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Abstract. Evapotranspiration (ET) accompanied by water
and heat transport in the hydrological cycle is a key com-
ponent in regulating surface aridity. Existing studies docu-
menting changes in surface aridity have typically estimated
ET using semi-empirical equations or parameterizations of
land surface processes, which are based on the assumption
that the parameters in the equation are stationary. However,
plant physiological effects and its responses to a changing en-
vironment are dynamically modifying ET, thereby challeng-
ing this assumption and limiting the estimation of long-term
ET. In this study, the latent heat flux (ET in energy units)
and sensible heat flux were retrieved for recent decades on
a global scale using a machine learning approach and driven
by ground observations from flux towers and weather sta-
tions. This study resulted in several findings; for example,
the evaporative fraction (EF) – the ratio of latent heat flux to
available surface energy – exhibited a relatively decreasing
trend on fractional land surfaces. In particular, the decrease
in EF was accompanied by an increase in long-term runoff
as assessed by precipitation (P ) minus ET, accounting for
27.06 % of the global land areas. The signs are indicative of
reduced surface conductance, which further emphasizes that
surface vegetation has major impacts in regulating water and
energy cycles, as well as aridity variability.

1 Introduction

Evapotranspiration (ET) mainly includes two processes:
(1) evaporation from soil and plant surfaces and (2) transpi-
ration from plants to the atmosphere (Miralles et al., 2020).
These processes connect the transfer of moisture and en-
ergy in soil, vegetation, and atmospheric systems (Salvucci
et al., 2013; Yang et al., 2020). Quantifying changes in the
exchange of moisture and heat between the land and atmo-
sphere is very important for understanding and characteriz-
ing water and energy cycles, which has implications in var-
ious fields such as hydrology, climatology and agronomy
(Hoek van Dijke et al., 2020; Gentine et al., 2016; Komatsu
and Kume, 2020).

ET is expected to intensify with the warming climate,
thereby contributing to the increase in surface aridity stress
(Baruga et al., 2020; Berg et al., 2016; Cook et al., 2014; Fu
and Feng, 2014; Trenberth et al., 2014). However, quantifica-
tion of changes in aridity/wetness is usually derived from tra-
ditional drought indices such as the Standardized Precipita-
tion Evapotranspiration Index (Vicente-Serrano et al., 2015),
which is embedded with a semi-empirical equation, such as
the Thornthwaite equation or Penman–Monteith equation,
for ET estimation (Dai et al., 2013; van der Schrier et al.,
2011; Sheffield et al., 2012). Using potential evaporation
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rather than actual ET or calculating offline ET using meteo-
rological variables from climate model outputs in traditional
drought indices, the calculation implicitly assumes that soil
can always supply moisture to meet the atmospheric evapora-
tion demand, which is an incorrect assumption for most land
surfaces (Greve et al., 2014; Milly and Dunne, 2016; Yang et
al., 2020). Moreover, when using a semi-empirical equation
for ET estimation, some parameters such as soil surface re-
sistance and stomatal resistance are assumed to be stationary
over time; however, we know that these parameters are dy-
namically changing with environmental conditions (Miralles
et al., 2011; Yang et al., 2019; Zhou et al., 2016).

Why are the soil surface resistance and stomatal resis-
tance not stationary? Changes in plant stomata and leaf area,
with increasing CO2 concentrations in particular, reshape the
allocation of surface energy and affect plant transpiration
(Forzieri et al., 2020; Sorokin et al., 2017; Mallick et al.,
2016; Williams and Torn, 2015). With increasing CO2 con-
centrations, the density and opening degree of leaf stomata
decrease, while the water-use efficiency and biomass produc-
tion of plants increase, which can modify vegetation transpi-
ration and even affect soil moisture or surface runoff (Keenan
et al., 2013; Massmann et al., 2019; Orth and Destouni, 2018;
Rigden and Salvucci, 2016; Van Der Sleen et al., 2015; Wa-
gle et al., 2015). Vegetation transpiration comprises most of
the ET, so the effects of vegetation control can greatly al-
ter the variability of land surface ET (Costa et al., 2010;
Jaramillo et al., 2018; Wei et al., 2017; Williams et al., 2012).
Moreover, human activities, including agricultural irrigation
and land use management, are constantly altering the ex-
change of water and heat between terrestrial ecosystems and
the atmosphere (Padrón et al., 2020; Teuling et al., 2019).
When these effects are taken into account, the semi-empirical
equations for estimating ET and traditional drought indices
also face challenges (Yang et al., 2020). Existing studies with
respect to global surface fluxes inferred from flux tower ob-
servations, remote sensing products, and reanalysis data, e.g.,
the surface fluxes driven by a model tree ensemble (Fluxnet-
MTE), rely on the satellite era and instantaneous meteoro-
logical observations (Jung et al., 2010, 2011; Miralles et al.,
2013). Thus, the existing products cannot be used for long-
term trends as they cannot represent the long-term effects of
confounders such as CO2 or species composition changes.
This is why we use an opposite view – we use in essence a
boundary layer energy budget (Salvucci and Gentine, 2013;
Gentine et al., 2016) except that we lump non-linear effects
of changing environment factors on surface energy fluxes in
a neural network. Indeed, the diurnal cycle of temperature is
directly related to sensible heat flux and the course of specific
humidity related to the rate of latent heat flux variation (Gen-
tine et al., 2011). If there are changes in latent heat flux due
to vegetation in response to higher CO2, this is still captured
by the change in the specific humidity.

