Articles | Volume 25, issue 7
https://doi.org/10.5194/hess-25-3805-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3805-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Long-term relative decline in evapotranspiration with increasing runoff on fractional land surfaces
Key Laboratory of Virtual Geographical Environment (Nanjing Normal
University), Ministry of Education, Nanjing, 210023, China
School of Geographical Sciences, Nanjing Normal University, Nanjing, 210023, China
Jiangsu Center for Collaborative Innovation in Geographical
Information Resource Development and Application, Nanjing, 210023, China
Pierre Gentine
CORRESPONDING AUTHOR
Earth and Environmental Engineering Department, Columbia University, New York, NY 10027, USA
Earth Institute, Columbia University, New York, NY 10025, USA
Jiabo Yin
State Key Laboratory of Water Resources and Hydropower Engineering
Science, Wuhan University, Wuhan, 430072, China
Lijuan Chen
Key Laboratory of Virtual Geographical Environment (Nanjing Normal
University), Ministry of Education, Nanjing, 210023, China
School of Geographical Sciences, Nanjing Normal University, Nanjing, 210023, China
Jiangsu Center for Collaborative Innovation in Geographical
Information Resource Development and Application, Nanjing, 210023, China
Jianyao Chen
School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510275, China
Guandong Key Laboratory for Urbanization and Geo-simulation, Sun
Yat-sen University, Guangzhou, 510275, China
Longhui Li
Key Laboratory of Virtual Geographical Environment (Nanjing Normal
University), Ministry of Education, Nanjing, 210023, China
School of Geographical Sciences, Nanjing Normal University, Nanjing, 210023, China
Jiangsu Center for Collaborative Innovation in Geographical
Information Resource Development and Application, Nanjing, 210023, China
Related authors
No articles found.
Wenli Zhao, Alexander J. Winkler, Markus Reichstein, Rene Orth, and Pierre Gentine
EGUsphere, https://doi.org/10.5194/egusphere-2025-4082, https://doi.org/10.5194/egusphere-2025-4082, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
We used explainable machine learning that incorporates memory effects to study how plants respond to weather and drought. Using data from 90 sites worldwide, we show that memory plays a key role in regulating plant water stress. Forests and savannas rely on longer past conditions than grasslands, reflecting differences in rooting depth and water use. These insights improve our ability to anticipate ecosystem vulnerability as droughts intensify.
Jiaoyang Wang, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Hua Chen, Jie Chen, Jiabo Yin, and Yuling Zhang
Hydrol. Earth Syst. Sci., 29, 3315–3339, https://doi.org/10.5194/hess-29-3315-2025, https://doi.org/10.5194/hess-29-3315-2025, 2025
Short summary
Short summary
The unclear feedback loops of water supply–hydropower generation–environmental conservation (SHE) nexuses with inter-basin water diversion projects (IWDPs) increase the uncertainty in the rational scheduling of water resources for water receiving and water donation areas. To address the different impacts of IWDPs on dynamic SHE nexuses and explore synergies, a framework is proposed to identify these effects across the different temporal and spatial scales in a reservoir group.
Chao Ma, Weifeng Hao, Qing Cheng, Fan Ye, Ying Qu, Jiabo Yin, Fang Xu, Haojian Wu, and Fei Li
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-79, https://doi.org/10.5194/essd-2025-79, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
Antarctic sea ice albedo is a key factor influencing the energy balance of the cryosphere. Here we present a daily 1 km shortwave albedo product for Antarctic sea ice from 2012 to 2021, based on VIIRS reflectance data. Additionally, we reconstructed the albedo for missing pixels due to cloud cover. This dataset can be used to assess changes in Antarctic sea ice, radiation budget, and the strength of sea ice albedo feedback mechanisms, as well as their potential interconnections.
Mitra Cattry, Wenli Zhao, Juan Nathaniel, Jinghao Qiu, Yao Zhang, and Pierre Gentine
EGUsphere, https://doi.org/10.5194/egusphere-2024-3726, https://doi.org/10.5194/egusphere-2024-3726, 2025
Short summary
Short summary
Climate change alters Mediterranean biota, affecting how they absorb and store carbon. These associated impacts arise from short- and long-term effects of rainfall, temperature, and other atmospheric forcings, which existing tools struggle to capture. This study presents a memory-integrated model combining high- and low-resolution data to track daily ecosystem responses. By analyzing past conditions, we show how earlier conditions shape plant carbon uptake and improve predictions.
