. Brauer, Alberto Viglione, Wouter Buytaert, and Keith J. Beven
Hydrol. Earth Syst. Sci., 25, 3937–3973, https://doi.org/10.5194/hess-25-3937-2021, https://doi.org/10.5194/hess-25-3937-2021, 2021
Short summary
Short summary
The R programming language has become an important tool for many applications in hydrology. In this study, we provide an analysis of some of the R tools providing hydrological models. In total, two aspects are uniformly investigated, namely the conceptualisation of the models and the practicality of their implementation for end-users. These comparisons aim at easing the choice of R tools for users and at improving their usability for hydrology modelling to support more transferable research.
Laurène J. E. Bouaziz, Fabrizio Fenicia, Guillaume Thirel, Tanja de Boer-Euser, Joost Buitink, Claudia C. Brauer, Jan De Niel, Benjamin J. Dewals, Gilles Drogue, Benjamin Grelier, Lieke A. Melsen, Sotirios Moustakas, Jiri Nossent, Fernando Pereira, Eric Sprokkereef, Jasper Stam, Albrecht H. Weerts, Patrick Willems, Hubert H. G. Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 25, 1069–1095, https://doi.org/10.5194/hess-25-1069-2021, https://doi.org/10.5194/hess-25-1069-2021, 2021
Short summary
Short summary
We quantify the differences in internal states and fluxes of 12 process-based models with similar streamflow performance and assess their plausibility using remotely sensed estimates of evaporation, snow cover, soil moisture and total storage anomalies. The dissimilarities in internal process representation imply that these models cannot all simultaneously be close to reality. Therefore, we invite modelers to evaluate their models using multiple variables and to rely on multi-model studies.
Manon Cassagnole, Maria-Helena Ramos, Ioanna Zalachori, Guillaume Thirel, Rémy Garçon, Joël Gailhard, and Thomas Ouillon
Hydrol. Earth Syst. Sci., 25, 1033–1052, https://doi.org/10.5194/hess-25-1033-2021, https://doi.org/10.5194/hess-25-1033-2021, 2021
Cited articles
Abd-Elaty, I., Sallam, G. A. H., Straface, S., and Scozzari, A.: Effects of climate change on the design of subsurface drainage systems in coastal aquifers in arid/semi-arid regions: Case study of the Nile delta, Sci. Total Environ., 672, 283–295, https://doi.org/10.1016/j.scitotenv.2019.03.483, 2019.
Adriaanse, P., Allen, R., Gouy, V., Hollis, J., Hosang, J., Jarvis, N., Jarvis, T., Klein, M., Layton, R., and Linders, J.: Surface water models and EU registration of plant protection products, IRSTEA, available at: https://esdac.jrc.ec.europa.eu/public_path/projects_data/focus/docs/sw_en_6476VI96_24Feb1997.pdf (last access: 7 October 2021), 1996.
Anderson, M. P. and Woessner, W. W.: Applied Groundwater Modeling: Simulation of Flow and Advective Transport, Academic Press, San Diego, CA, USA, 1992.
Anon: RGA 2010 – Agreste, available at: http://recensement-agricole.agriculture.gouv.fr/ (last access: 25 August 2020), 2010.
Armstrong, A. C., Rands, J. G., and Castle, D. A.: Drainage benefits: Watertable control, workablility and crop yields, Agr. Water Manage., 14, 43–52, https://doi.org/10.1016/0378-3774(88)90059-5, 1988.
Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M., Kannan, N., and Jha, M. K.: SWAT: Model Use, Calibration, and Validation, T. ASABE, 55, 1491–1508, https://doi.org/10/f39v78, 2012.
Bailly, P. and Carrère, C.: Statistiques descriptives: Théorie et applications, in Statistiques descriptives. L'économie et les chiffres, 165–167, Presses universitaires de Grenoble, Grenobles, France, available at: http://journals.openedition.org/lectures/17705 (last access: 12 November 2020), 2015.
Baize, D. and Jabiol, B.: Guide pour la description des sols, Editions Quae, Versailles, France, available at: https://hal.archives-ouvertes.fr/hal-01195043 (last access: 10 November 2020), 2011.
Beskow, S., Mello, C. R., Norton, L. D., and da Silva, A. M.: Performance of a distributed semi-conceptual hydrological model under tropical watershed conditions, CATENA, 86, 160–171, https://doi.org/10/dvz95p, 2011.