In this study, we propose a new strategy for estimating la-
tent heat flux (λE) (ET in energy units) and sensible heat flux

(H ) using machine learning approaches and ground obser-
vations from flux towers and weather stations. This strategy
utilizes daily observations of meteorological variables such
as temperatures, humidity and solar radiation. A major ad-
vantage of such retrieval is that it does not rely on any as-
sumption on a CO2 effect on the link between environmental
variables and fluxes. Indeed, we flipped the strategy on its
head by diagnosing the diurnal changes in temperature and
humidity in the boundary layer. As such, this diurnal cycle
reflects any change in CO2 naturally. For instance, if stom-
ata were to substantially close, they would increase H and
reduce λE. This would in turn lead to increased temperature
diurnal range and reduced air humidity in the boundary layer
(Rigden and Salvucci, 2015; Salvucci and Gentine, 2013;
Gentine et al., 2016). Therefore, this CO2 effect is com-
pletely detectable. This is a major advantage of our method
based on a boundary layer energy budget, as the physics of
the boundary layer does not change (fluid dynamics). More-
over, the observational record of the weather station network
is not only longer, but also extends to more remote places,
such as the tropics. This study also employed the evapora-
tive fraction (EF), i.e., the ratio of λE to the sum of λE and
H , and a proxy for long-term runoff, i.e., the difference of
precipitation (P ) and ET (P −ET), to quantify the change in
aridity/wetness.

2 Observational data and methodology

2.1 Flux tower observational data

We collected the half-hourly/hourly observational data and
the integrated daily product from the FLUXNET2015
FULLSET dataset (Pastorello et al., 2020). To control the
quality of the observational dataset, this study only used
measurements and good-quality gap-filled data from 212
globally distributed flux towers (Supplement Fig. S1a). The
flux towers used in this study are found across various cli-
mate regions and land cover types (Fig. 1). The longest pe-
riod of data availability is 22 years. This study intended
to build machine learning models for retrieving latent heat
and sensible heat fluxes on a daily scale. Therefore, daily-
scale data of top-of-atmosphere shortwave radiation, vapor
pressure deficit (VPD), mean temperature, and surface wind
speed were collected from the integrated daily product. VPD
was used to calculate relative humidity. Daily maximum
and minimum temperatures were obtained from the half-
hourly/hourly flux tower measurement data. Moreover, daily-
scale λE andH were also collected from the integrated daily
product. The underlying surfaces of the flux towers covered
different plant function types (PFTs). According to the clas-
sification scheme of the International Geosphere-Biosphere
Programme, the PFTs include croplands (CRO), deciduous
needleleaf forests (DNF), evergreen needleleaf forest (ENF),
evergreen broadleaf forest (EBF), deciduous broadleaf for-
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est (DBF), mixed forest (MF), grasslands (GRA), savannas
(SAV), woody savannas (WSA), closed shrublands (CSH),
open shrublands (OSH), wetlands (WET), and snow and ice
(SNO). These flux tower observation data across different
ecosystems are used to train the machine learning model for
predicting latent heat and sensible heat fluxes. The existing
study has shown that the global CO2 fertilization effects have
changed over recent decades (Wang et al., 2020), and thus the
observation period of the Fluxnet data is long enough to cap-
ture CO2 effects on vegetation.

2.2 Weather station observation data

Daily observational records of precipitation (P ), temperature
(mean, maximum, and minimum temperatures), dew point
temperature, and wind speed at weather stations were col-
lected from the Global Summary of the Day (GSOD) dur-
ing the 1950–2017 period. Dew point temperature data were
used to calculate the relative humidity, and the daily weather
station data on the global land were used to drive a well-
trained machine learning model to retrieve surface fluxes.
The quality of the data was controlled through several pro-
cedures (Durre et al., 2010; Yin et al., 2018). First, we di-
vided the weather stations into two groups: the original sta-
tions and the target stations. We used 20 048 sites in total as
the original station group (Fig. S1b). The target station group
was obtained according to the following steps. (1) The sta-
tions with a time series spanning less than 10 years in length
were excluded. (2) If the stations had the same geographic
coordinates, we used the stations with a long observation
record to replace the stations with a short observation record.
(3) If there were multiple stations with different coordinates
in a 0.1◦ grid, we removed the stations with a short obser-
vation record. After filtering, the target station group which
was determined to be used to estimate long-term trends was
obtained.