Wenli Zhao, Alexander J. Winkler, Markus Reichstein, Rene Orth, and Pierre Gentine
EGUsphere, https://doi.org/10.5194/egusphere-2025-365, https://doi.org/10.5194/egusphere-2025-365, 2025
Preprint archived
Short summary
Short summary
We developed a machine learning model that accounts for the memory effects of soil moisture and vegetation to predict Evaporative Fraction (EF) without relying on soil moisture as a direct input. The model accurately predicts EF during dry periods for the unseen sites, highlighting the key of meteorological memory effects. The learned memory effect related to rooting depth and soil water holding capacity could potentially serve as proxies for assessing the plant water stress.
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 28, 5229–5247, https://doi.org/10.5194/hess-28-5229-2024, https://doi.org/10.5194/hess-28-5229-2024, 2024
Short summary
Short summary
Flash flood warnings cannot be effective without people’s responses to them. We propose a method to determine the threshold of issuing warnings based on a people’s response process simulation. The results show that adjusting the warning threshold according to people’s tolerance levels to the failed warnings can improve warning effectiveness, but the prerequisite is to increase forecasting accuracy and decrease forecasting variance.
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024, https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary
Short summary
Climate change accelerates the water cycle and alters the spatiotemporal distribution of hydrological variables, thus complicating the projection of future streamflow and hydrological droughts. We develop a cascade modeling chain to project future bivariate hydrological drought characteristics over China, using five bias-corrected global climate model outputs under three shared socioeconomic pathways, five hydrological models, and a deep-learning model.
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci., 28, 1873–1895, https://doi.org/10.5194/hess-28-1873-2024, https://doi.org/10.5194/hess-28-1873-2024, 2024
Short summary
Short summary
Temporal variability and spatial heterogeneity of climate systems challenge accurate estimation of probable maximum precipitation (PMP) in China. We use high-resolution precipitation data and climate models to explore the variability, trends, and shifts of PMP under climate change. Validated with multi-source estimations, our observations and simulations show significant spatiotemporal divergence of PMP over the country, which is projected to amplify in future due to land–atmosphere coupling.
Jiabo Yin, Louise J. Slater, Abdou Khouakhi, Le Yu, Pan Liu, Fupeng Li, Yadu Pokhrel, and Pierre Gentine
Earth Syst. Sci. Data, 15, 5597–5615, https://doi.org/10.5194/essd-15-5597-2023, https://doi.org/10.5194/essd-15-5597-2023, 2023
Short summary
Short summary
This study presents long-term (i.e., 1940–2022) and high-resolution (i.e., 0.25°) monthly time series of TWS anomalies over the global land surface. The reconstruction is achieved by using a set of machine learning models with a large number of predictors, including climatic and hydrological variables, land use/land cover data, and vegetation indicators (e.g., leaf area index). Our proposed GTWS-MLrec performs overall as well as, or is more reliable than, previous TWS datasets.
Jatan Buch, A. Park Williams, Caroline S. Juang, Winslow D. Hansen, and Pierre Gentine
Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023, https://doi.org/10.5194/gmd-16-3407-2023, 2023
Short summary
Short summary
We leverage machine learning techniques to construct a statistical model of grid-scale fire frequencies and sizes using climate, vegetation, and human predictors. Our model reproduces the observed trends in fire activity across multiple regions and timescales. We provide uncertainty estimates to inform resource allocation plans for fuel treatment and fire management. Altogether the accuracy and efficiency of our model make it ideal for coupled use with large-scale dynamical vegetation models.
Youjiang Shen, Dedi Liu, Liguang Jiang, Karina Nielsen, Jiabo Yin, Jun Liu, and Peter Bauer-Gottwein
Earth Syst. Sci. Data, 14, 5671–5694, https://doi.org/10.5194/essd-14-5671-2022, https://doi.org/10.5194/essd-14-5671-2022, 2022
Short summary
Short summary
A data gap of 338 Chinese reservoirs with their surface water area (SWA), water surface elevation (WSE), and reservoir water storage change (RWSC) during 2010–2021. Validation against the in situ observations of 93 reservoirs indicates the relatively high accuracy and reliability of the datasets. The unique and novel remotely sensed dataset would benefit studies involving many aspects (e.g., hydrological models, water resources related studies, and more).
Jinghua Xiong, Shenglian Guo, Abhishek, Jie Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 26, 6457–6476, https://doi.org/10.5194/hess-26-6457-2022, https://doi.org/10.5194/hess-26-6457-2022, 2022
Short summary
Short summary
Although the "dry gets drier, and wet gets wetter (DDWW)" paradigm is prevalent in summarizing wetting and drying trends, we show that only 11.01 %–40.84 % of the global land confirms and 10.21 %–35.43 % contradicts the paradigm during 1985–2014 from a terrestrial water storage change perspective. Similar proportions that intensify with the increasing emission scenarios persist until the end of the 21st century. Findings benefit understanding of global hydrological responses to climate change.