Beulke, S., Brown, C. D., and Jarvis, N. J.: Macro: A Preferential Flow Model to Simulate Pesticide Leaching and Movement to Drains, in Modelling of Environmental Chemical Exposure and Risk, edited by: Linders, J. B. H. J., 117–132, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-010-0884-6_12, 2001.
Beven, K.: Changing ideas in hydrology – The case of physically-based models, J. Hydrol., 105, 157–172, https://doi.org/10/c8wt7q, 1989.
Beven, K. and Germann, P.: Macropores and water flow in soils, Water Resour. Res., 18, 1311–1325, https://doi.org/10.1029/WR018i005p01311, 1982.
Biswas, A.: Joint multifractal analysis for three variables: Characterizing the effect of topography and soil texture on soil water storage, Geoderma, 334, 15–23, https://doi.org/10.1016/j.geoderma.2018.07.035, 2019.
Biswas, A., Chau, H. W., Bedard-Haughn, A. K., and Si, B. C.: Factors controlling soil water storage in the hummocky landscape of the Prairie Pothole Region of North America, Can. J. Soil. Sci., 92, 649–663, https://doi.org/10.4141/cjss2011-045, 2012.
Boesten, J., Helweg, A., Businelli, M., Bergstrom, L., Schaefer, H., Delmas, A., Kloskowski, R., Walker, A., Travis, K., and Smeets, L.: Soil persistence models and EU registration, Final Report of the Work of the Soil Modelling Work Group of FOCUS, 1997.
Bouarfa, S. and Zimmer, D.: Water-table shapes and drain flow rates in shallow drainage systems, J. Hydrol., 235, 264–275, https://doi.org/10.1016/S0022-1694(00)00280-8, 2000.
Boussinesq, J.: Recherches théoriques sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le débit des sources, J. Math. Pure. Appl., 10, 5–78, 1904.
Branger, F., Tournebize, J., Carluer, N., Kao, C., Braud, I., and Vauclin, M.: A simplified modelling approach for pesticide transport in a tile-drained field: The PESTDRAIN model, Agr. Water Manage., 96, 415–428, https://doi.org/10.1016/j.agwat.2008.09.005, 2009.
Breve, M. A., Skaggs, R. W., Gilliam, J. W., Parsons, J. E., Mohammad, A. T., Chescheir, G. M., and Evans, R. O.: Field testing of drainmod-N, Transactions of the ASAE (USA), available at: http://agris.fao.org/openagris/search.do?recordID=US1997059848 (last access: 28 February 2020), 1997.
Broadhead, R. G. and Skaggs, R. W.: Drainage strategies and peak flood flows, in 1982 Summer Meeting, St. Joseph, MI, American Society of Agricultural Engineers (ASAE), 1982.
Brocca, L., Morbidelli, R., Melone, F., and Moramarco, T.: Soil moisture spatial variability in experimental areas of central Italy, J. Hydrol., 333, 356–373, https://doi.org/10.1016/j.jhydrol.2006.09.004, 2007.
Brown, C. D. and van Beinum, W.: Pesticide transport via sub-surface drains in Europe, Environ. Pollut., 157, 3314–3324, https://doi.org/10/fsjg3b, 2009.
Brown, R. A., Skaggs, R. W., and Hunt, W. F.: Calibration and validation of DRAINMOD to model bioretention hydrology, J. Hydrol., 486, 430–442, https://doi.org/10.1016/j.jhydrol.2013.02.017, 2013.
Córdova, M., Carrillo-Rojas, G., Crespo, P., Wilcox, B., and Célleri, R.: Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data, Mt. Res. Dev., 35, 230–239, https://doi.org/10.1659/MRD-JOURNAL-D-14-0024.1, 2015.
Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., and Hendrickx, F.: Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments, Water Resour. Res., 48, https://doi.org/10.1029/2011WR011721, 2012.
Coron, L., Thirel, G., Delaigue, O., Perrin, C., and Andréassian, V.: The Suite of Lumped GR Hydrological Models in an R package, Environ. Modell. Softw., 94, 166–171, https://doi.org/10.1016/j.envsoft.2017.05.002, 2017.
Coron, L., Delaigue, O., Thirel, G., Perrin, C., and Michel, C.: airGR: Suite of GR Hydrological Models for Precipitation-Runoff Modelling, R package version 1.4.3.65., INRAE, 2020.
