Articles | Volume 25, issue 10
https://doi.org/10.5194/hess-25-5415-2021
https://doi.org/10.5194/hess-25-5415-2021
Research article
 | 
11 Oct 2021
Research article |  | 11 Oct 2021

Depth to water table correction for initial carbon-14 activities in groundwater mean residence time estimation

Dylan J. Irvine, Cameron Wood, Ian Cartwright, and Tanya Oliver

Related authors

A high-resolution map of diffuse groundwater recharge rates for Australia
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
EGUsphere, https://doi.org/10.5194/egusphere-2023-2414,https://doi.org/10.5194/egusphere-2023-2414, 2023
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Theory development
Technical note: Analytical solution for well water response to Earth tides in leaky aquifers with storage and compressibility in the aquitard
Rémi Valois, Agnès Rivière, Jean-Michel Vouillamoz, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 28, 1041–1054, https://doi.org/10.5194/hess-28-1041-2024,https://doi.org/10.5194/hess-28-1041-2024, 2024
Short summary
Flow recession behavior of preferential subsurface flow patterns with minimum energy dissipation
Jannick Strüven and Stefan Hergarten
Hydrol. Earth Syst. Sci., 27, 3041–3058, https://doi.org/10.5194/hess-27-3041-2023,https://doi.org/10.5194/hess-27-3041-2023, 2023
Short summary
Towards a hydrogeomorphological understanding of proglacial catchments: an assessment of groundwater storage and release in an Alpine catchment
Tom Müller, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 6029–6054, https://doi.org/10.5194/hess-26-6029-2022,https://doi.org/10.5194/hess-26-6029-2022, 2022
Short summary
Effect of topographic slope on the export of nitrate in humid catchments: a 3D model study
Jie Yang, Qiaoyu Wang, Ingo Heidbüchel, Chunhui Lu, Yueqing Xie, Andreas Musolff, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 5051–5068, https://doi.org/10.5194/hess-26-5051-2022,https://doi.org/10.5194/hess-26-5051-2022, 2022
Short summary
Transit Time index (TTi) as an adaptation of the humification index to illustrate transit time differences in karst hydrosystems: application to the karst springs of the Fontaine de Vaucluse system (southeastern France)
Leïla Serène, Christelle Batiot-Guilhe, Naomi Mazzilli, Christophe Emblanch, Milanka Babic, Julien Dupont, Roland Simler, Matthieu Blanc, and Gérard Massonnat
Hydrol. Earth Syst. Sci., 26, 5035–5049, https://doi.org/10.5194/hess-26-5035-2022,https://doi.org/10.5194/hess-26-5035-2022, 2022
Short summary

Cited articles

Bacon, D. H. and Keller, C. K.: Carbon dioxide respiration in the deep vadose zone: implications for groundwater age dating, Water Resour. Res., 34, 3069–3077, https://doi.org/10.1029/98WR02045, 1998. 
Brown, K., Love, A. J., and Harrington, G. A.: Vertical groundwater recharge to the Tertiary confined sand aquifer, South East, South Australia, Report, DWR 2001/002, Department for Water Resources, South Australia, Adelaide, 2001. 
Carmi, I., Kronfeld, J., Yechieli, Y., Yakir, D., Boaretto, E., and Stiller, M.: Carbon isotopes in pore water of the unsaturated zone and their relevance for initial 14C activity in groundwater in the coastal aquifer of Israel, Chem. Geol. 268, 189–196, https://doi.org/10.1016/j.chemgeo.2009.08.010, 2009. 
Cartwright, I. and Morgenstern, U.: Constraining groundwater recharge and the rate of geochemical processes using tritium and major ion geochemistry: Ovens catchment, southeast Australia, J. Hydrol., 475, 137–149, https://doi.org/10.1016/j.jhydrol.2012.09.037, 2012. 
Cartwright, I., Weaver, T. R., Stone, D., and Reid, M.: Constraining modern and historical recharge from bore hydrographs, 3H, 14C, and chloride concentrations: Applications to dual-porosity aquifers in dryland salinity areas, Murray Basin, Australia, J. Hydrol., 332, 69–92, https://doi.org/10.1016/j.jhydrol.2006.06.034, 2007. 
Download
Short summary
It is widely assumed that 14C is in contact with the atmosphere until recharging water reaches the water table. Unsaturated zone (UZ) studies have shown that 14C decreases with depth below the land surface. We produce a relationship between UZ 14C and depth to the water table to estimate input 14C activities for groundwater age estimation. Application of the new relationship shows that it is important for UZ processes to be considered in groundwater mean residence time estimation.