Jing Tian, Zhengke Pan, Shenglian Guo, Jiabo Yin, Yanlai Zhou, and Jun Wang
Hydrol. Earth Syst. Sci., 26, 4853–4874, https://doi.org/10.5194/hess-26-4853-2022, https://doi.org/10.5194/hess-26-4853-2022, 2022
Short summary
Short summary
Most of the literature has focused on the runoff response to climate change, while neglecting the impacts of the potential variation in the active catchment water storage capacity (ACWSC) that plays an essential role in the transfer of climate inputs to the catchment runoff. This study aims to systematically identify the response of the ACWSC to a long-term meteorological drought and asymptotic climate change.
Yujie Zeng, Dedi Liu, Shenglian Guo, Lihua Xiong, Pan Liu, Jiabo Yin, and Zhenhui Wu
Hydrol. Earth Syst. Sci., 26, 3965–3988, https://doi.org/10.5194/hess-26-3965-2022, https://doi.org/10.5194/hess-26-3965-2022, 2022
Short summary
Short summary
The sustainability of the water–energy–food (WEF) nexus remains challenge, as interactions between WEF and human sensitivity and water resource allocation in water systems are often neglected. We incorporated human sensitivity and water resource allocation into a WEF nexus and assessed their impacts on the integrated system. This study can contribute to understanding the interactions across the water–energy–food–society nexus and improving the efficiency of resource management.
Jinghua Xiong, Shenglian Guo, Jie Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-645, https://doi.org/10.5194/hess-2021-645, 2022
Manuscript not accepted for further review
Short summary
Short summary
Although the “dry gets drier and wet gets wetter” (DDWW) paradigm is widely used to describe the trends in wetting and drying globally, we show that 27.1 % of global land agrees with the paradigm, while 22.4 % shows the opposite pattern during the period 1985–2014 from the perspective of terrestrial water storage change. Similar percentages are discovered under different scenarios during the future period. Our findings will benefit the understanding of hydrological responses under climate change.
Ana Bastos, René Orth, Markus Reichstein, Philippe Ciais, Nicolas Viovy, Sönke Zaehle, Peter Anthoni, Almut Arneth, Pierre Gentine, Emilie Joetzjer, Sebastian Lienert, Tammas Loughran, Patrick C. McGuire, Sungmin O, Julia Pongratz, and Stephen Sitch
Earth Syst. Dynam., 12, 1015–1035, https://doi.org/10.5194/esd-12-1015-2021, https://doi.org/10.5194/esd-12-1015-2021, 2021
Short summary
Short summary
Temperate biomes in Europe are not prone to recurrent dry and hot conditions in summer. However, these conditions may become more frequent in the coming decades. Because stress conditions can leave legacies for many years, this may result in reduced ecosystem resilience under recurrent stress. We assess vegetation vulnerability to the hot and dry summers in 2018 and 2019 in Europe and find the important role of inter-annual legacy effects from 2018 in modulating the impacts of the 2019 event.
Andrew F. Feldman, Daniel J. Short Gianotti, Alexandra G. Konings, Pierre Gentine, and Dara Entekhabi
Biogeosciences, 18, 831–847, https://doi.org/10.5194/bg-18-831-2021, https://doi.org/10.5194/bg-18-831-2021, 2021
Short summary
Short summary
We quantify global plant water uptake durations after rainfall using satellite-based plant water content measurements. In wetter regions, plant water uptake occurs within a day due to rapid coupling between soil and plant water content. Drylands show multi-day plant water uptake after rain pulses, providing widespread evidence for slow rehydration responses and pulse-driven growth responses. Our results suggest that drylands are sensitive to projected shifts in rainfall intensity and frequency.
Manuel Schlund, Axel Lauer, Pierre Gentine, Steven C. Sherwood, and Veronika Eyring
Earth Syst. Dynam., 11, 1233–1258, https://doi.org/10.5194/esd-11-1233-2020, https://doi.org/10.5194/esd-11-1233-2020, 2020
Short summary
Short summary
As an important measure of climate change, the Equilibrium Climate Sensitivity (ECS) describes the change in surface temperature after a doubling of the atmospheric CO2 concentration. Climate models from the Coupled Model Intercomparison Project (CMIP) show a wide range in ECS. Emergent constraints are a technique to reduce uncertainties in ECS with observational data. Emergent constraints developed with data from CMIP phase 5 show reduced skill and higher ECS ranges when applied to CMIP6 data.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Cited articles
Alkama, R., Marchand, L., Ribes, A., and Decharme, B.: Detection of global runoff changes: results from observations and CMIP5 experiments, Hydrol. Earth Syst. Sci., 17, 2967–2979, https://doi.org/10.5194/hess-17-2967-2013, 2013.