Criss, R. E. and Winston, W. E.: Do Nash values have value? Discussion and alternate proposals, Hydrol. Process., 22, 2723–2725, https://doi.org/10.1002/hyp.7072, 2008.
Crochemore, L., Perrin, C., Andréassian, V., Ehret, U., Seibert, S. P., Grimaldi, S., Gupta, H., and Paturel, J.-E.: Comparing expert judgement and numerical criteria for hydrograph evaluation, Hydrolog. Sci. J., 60, 402–423, https://doi.org/10.1080/02626667.2014.903331, 2015.
Daggupati, P., Pai, N., Ale, S., Douglas-Mankin, K., Zeckoski, R., Jeong, J., Parajuli, P., Saraswat, D., and Youssef, M.: A Recommended Calibration and Validation Strategy for Hydrologic and Water Quality Models, T. ASABE, 58, 1705–1719, https://doi.org/10.13031/trans.58.10712, 2015.
Dairon, R., Dutertre, A., Tournebize, J., Marks-Perreau, J., and Carluer, N.: Long-term impact of reduced tillage on water and pesticide flow in a drained context, Environ. Sci. Pollut. R., 24, 6866–6877, https://doi.org/10.1007/s11356-016-8123-x, 2017.
Deelstra, J.: Climate change and subsurface drainage design: results from a small field-scale catchment in south-western Norway, Acta Agr. Scand. B-S. P., 65, 58–65, https://doi.org/10.1080/09064710.2014.975836, 2015.
Driessen, P., Deckers, J., Spaargaren, O., and Nachtergaele, F.: Lecture notes on the major soils of the world., Food and Agriculture Organization (FAO), Roma, Italy, 2000.
Eyring, V., Waugh, D. W., Bodeker, G. E., Cordero, E., Akiyoshi, H., Austin, J., Beagley, S. R., Boville, B. A., Braesicke, P., Brühl, C., Butchart, N., Chipperfield, M. P., Dameris, M., Deckert, R., Deushi, M., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M. A., Kinnison, D. E., Mancini, E., Manzini, E., Marsh, D. R., Matthes, S., Nagashima, T., Newman, P. A., Nielsen, J. E., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Schraner, M., Scinocca, J. F., Semeniuk, K., Shepherd, T. G., Shibata, K., Steil, B., Stolarski, R. S., Tian, W., and Yoshiki, M.: Multimodel projections of stratospheric ozone in the 21st century, J. Geophys. Res., 112, D16303, https://doi.org/10/fcpq7n, 2007.
FAO: FAO-Unesco Soil Map of the World, Revised Legend, Reprinted with corrections, Tech. Rep., Rome, 1988.
Gowda, P. H., Mulla, D. J., Desmond, E. D., Ward, A. D., and Moriasi, D. N.: ADAPT: Model use, calibration, and validation, T. ASABE, 55, 1345–1352, https://doi.org/10/f39v9d, 2012.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, J. Hydrol., 377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., and Andréassian, V.: Large-sample hydrology: a need to balance depth with breadth, Hydrol. Earth Syst. Sci., 18, 463–477, https://doi.org/10.5194/hess-18-463-2014, 2014.
Helwig, T. G., Madramootoo, C. A., and Dodds, G. T.: Modelling nitrate losses in drainage water using DRAINMOD 5.0, Agr. Water Manage., 56, 153–168, https://doi.org/10.1016/S0378-3774(02)00005-7, 2002.
Henine, H., Nédélec, Y., and Ribstein, P.: Coupled modelling of the effect of overpressure on water discharge in a tile drainage system, J. Hydrol., 511, 39–48, https://doi.org/10.1016/j.jhydrol.2013.12.016, 2014.
Henine, H., Jeantet, A., Chaumont, C., Chelil, S., Lauvernet, C., and Tournebize, J.: Coupling of a subsurface drainage model with a soil reservoir model to simulate drainage discharge and drain flow start, Agr. Water Manage., in review, 2021.
Henriksen, H. J., Troldborg, L., Nyegaard, P., Sonnenborg, T. O., Refsgaard, J. C., and Madsen, B.: Methodology for construction, calibration and validation of a national hydrological model for Denmark, J. Hydrol., 280, 52–71, https://doi.org/10.1016/S0022-1694(03)00186-0, 2003.
Ibrahim, T. G., Fenton, O., Richards, K. G., Fealy, R. M., and Healy, M. G.: Spatial and temporal variations of nutrient loads in overland flow and subsurface drainage from a marginal land site in South-East Ireland, Biol. Environ., 113B, 169–186, 2013.
Jamagne, M.: Bases et techniques d’une cartographie des sols, Institut National de la Recherche Agronomique, Paris, 139 pp., 1968.
Jamagne, M., Betremieux, R., Begon, J. C., and Mori, A.: Quelques données sur la variabilité dans le milieu naturel de la réserve en eau des sols, Bulletin Technique d'Information, 324–325, 627–641, 1977.
Jannot, P.: Drainage and crop production system on intensive dairy farms in Western France, Agr. Water Manage., 14, 61–68, https://doi.org/10/d3z76b, 1988.
Jarvis, N. and Larsbo, M.: MACRO (v5.2): Model Use, Calibration, and Validation, T. ASABE, 55, 1413–1423, https://doi.org/10.13031/2013.42251, 2012.
Jarvis, N. J. and Leeds-Harrison, P. B.: Modelling water movement in drained clay soil. I. Description of the model, sample output and sensitivity analysis, J. Soil Sci., 38, 487–498, https://doi.org/10.1111/j.1365-2389.1987.tb02284.x, 1987.
Jarvis, N. J., Hollis, J. M., Nicholls, P. H., Mayr, T., and Evans, S. P.: MACRO – DB: a decision-support tool for assessing pesticide fate and mobility in soils, Environ. Modell. Softw., 12, 251–265, https://doi.org/10.1016/S1364-8152(97)00147-3, 1997.
Jiang, Q., Qi, Z., Lu, C., Tan, C. S., Zhang, T., and Prasher, S. O.: Evaluating RZ-SHAW model for simulating surface runoff and subsurface tile drainage under regular and controlled drainage with subirrigation in southern Ontario, Agr. Water Manage., 237, 106179, https://doi.org/10.1016/j.agwat.2020.106179, 2020a.
Jiang, Q., Qi, Z., Xue, L., Bukovsky, M., Madramootoo, C. A., and Smith, W.: Assessing climate change impacts on greenhouse gas emissions, N losses in drainage and crop production in a subsurface drained field, Sci. Total Environ., 705, 135969, https://doi.org/10.1016/j.scitotenv.2019.135969, 2020b.
Jury, W. and Roth, K.: Transfer Functions and Solute Movement Through Soil: Theory and Applications, J. Plant Nutr. Soil Sc., 155, 77–166, 1992.
Kao, C., Nedelec, Y., and Zimmer, D.: Surface runoff mechanisms and modelling in subsurface drained fields, Orlando, USA, 1998.
Kladivko, E. J., Brown, L. C., and Baker, J. L.: Pesticide Transport to Subsurface Tile Drains in Humid Regions of North America, Crit. Rev. Env. Sci. Tec., 31, 1–62, https://doi.org/10.1080/20016491089163, 2001.
Klemeš, V.: Operational testing of hydrological simulation models, Hydrolog. Sci. J., 31, 13–24, https://doi.org/10.1080/02626668609491024, 1986.
Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios, J. Hydrol., 424–425, 264–277, https://doi.org/10.1016/j.jhydrol.2012.01.011, 2012.
Knoben, W. J. M., Freer, J. E., and Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores, Hydrol. Earth Syst. Sci., 23, 4323–4331, https://doi.org/10.5194/hess-23-4323-2019, 2019.
Kobierska, F., Koch, U., Kasteel, R., Stamm, C., and Prasuhn, V.: Plant protection product losses via tile drainage: A conceptual model and mitigation measures, Agrarforsch. Schweiz, 11, 115–123, https://doi.org/10/gmf2xr, 2020.
Köhne, J. M., Köhne, S., and Šimůnek, J.: A review of model applications for structured soils: Water flow and tracer transport, J. Contam. Hydrol., 104, 4–35, https://doi.org/10/fbdvsh, 2009.
Konyha, D. and Skaggs, R. W.: A Coupled, Field Hydrology – Open Channel Flow Model: Theory, T. ASAE, 35, 1431–1440, https://doi.org/10.13031/2013.28750, 1992.