Baruga, C. K., Kim, D., and Choi, M.: A national-scale drought assessment in
Uganda based on evapotranspiration deficits from the Bouchet hypothesis, J.
Hydrol., 580, 124348, https://doi.org/10.1016/j.jhydrol.2019.124348, 2020.
Berg, A., Findell, K., Lintner, B., Giannini, A., Seneviratne, S. I., van
den Hurk, B., Lorenz, R., Pitman, A., Hagemann, S., Meier, A., Cheruy, F.,
Ducharne, A., Malyshev, S., and Milly, P. C. D.: Land-atmosphere feedbacks
amplify aridity increase over land under global warming, Nat. Clim. Change,
6, 869–874, https://doi.org/10.1038/nclimate3029, 2016.
Biasutti, M.: Rainfall trends in the African Sahel: Characteristics,
processes, and causes, WIREs Clim. Change, 10, e591,
https://doi.org/10.1002/wcc.591, 2019.
Bosmans, J. H. C., van Beek, L. P. H., Sutanudjaja, E. H., and Bierkens, M. F. P.: Hydrological impacts of global land cover change and human water use, Hydrol. Earth Syst. Sci., 21, 5603–5626, https://doi.org/10.5194/hess-21-5603-2017, 2017.
Byrne, M. P. and O'Gorman, P. A.: The response of precipitation minus
evapotranspiration to climate warming: Why the “wet-get-wetter,
dry-get-drier” scaling does not hold over land, J. Climate, 28, 8078–8092,
https://doi.org/10.1175/JCLI-D-15-0369.1, 2015.
Chen, Z. J., Zhu, Z. C., Jiang, H., and Sun S. J.: Estimating daily
reference evapotranspiration based on limited meteorological data using deep
learning and classical machine learning methods, J. Hydrol., 591, 125286,
https://doi.org/10.1016/j.jhydrol.2020.125286, 2020.
Chou, C., Neelin, J. D., Chen, C. A., and Tu, J. Y.: Evaluating the
“rich-get-richer” mechanism in tropical precipitation change under global
warming, J. Climate, 22, 1982–2005, https://doi.org/10.1175/2008JCLI2471.1,
2009.
Cook, B. I., Smerdon, J. E., Seager, R., and Coats, S.: Global warming and
21st century drying, Clim. Dynam., 43, 2607–2627,
https://doi.org/10.1007/s00382-014-2075-y, 2014.
Costa, M. H., Biajoli, M. C., Sanches, L., Malhado, A. C. M., Hutyra, L. R.,
da Rocha, H. R., Aguiar, R. G., and de Araújo, A. C.: Atmospheric versus
vegetation controls of Amazonian tropical rain forest evapotranspiration:
Are the wet and seasonally dry rain forests any different?, J. Geophys.
Res.-Biogeo., 115, G04021, https://doi.org/10.1029/2009jg001179, 2010.
Dai, A.: Increasing drought under global warming in observations and models,
Nat. Clim. Change, 3, 171–171, https://doi.org/10.1038/nclimate1633, 2013.
Durre, I., Menne, M. J., Gleason, B. E., Houston, T. G., and Vose, R. S.:
Comprehensive automated quality assurance of daily surface observations, J.
Appl. Meteorol. Clim., 49, 1615–1633,
https://doi.org/10.1175/2010JAMC2375.1, 2010.
Dong, B. and Sutton, R.: Dominant role of greenhouse-gas forcing in the
recovery of Sahel rainfall, Nat. Clim. Change, 5, 757–760,
https://doi.org/10.1038/nclimate2664, 2015.
GRDC: The global runoff data base, available at: https://www.bafg.de/GRDC/EN/01_GRDC/13_dtbse/database_node.html, last access: 23 June 2021.
FLUXET community: FLUXNET2015 FULLSET data, available at: https://fluxnet.org/data/download-data/, last access: 23 June 2021.
Food and Agriculture Organization (FAO) of the United Nations: The global map of irrigated areas, available at: http://www.fao.org/aquastat/en/geospatial-information/global-maps-irrigated-areas/latest-version/, last access: 23 June 2021.
Forzieri, G., Miralles, D., Ciais, P., Alkama, R., Ryu, Y., Duveiller, G.,
Zhang, K., Robertson, E., Kautz, M., Martens, B., Jiang, C., Arneth, A.,
Georgievski, G., Li, W., Ceccherini, G., Anthoni, P., Lawrence, P.,
Wiltshire, A., Pongratz, J., Piao, S., Sitch, S., Goll, D. S., Arora, V. K.,
Lienert, S., Lombardozzi, D., Kato, E., Nabel, J. E. M. S., Tian, H.,
Friedlingstein, P., and Cescatti, A.: Increased control of vegetation on
global terrestrial energy fluxes, Nat. Clim. Change, 10, 356–362,
https://doi.org/10.1038/s41558-020-0717-0, 2020.