Kosugi, K.: Three-parameter lognormal distribution model for soil water retention, Water Resour. Res., 30, 891–901, https://doi.org/10.1029/93WR02931, 1994.
Kosugi, K.: Lognormal Distribution Model for Unsaturated Soil Hydraulic Properties, Water Resour. Res., 32, 2697–2703, https://doi.org/10.1029/96WR01776, 1996.
Kosugi, K.: General Model for Unsaturated Hydraulic Conductivity for Soils with Lognormal Pore-Size Distribution, Soil Sci. Soc. Am. J., 63, 270–277, https://doi.org/10.2136/sssaj1999.03615995006300020003x, 1999.
Krogh, L. and Greve, M. H.: Evaluation of World Reference Base for Soil Resources and FAO Soil Map of the World using nationwide grid soil data from Denmark, Soil Use Manage., 15, 157–166, https://doi.org/10.1111/j.1475-2743.1999.tb00082.x, 1999.
Kuzmanovski, V., Trajanov, A., Leprince, F., Džeroski, S., and Debeljak, M.: Modeling water outflow from tile-drained agricultural fields, Sci. Total Environ., 505, 390–401, https://doi.org/10.1016/j.scitotenv.2014.10.009, 2015.
Lagacherie, P. and Favrot, J. C.: Synthèse générale sur les études de secteurs de référence drainage, INRA, Paris, France, 1987.
Lange, B., Germann, P. F., and Lüscher, P.: Runoff-generating processes in hydromorphic soils on a plot scale: free gravity-driven versus pressure-controlled flow, Hydrol. Process., 25, 873–885, https://doi.org/10.1002/hyp.7873, 2011.
Larsbo, M., Roulier, S., Stenemo, F., Kasteel, R., and Jarvis, N.: An Improved Dual-Permeability Model of Water Flow and Solute Transport in the Vadose Zone, Vadose Zone J., 4, 398–406, https://doi.org/10/bszhwz, 2005.
Lebrun, J. D., Ayrault, S., Drouet, A., Bordier, L., Fechner, L. C., Uher, E., Chaumont, C., and Tournebize, J.: Ecodynamics and bioavailability of metal contaminants in a constructed wetland within an agricultural drained catchment, Ecol. Eng., 136, 108–117, https://doi.org/10.1016/j.ecoleng.2019.06.012, 2019.
Lesaffre, B.: Fonctionnement hydrologique et hydraulique du drainage souterrain des sols temporairement engorgés: débits de pointe et modèle SIDRA: extension des principes théoriques de Boussinesq et Guyon, PhD thesis, Paris 6, 1989.
Lesaffre, B. and Zimmer, D.: Field evaluation of a subsurface drainage simulation model predicting peak flow, p. 8, Chicago, USA, 1987.
Lévy, G.: Premiers résultats concernant deux expériences d'assainissement du sol sur plantations de résineux, Ann. For. Sci., 29, 427–450, https://doi.org/10.1051/forest/19720402, 1972.
Lewan, E., Kreuger, J., and Jarvis, N.: Implications of precipitation patterns and antecedent soil water content for leaching of pesticides from arable land, Agr. Water Manage., 96, 1633–1640, https://doi.org/10/cx2jb9, 2009.
Li, C. Z., Zhang, L., Wang, H., Zhang, Y. Q., Yu, F. L., and Yan, D. H.: The transferability of hydrological models under nonstationary climatic conditions, Hydrol. Earth Syst. Sci., 16, 1239–1254, https://doi.org/10.5194/hess-16-1239-2012, 2012.
Ma, L., Malone, R. W., Heilman, P., Ahuja, L. R., Meade, T., Saseendran, S. A., Ascough, J. C., and Kanwar, R. S.: Sensitivity of tile drainage flow and crop yield on measured and calibrated soil hydraulic properties, Geoderma, 140, 284–296, https://doi.org/10.1016/j.geoderma.2007.04.012, 2007.
Magesan, G. N., Scotter, D. R., and White, R. E.: A transfer function approach to modeling the leaching of solutes to subsurface drains I, Nonreactive solutes, Soil Res., 32, 69–83, https://doi.org/10/fwf5vw, 1994.
Mathevet, T.: Quels modèles pluie-débit globaux au pas de temps horaire? Développements empiriques et comparaison de modèles sur un large échantillon de bassins versants, Thèse de Doctorat, à l'Ecole Nationale du Génie Rural, des Eaux et Forêts, Paris, France, 2005.
Meyer, N., Bergez, J.-E., Constantin, J., and Justes, E.: Cover crops reduce water drainage in temperate climates: A meta-analysis, Agron. Sustain. Dev., 39, 3, https://doi.org/10.1007/s13593-018-0546-y, 2018.
Michel, C.: Hydrologie Appliquee Aux Petits Bassins Ruraux (Applied Hydrology for Small Catchments), Internal Report, Cemagref, Antony, France, 1991.
Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren, L. L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S. J., Baldassarre, G. D., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D. A., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V.: “Panta Rhei – Everything Flows”: Change in hydrology and society – The IAHS Scientific Decade 2013–2022, Hydrolog. Sci. J., 58, 1256–1275, https://doi.org/10.1080/02626667.2013.809088, 2013.
Moriasi, D., Arnold, J., Van Liew, M., Bingner, R., Harmel, R. D., and Veith, T.: Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations, T. ASABE, 50, 885–900, https://doi.org/10.13031/2013.23153, 2007.
Moriasi, D., Gitau, M., Pai, N., and Daggupati, P.: Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria, T. ASABE, 58, 1763–1785, https://doi.org/10.13031/trans.58.10715, 2015.
Mulqueen, J.: Depth, spacing and length of mole drains with applications to afforestation, Irish J. Agr. Food Res., 37, 39–49, 1998.
Muma, M., Rousseau, A. N., and Gumiere, S. J.: Modeling of subsurface agricultural drainage using two hydrological models with different conceptual approaches as well as dimensions and spatial scales, Can. Water Resour. J., 42, 38–53, https://doi.org/10.1080/07011784.2016.1231014, 2017.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Nijland, H., Croon, F., and Ritzema, H.: Subsurface drainage practices: Guidelines for the implementation, operation and maintenance of subsurface pipe drainage systems, Alterra-ILRI, Wageningen, the Netherlands, 2005.
Pease, L. A., Fausey, N. R., Martin, J. F., and Brown, L. C.: Projected climate change effects on subsurface drainage and the performance of controlled drainage in the Western Lake Erie Basin, J. Soil Water Conserv., 72, 240–250, https://doi.org/10.2489/jswc.72.3.240, 2017.
Perrin, C.: Vers une amélioration d'un modèle global pluie-débit au travers d'une approche comparative, INPG (Grenoble)/Cemagref (Antony), 2000.
Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 275–289, https://doi.org/10.1016/S0022-1694(03)00225-7, 2003.
Poncelet, C., Merz, R., Merz, B., Parajka, J., Oudin, L., Andréassian, V., and Perrin, C.: Process-based interpretation of conceptual hydrological model performance using a multinational catchment set, Water Resour. Res., 53, 7247–7268, https://doi.org/10.1002/2016WR019991, 2017.
Refsgaard, J. C.: Parameterisation, calibration and validation of distributed hydrological models, J. Hydrol., 198, 69–97, https://doi.org/10.1016/S0022-1694(96)03329-X, 1997.
Refsgaard, J. C.: Towards a formal approach to calibration and validation of models using spatial data, in: Spatial patterns in catchment hydrology: observations and modelling, Cambridge University Press, Cambridge, 329–354, 2001.
Refsgaard, J. C. and Storm, B.: Construction, Calibration And Validation of Hydrological Models, in Distributed Hydrological Modelling, edited by: Abbott, M. B. and Refsgaard, J. C., 41–54, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-009-0257-2_3, 1996.
Ren, X. W. and Santamarina, J. C.: The hydraulic conductivity of sediments: A pore size perspective, Eng. Geol., 233, 48–54, https://doi.org/10.1016/j.enggeo.2017.11.022, 2018.
Revuelta-Acosta, J. D., Flanagan, D. C., Engel, B. A., and King, K. W.: Improvement of the Water Erosion Prediction Project (WEPP) model for quantifying field scale subsurface drainage discharge, Agr. Water Manage., 244, 106597, https://doi.org/10.1016/j.agwat.2020.106597, 2021.
Richer-de-Forges, A., Feller, C., Jamagne, M., and Arrouays, D.: Perdus dans le triangle des textures, Étude et Gestions des Sols, 15, 97–112, 2008.