Fu, C., James, A. L., and Wachowiak, M. P.: Analyzing the combined influence of
solar activity and El Niño on streamflow across southern Canada, Water
Resour. Res., 48, W05507, https://doi.org/10.1029/2011WR011507, 2012.
Fu, Q. and Feng, S.: Responses of terrestrial aridity to global warming, J.
Geophys. Res.-Atmos., 119, 7863–7875, https://doi.org/10.1002/2014JD021608,
2014.
Francesco, N., Mirco, B., Gabriele, C., Stefano, B., and Pietro, B.:
Evaporative fraction as an indicator of moisture condition and water stress
status in semi-arid range land ecosystems, Remote Sens., 6, 6300–6323,
https://doi.org/10.3390/rs6076300, 2014.
Gentine, P., Entekhabi, D., and Polcher, J.: The diurnal behavior of
evaporative fraction in the soil-vegetation-atmospheric boundary layer
continuum, J. Hydrometeorol., 12, 1530–1546,
https://doi.org/10.1175/2011JHM1261.1, 2011.
Gentine, P., Holtslag, A. A., D'Andrea, F., and Ek, M.: Surface and atmospheric
controls on the onset of moist convection over land, J.
Hydrometeorol., 14, 1443–1462, 2013a.
Gentine, P., Ferguson, C. R., and Holtslag, A. A.: Diagnosing evaporative
fraction over land from boundary-layer clouds, J. Geophys.
Res.-Atmos., 118, 8185–8196, 2013b.
Gentine, P., Chhang, A., Rigden, A., and Salvucci, G.: Evaporation estimates
using weather station data and boundary layer theory, Geophys. Res. Lett.,
43, 11661–11670, https://doi.org/10.1002/2016GL070819, 2016.
Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., and
Seneviratne, S. I.: Global assessment of trends in wetting and drying over
land, Nat. Geosci., 7, 716–721, https://doi.org/10.1038/ngeo2247, 2014.
Haughton, N., Abramowitz, G., and Pitman, A. J.: On the predictability of land surface fluxes from meteorological variables, Geosci. Model Dev., 11, 195–212, https://doi.org/10.5194/gmd-11-195-2018, 2018.
Held, I. M. and Soden, B. J.: Robust Responses of the Hydrological Cycle to
Global Warming, J. Climate, 19, 5686–5699,
https://doi.org/10.1175/JCLI3990.1, 2006.
Hoek van Dijke, A. J., Mallick, K., Schlerf, M., Machwitz, M., Herold, M., and Teuling, A. J.: Examining the link between vegetation leaf area and land–atmosphere exchange of water, energy, and carbon fluxes using FLUXNET data, Biogeosciences, 17, 4443–4457, https://doi.org/10.5194/bg-17-4443-2020, 2020.
Jaramillo, F., Cory, N., Arheimer, B., Laudon, H., van der Velde, Y., Hasper, T. B., Teutschbein, C., and Uddling, J.: Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space, Hydrol. Earth Syst. Sci., 22, 567–580, https://doi.org/10.5194/hess-22-567-2018, 2018.
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S.I., Goulden, M.
L., Bonan, G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J.,, Eugster,
W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law B.
E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D., Richardson,
A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber,
U., Williams, C., Wood, E., Zaehle, S., and Zhang, K.: Recent decline in the
global land evapotranspiration trend due to limited moisture supply, Nature,
467, 951–954, https://doi.org/10.1038/nature09396, 2010.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D.,
Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D.,
Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A.,
Merbold, L., Montagnani, L., Moors, E. J., Pagpale, D., Sottocornola, M.,
Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of
carbon dioxide, latent heat, and sensible heat derived from eddy covariance,
satellite, and meteorological observations. J. Geophys. Res.-Biogeo., 116,
G00J07, https://doi.org/10.1029/2010JG001566, 2011.
Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W.,
Schmid, H. P., and Richardson, A. D.: Increase in forest water-use
efficiency as atmospheric carbon dioxide concentrations rise, Nature, 499,
324–327, https://doi.org/10.1038/nature12291, 2013.
Komatsu, H. and Kume, T.: Modeling of evapotranspiration changes with forest
management practices: A genealogical review, J. Hydrol., 585, 124835,
https://doi.org/10.1016/j.jhydrol.2020.124835, 2020.
Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete,
B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J.,
Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., and Wisser,
D.: High-resolution mapping of the world's reservoirs and dams for
sustainable river-flow management, Front. Ecol. Environ., 9, 494–502,
https://doi.org/10.1890/100125, 2011.
Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I., and Scheff, J.:
Critical impact of vegetation physiology on the continental hydrologic cycle
in response to increasing CO2, P. Natl. Acad. Sci. USA, 16,
4093–4098, https://doi.org/10.1073/pnas.1720712115, 2018.
Liu, C. and Allan, R. P.: Observed and simulated precipitation responses in
wet and dry regions 1850–2100, Environ. Res. Lett., 8, 034002,
https://doi.org/10.1088/1748-9326/8/3/034002, 2013.
Mallick, K., Trebs, I., Boegh, E., Giustarini, L., Schlerf, M., Drewry, D. T., Hoffmann, L., von Randow, C., Kruijt, B., Araùjo, A., Saleska, S., Ehleringer, J. R., Domingues, T. F., Ometto, J. P. H. B., Nobre, A. D., de Moraes, O. L. L., Hayek, M., Munger, J. W., and Wofsy, S. C.: Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin, Hydrol. Earth Syst. Sci., 20, 4237–4264, https://doi.org/10.5194/hess-20-4237-2016, 2016.
Margulis, S. A.: Introduction to hydrology,
available at: https://margulis-group.github.io/teaching/ (last access: 23 June 2021), 2017.
Massmann, A., Gentine, P., and Lin, C.: When does vapor pressure deficit
drive or reduce evapotranspiration?, J. Adv. Model. Earth Sy., 11,
3305–3320, https://doi.org/10.1029/2019MS001790, 2019.
Miralles, D. G., De Jeu, R. A. M., Gash, J. H., Holmes, T. R. H., and Dolman, A. J.: Magnitude and variability of land evaporation and its components at the global scale, Hydrol. Earth Syst. Sci., 15, 967–981, https://doi.org/10.5194/hess-15-967-2011, 2011.
Miralles, D. G., Van, d. B. M. J., Gash, J. H., Parinussa, R. M., de Jeu, R.
A. M., Beck, H. E., Holmes, T. R. H., Carlos Jiménez, C., Verhoest, N.
E. C., Dorigo, W. A., Teuling, A. J., and Dolman, A. J.: El Niño–La
Niña cycle and recent trends in continental evaporation, Nat. Clim.
Change, 4, 122–126, https://doi.org/10.1038/nclimate2068, 2013.
Miralles, D. G., Brutsaert, W., Dolman, A. J., and Gash, J. H.: On the use
of the term “evapotranspiration”, Water Resour. Res., 56, e2020WR028055,
https://doi.org/10.1029/2020WR028055, 2020.
Milly, P. C. D. and Dunne, K. A.: Potential evapotranspiration and continental
drying, Nat. Clim. Change, 6, 946–949,
https://doi.org/10.1038/nclimate3046, 2016.
Nalley, D., Adamowski, J., Biswas, A., Gharabaghi, B., and Hu, W.: A
multiscale and multivariate analysis of precipitation and streamflow
variability in relation to ENSO, NAO and PDO, J. Hydrol., 574, 288–307,
https://doi.org/10.1016/j.jhydrol.2019.04.024, 2019.
NASA: The global reservoir and dam (GRanD) data, available at: https://sedac.ciesin.columbia.edu/data/collection/grand-v1/sets/browse, last access: 23 June 2021.
Naumann, G., Alfieri, L., Wyser, K., Mentaschi, L., Betts, R. A., Carrao,
H., Spinoni, J., Vogt, J., and Feyen, L.: Global changes in drought
conditions under different levels of warming, Geophys. Res. Lett., 45,
3285–3296, https://doi.org/10.1002/2017GL076521, 2018.
NOAA: The Global Summary of the Day and the Global Historical Climatology Network-daily (GHCND), available at: https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets, last access: 23 June 2021a.
NOAA: The multivariate ENSO index (MEI), available at: https://psl.noaa.gov/enso/mei/, last access: 23 June 2021b.
Orth, R. and Destouni, G.: Drought reduces blue-water fluxes more strongly
than green-water fluxes in Europe, Nat. Commun., 9, 3602,
https://doi.org/10.1038/s41467-018-06013-7, 2018.
Padrón, R. S., Gudmundsson, L., Decharme, B., Ducharne, A., Lawrence, D.
M., Mao, J., Peano, D., Krinner, G., Hyungjun Kim, H., and Seneviratne, S.
I.: Observed changes in dry-season water availability attributed to
human-induced climate change, Nat. Geosci., 13, 477–481,
https://doi.org/10.1038/s41561-020-0594-1, 2020.
Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Frank,
J., Massman, W., and Urbanski, S.: The FLUXNET2015 dataset and the ONEFlux
processing pipeline for eddy covariance data, Sci. Data, 7, 225,
https://doi.org/10.1038/s41597-020-0534-3, 2020.