Ritter, A. and Muñoz-Carpena, R.: Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments, J. Hydrol., 480, 33–45, https://doi.org/10.1016/j.jhydrol.2012.12.004, 2013.
Robinson, M. and Rycroft, D. W.: The Impact of Drainage on Streamflow, in: Agricultural Drainage, 767–800, John Wiley & Sons, Ltd., https://doi.org/10.2134/agronmonogr38.c23, 1999.
Robinson, M., Mulqueen, J., and Burke, W.: On flows from a clay soil – Seasonal changes and the effect of mole drainage, J. Hydrol., 91, 339–350, https://doi.org/10.1016/0022-1694(87)90210-1, 1987.
Rousselot, D. and Peyrieux, J.-C.: Proposition pour une loi de distribution des perméabilités et des transmissivités, Ministère de l'industrie et de la recherche, Lyon, 1977.
Rousseva, S., Kercheva, M., Shishkov, T., Lair, G. J., Nikolaidis, N. P., Moraetis, D., Krám, P., Bernasconi, S. M., Blum, W. E. H., Menon, M., and Banwart, S. A.: Chapter Two – Soil Water Characteristics of European SoilTrEC Critical Zone Observatories, in: Advances in Agronomy, 142, edited by: Banwart, S. A. and Sparks, D. L., 29–72, Academic Press, Cambridge, UK, https://doi.org/10.1016/bs.agron.2016.10.004, 2017.
Sands, G. R., Jin, C.-X., Mendez, A., Basin, B., Wotzka, P., and Gowda, P.: Comparing the subsurface drainage flow prediction of the DRAINMOD and ADAPT models for a cold climate, Transactions of the American Society of Agricultural Engineers, 46, 645–656, 2003.
Santos, L., Thirel, G., and Perrin, C.: Technical note: Pitfalls in using log-transformed flows within the KGE criterion, Hydrol. Earth Syst. Sci., 22, 4583–4591, https://doi.org/10.5194/hess-22-4583-2018, 2018.
Skaggs, R. W.: Methods for Design and Evaluation of Drainage Water Management Systems for Soils with High Water Tables, DRAINMOD, North Carolina State University, Raleigh, 1981.
Skaggs, R. W., Van Schilfgaarde, J., Bartels, J. M., Hatfield, J. L., Volenec, J. J., and Bigham, J. M.: Agricultural drainage, American Society of Agronomy Madison, WI, USA, 1999.
Skaggs, R. W., Youssef, M., and Chescheir, G. M.: DRAINMOD: model use, calibration, and validation, T. ASABE, 55, 1509–1522, https://doi.org/10.13031/2013.42259, 2012.
Snow, V. O., Houlbrooke, D. J., and Huth, N. I.: Predicting soil water, tile drainage, and runoff in a mole-tile drained soil, New Zeal. J. Agr. Res., 50, 13–24, https://doi.org/10.1080/00288230709510278, 2007.
Tallec, G., Ansart, P., Guérin, A., Delaigue, O., and Blanchouin, A.: Observatoire Oracle, https://doi.org/10.17180/OBS.ORACLE, 2015.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An Overview of CMIP5 and the Experiment Design, Bull. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2011.
Thirel, G., Andréassian, V., Perrin, C., Audouy, J.-N., Berthet, L., Edwards, P., Folton, N., Furusho, C., Kuentz, A., Lerat, J., Lindström, G., Martin, E., Mathevet, T., Merz, R., Parajka, J., Ruelland, D., and Vaze, J.: Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments, Hydrolog. Sci. J., 60, 1184–1199, https://doi.org/10.1080/02626667.2014.967248, 2015a.
Thirel, G., Andréassian, V., and Perrin, C.: On the need to test hydrological models under changing conditions, Hydrolog. Sci. J., 60, 1165–1173, https://doi.org/10.1080/02626667.2015.1050027, 2015b.
Thompson, J. A., Bell, J. C., and Butler, C. A.: Quantitative Soil-Landscape Modeling for Estimating the Areal Extent of Hydromorphic Soils, Soil Sci. Soc. Am. J., 61, 971–980, https://doi.org/10.2136/sssaj1997.03615995006100030037x, 1997.
Tournebize, J., Gramaglia, C., Birmant, F., Bouarfa, S., Chaumont, C., and Vincent, B.: Co-Design of Constructed Wetlands to Mitigate Pesticide Pollution in a Drained Catch-Basin: A Solution to Improve Groundwater Quality, Irrig. Drain., 61, 75–86, https://doi.org/10.1002/ird.1655, 2012.
Tournebize, J., Chaumont, C., Marcon, A., Molina, S., and Berthault, D.: Guide technique à l'implantation des zones tampons humides artificielles (ZTHA) pour réduire les transferts de nitrates et de pesticides dans les eaux de drainage, Version 3, IRSTEA, Antony, France, 2015.
Tournebize, J., Chaumont, C., and Mander, Ü.: Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds, Ecol. Eng., 103, 415–425, https://doi.org/10.1016/j.ecoleng.2016.02.014, 2017.
Tournebize, J., Henine, H., and Chaumont, C.: Gérer les eaux de drainage agricole: du génie hydraulique au génie écologique, ciences, Eaux et Territoires, 32, 32–41, https://doi.org/10.14758/SET-REVUE.2020.2.06, 2020.
Trajanov, A., Kuzmanovski, V., Real, B., Perreau, J. M., Džeroski, S., and Debeljak, M.: Modeling the risk of water pollution by pesticides from imbalanced data, Environ. Sci. Pollut. R., 25, 18781–18792, https://doi.org/10.1007/s11356-018-2099-7, 2018.
Tukey, J. W.: Exploratory data analysis, Reading, MA, USA, 1977.
Tuohy, P., Humphreys, J., Holden, N. M., and Fenton, O.: Runoff and subsurface drain response from mole and gravel mole drainage across episodic rainfall events, Agr. Water Manage., 169, 129–139, https://doi.org/10.1016/j.agwat.2016.02.020, 2016.
Tuohy, P., O'Loughlin, J., and Fenton, O.: Modeling Performance of a Tile Drainage System Incorporating Mole Drainage, T. ASABE, 61, 169–178, https://doi.org/10.13031/trans.12203, 2018a.
Tuohy, P., O'Loughlin, J., Peyton, D., and Fenton, O.: The performance and behavior of land drainage systems and their impact on field scale hydrology in an increasingly volatile climate, Agr. Water Manage., 210, 96–107, https://doi.org/10.1016/j.agwat.2018.07.033, 2018b.
Vachaud, G., Passerat De Silans, A., Balabanis, P., and Vauclin, M.: Temporal Stability of Spatially Measured Soil Water Probability Density Function 1, Soil Sci. Soc. Am. J., 49, 822–828, https://doi.org/10.2136/sssaj1985.03615995004900040006x, 1985.
Vidal, J.-P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J.-M.: A 50 year high-resolution atmospheric reanalysis over France with the Safran system, Int. J. Climatol., 30, 1627–1644, https://doi.org/10.1002/joc.2003, 2010.
Ye, W., Zhang, J., Xu, W., and Zhang, Z.: Numerical investigation on the flow structures of the multi-strut mixing enhancement ejector, Appl. Therm. Eng., 179, 115653, https://doi.org/10.1016/j.applthermaleng.2020.115653, 2020.
Zajíček, A., Fučík, P., Kaplická, M., Liška, M., Maxová, J., and Dobiáš, J.: Pesticide leaching by agricultural drainage in sloping, mid-textured soil conditions – the role of runoff components, Water Sci. Technol., 77, 1879–1890, https://doi.org/10/gdgnt2, 2018.
Zimmer, D.: Effect of deep seepage on drainage functioning and design in shallow soils, 6th international drainage symposium “Drainage and water table control”, Nashville, USA, 13–15 December 1992, 272, 1992.
Zimmer, D.: Lessons gained from the land drainage performance assessment programs in France during the 80's, Workshop on the Evaluation of the Performance of Subsurface Drainage Systems, 16th International congress of ICID, 15–22 September 1996, Cairo, Egypt, 96/0511, 57–69, 1996.
Short summary
The hydrological subsurface drainage model SIDRA-RU is assessed at the French national scale, using a unique database representing the large majority of the French drained areas. The model is evaluated following its capacity to simulate the drainage discharge variability and the annual drained water balance. Eventually, the temporal robustness of SIDRA-RU is assessed to demonstrate the utility of this model as a long-term management tool.
The hydrological subsurface drainage model SIDRA-RU is assessed at the French national scale,...