Rigden, A. J. and Salvucci, G. D.: Evapotranspiration based on equilibrated
relative humidity (ETRHEQ): Evaluation over the continental US, Water
Resour. Res., 51, 2951–2973, https://doi.org/10.1002/2014WR016072, 2015.
Rigden, A. J. and Salvucci, G. D.: Stomatal response to humidity and
CO2 implicated in recent decline in US evaporation, Glob. Change
Biol., 23, 1140–1150, https://doi.org/10.1111/gcb.13439, 2016.
Salvucci, G. D. and Gentine, P.: Emergent relation between surface vapor
conductance and relative humidity profiles yields evaporation rates from
weather data, P. Natl. Acad. Sci. USA, 110, 6287–6291,
https://doi.org/10.1073/pnas.1215844110, 2013.
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M.,
Zink, M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic warming
exacerbates European soil moisture droughts, Nat. Clim. Change, 8, 421–428,
https://doi.org/10.1038/s41558-018-0138-5, 2018.
Sheffield, J., Wood, E. F., and Roderick, M. L.: Little change in global
drought over the past 60 years, Nature, 491, 435–438,
https://doi.org/10.1038/nature11575, 2012.
Sorokin, Y., Jane Zelikova, T., Blumenthal, D., Williams, D. G., and
Pendall, E.: Seasonally contrasting responses of evapotranspiration to
warming and elevated CO2 in a semi-arid grassland, Ecohydrology, 10,
e1880, https://doi.org/10.1002/eco.1880, 2017.
Sophocleous, M.: Interactions between ground water and surface water: the
state of the science, Hydrogeol. J., 10, 348–348,
https://doi.org/10.1007/s10040-001-0170-8, 2002.
Swann, A. L., Hoffman, F. M., Koven, C. D., and Randerson, J. T.: Plant
responses to increasing CO2 reduce estimates of climate impacts on
drought severity, P. Natl. Acad. Sci. USA, 113, 10019–10024,
https://doi.org/10.1073/pnas.1604581113, 2016.
Thiery, W., Davin, E. L., Lawrence, D. M., Hirsch, A. L., and Seneviratne,
S. I.: Present-day irrigation mitigates heat extremes, J. Geophys. Res.-Atmos., 122, 1403–1422, https://doi.org/10.1002/2016JD025740, 2017.
Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich,
J., Briffa, K. R., and Sheffifield, J.: Global warming and changes in
drought, Nat. Clim. Change, 4, 17–22, https://doi.org/10.1038/NCLIMATE2067,
2014.
Teuling, A. J., de Badts, E. A. G., Jansen, F. A., Fuchs, R., Buitink, J., Hoek van Dijke, A. J., and Sterling, S. M.: Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe, Hydrol. Earth Syst. Sci., 23, 3631–3652, https://doi.org/10.5194/hess-23-3631-2019, 2019.
van der Schrier, G., Jones, P. D., and Briffa, K. R.: The sensitivity of the
PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential
evapotranspiration, J. Geophys. Res.-Atmos., 116, D03106,
https://doi.org/10.1029/2010JD015001, 2011.
Van Der Sleen, P., Groenendijk, P., Vlam, M., Anten, N. P. R., Boom, A.,
Bongers, F., Pons, T. L., Terburg, G., and Zuidema, P. A.: No growth
stimulation of tropical trees by 150 years of CO2 fertilization but
water-use efficiency increased, Nat. Geosci., 8, 24–28,
https://doi.org/10.1038/NGEO2313, 2015.
Vicente-Serrano, S. M., Van Gerard, V. D. S., Beguería, S.,
Azorin-Molina, C., and Lopez-Moreno, J. I.: Contribution of precipitation
and reference evapotranspiration to drought indices under different
climates, J. Hydrol., 526, 42–54,
https://doi.org/10.1016/j.jhydrol.2014.11.025, 2015.
Wagle, P., Xiao, X., Scott, R. L., Kolb, T. E., Cook, D. R., Brunsell, N.,
Baldocchi, D. D., Basara, J., Matamala, R., Zhou, Y., and Bajgain, R.:
Biophysical controls on carbon and water vapor fluxes across a grassland
climatic gradient in the United States, Agr. Forest Meteorol., 214,
293–305, https://doi.org/10.1016/j.agrformet.2015.08.265, 2015.
Wang, R., Chen, J. Y., Chen, X. W., and Wang, Y. F.: Variability of precipitation extremes and dryness/wetness over the southeast coastal region of China, 1960–2014, Int. J. Climatol., 37, 4656–4669, https://doi.org/10.1002/joc.5113, 2017.
Wang, R., Lü, G., Ning, L., Yuan, L., and Li, L.: Likelihood of compound dry and hot extremes increased with stronger dependence during warm seasons, Atmos. Res., 105692, https://doi.org/10.1016/j.atmosres.2021.105692, 2021.
Wang, S., Zhang, Y., Ju, W., Chen, J. M., Ciais, P., Cescatti, A., Sardans,
J., Janssens, I. A., Wu, M., Berry, J. A., Campbell, E.,
Fernández-Martínez, M., Alkama, R., Sitch, S., Friedlingstein, P.,
Smith, W. K., Yuan, W., He, W., Lombardozzi, D., Kautz, M., Zhu, D.,
Lienert, S., Kato, E., Poulter, B., Sanders, T. G. M., Krüger, I., Wang,
R., Zeng, N., Tian, H., Vuichard, N., Jain, A. K., Wiltshire, A., Haverd,
V., Goll, D. S., and Peñuelas, J.: Recent global decline of CO2
fertilization effects on vegetation photosynthesis, Science, 370, 1295–1300,
https://doi.org/10.1126/science.abb7772, 2020.
Williams, I. N. and Torn, M. S.: Vegetation controls on surface heat flux
partitioning, and land-atmosphere coupling, Geophys. Res. Lett., 42,
9416–9424, https://doi.org/10.1002/2015gl066305, 2015.
Williams, C. A., Reichstein, M., Buchmann, N., Baldocchi, D., Beer, C.,
Schwalm, C., Wohlfahrt, G., Hasler, N., Bernhofer, C., Foken, T., Papale,
D., Schymanski, S., and Schaefer, K.: Climate and vegetation controls on the
surface water balance: Synthesis of evapotranspiration measured across a
global network of flux towers, Water Resour. Res., 48, W06523,
https://doi.org/10.1029/2011WR011586, 2012.
Wei, Z., Yoshimura, K., Wang, L., Miralles, D. G., Jasechko, S., and Lee, X.
H.: Revisiting the contribution of transpiration to global terrestrial
evapotranspiration, Geophys. Res. Lett., 44, 2792–2801,
https://doi.org/10.1002/2016GL072235, 2017.
Yang, Y., Zhang, S., Roderick, M. L., McVicar, T. R., Yang, D., Liu, W., and Li, X.: Comparing Palmer Drought Severity Index drought assessments using the traditional offline approach with direct climate model outputs, Hydrol. Earth Syst. Sci., 24, 2921–2930, https://doi.org/10.5194/hess-24-2921-2020, 2020.
Yang, Y. T., Roderick, M. L., Zhang, S., McVicar, T. R., and Donohue, R. J.:
Hydrologic implications of vegetation response to elevated CO2 in
climate projections, Nat. Clim. Change, 9, 44–48,
https://doi.org/10.1038/s41558-018-0361-0, 2019.
Yin, J. B., Gentine, P., Zhou, S., Sullivan, S. C., Wang, R., Zhang, Y., and
Guo, S. L.: Large increase in global storm runoff extremes driven by climate
and anthropogenic changes, Nat. Commun., 22, 4389,
https://doi.org/10.1038/s41467-018-06765-2, 2018.
Zhao, W. L., Gentine, P., Reichstein, M., Zhang, Y., Zhou, S., Wen, Y., Lin,
C., Li, X., and Qiu, G. Y.: Physics-constrained machine learning of
evapotranspiration, Geophys. Res. Lett., 46, 14496–14507,
https://doi.org/10.1029/2019GL085291, 2019.
Zhou, C. and Wang, K.: Biological and environmental controls on evaporative
fractions at AmeriFlux sites, J. Appl. Meteorol. Clim., 55, 145–161,
https://doi.org/10.1175/JAMC-D-15-0126.1, 2016.
Zhou, S., Williams, A. P., Berg, A. M., Cook, B. I., Zhang, Y., Stefan, H.,
Ruth, L., Seneviratne, S. I., and Gentine, P.: Land–atmosphere feedbacks
exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl.
Acad. Sci. USA, 116, 18848–18853, https://doi.org/10.1073/pnas.1904955116,
2019.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(8320 KB) - Full-text XML
- Corrigendum
-
Supplement
(8598 KB) - BibTeX
- EndNote
Short summary
Assessment of changes in the global water cycle has been a challenge. This study estimated long-term global latent heat and sensible heat fluxes for recent decades using machine learning and ground observations. The results found that the decline in evaporative fraction was typically accompanied by an increase in long-term runoff in over 27.06 % of the global land areas. The observation-driven findings emphasized that surface vegetation has great impacts in regulating water and energy cycles.
Assessment of changes in the global water cycle has been a challenge. This study estimated...