Other procedures for controlling data quality were also
implemented. Any implausible values, such as negative pre-
cipitation or maximum temperature lower than the minimum
temperature on that day, were excluded. Monthly mean, max-
imum and minimum temperatures, as well as monthly pre-
cipitation, were derived from daily observational data at the
original stations. Considering the large uncertainty in the ob-
servational data of precipitation, we also compiled the daily
precipitation records with precipitation records in another
archive, i.e., the Global Historical Climatology Network
(GHCN-Daily). The daily records of weather stations in the
GSOD that had the same coordinates as the GHCN-Daily
were compared, and the missing daily records were supple-
mented using the GHCN-Daily archives. Monthly precipita-
tion, temperatures (mean, maximum and minimum tempera-
tures), relative humidity and surface wind speed were calcu-
lated when the number of missing days within a month was
no more than 7 d. Additionally, missing monthly data from

the target stations were spatially interpolated from the origi-
nal weather stations using the Kriging method.

2.3 Top-of-atmosphere shortwave radiation model

Solar shortwave radiation is a key factor affecting surface
energy and water cycles. Since there is no reliable long-
term surface observational solar radiation data, this study
uses shortwave radiation at the top of the atmosphere (top-
of-atmosphere shortwave radiation) as a replacement. Cloud
effects are inherently captured by the diurnal cycle of temper-
ature and humidity (Gentine et al., 2013a, b). Daily top-of-
atmosphere shortwave radiation converted from the hourly
top-of-atmosphere shortwave radiation was forced to drive
the model for predicting the daily λE(H) at the target
weather stations. The amount of incoming shortwave radi-
ation at any location/time at the top of atmosphere is a func-
tion of Earth–Sun geometry, which is defined as (i) latitude
(i.e., location); (ii) hour of day (due to the rotation of the
earth); and (iii) day of year (due to the tilted axis of the earth
and its elliptical orbit around the sun). Several models for
the top-of-atmosphere fluxes based on these inputs are avail-
able at varying levels of precision. The time–location model
(Margulis, 2017) used in this study is shown as follows.

Rs0 =

{
I0

cosθ0
d2 , daytime : |θ0| ≤ 90◦

0, nighttime,
(1)

where the cosine of the solar zenith angle is as follows:

cosθ0 = sinδ sinλ+ cosδ cosλcosτ (2)

δ =
23.45π

180
cos

[
2π
365

(172−DOY)
]

(3)

τ = 2π
Th− 12

24
(4)

d = 1+ 0.017cos
[

2π
365

(186−DOY)
]
. (5)

Here, θ0 is the solar zenith angle, δ is the declination angle,
λ is latitude, τ is the hour angle, DOY represents the day of
year, d represents the distance between the sun and Earth nor-
malized by the mean distance and Th represents solar hour.

2.4 Artificial neural network model training

Artificial neural networks (ANNs) have been shown to be
a powerful type of non-linear regression algorithm, and un-
like other machine learning algorithms, ANNs can build
multi-layer and multi-node network models to achieve deep
learning of a complex simulation. A pure ANN model has
been proven to show good performance in retrieving surface
fluxes (Chen et al., 2020; Haughton et al., 2018; Zhao et al.,
2019). In this study, we trained a multi-layer feedforward
neural network model that consisted of an input layer, hid-
den layers and an output layer to predict daily λE and H at
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Figure 1. Data summary of the flux towers used in this study.

the globally distributed weather stations. To identify the sen-
sitivities of latent heat and sensible heat fluxes to different
variables in the retrieval, we used different variable combi-
nations to train two ANN models for estimating the surface
fluxes and tested the changes in the model performance (Sup-
plement Table S1). Top-of-atmosphere shortwave radiation,
relative humidity, wind speed and the mean, maximum and
minimum temperatures were determined to be the inputs of
the neural network (Table S2).

In the process of training the ANN model, input data were
randomly divided into three subsets using the percentages of
80 %, 10 % and 10 % for training, validation and testing, re-
spectively. Mean squared error (MSE) was used to evaluate
the performance of the neural network in the training pro-
cess of adjusting weight. Root mean squared error (RMSE)
and Pearson correlation coefficient (R) between the ANN-
predicted λE(H) and the observed λE(H) in the validation
set were used to evaluate the retrieval performance of the
well-trained ANN model. A neural network with two hid-
den layers can achieve the same performance as with a large
number of hidden layers, so we used the lowest complexity
model and enhanced its nonlinear ability by adding neurons.
As for the optimal number of neurons, we initially tested it
according to an empirical formula, i.e., h=

√
(n+m)+a (n

is the number of input neurons, wherem is the number of out-

put neurons, and a is a constant ranging from 0 to 10). This
empirical formula can provide a reference for us to choose
the number of neurons when training neural network, and it
can reduce the possibility of overfitting. The neural network
was determined to have two hidden layers and 15 neurons per
hidden layer, and the ANN model showed good performance
and appropriate training time (Fig. S2). A tangent sigmoid
transfer function was used in the hidden layers, and a lin-
ear transfer function was used in the output layer. To avoid
overfitting, the early stopping method was used; that is, we
recorded the best validation accuracy during the training pro-
cess, and the training was stopped when the MSE was no
longer reduced after going through additional epochs. The
maximum number of training epochs and training accuracy
goal were set to 500 epochs and 0.0001, respectively. Once
one of the parameters exceeded the threshold, the training
was stopped.

2.5 EF linked to surface resistance (rs) and
aerodynamic resistance (ra)

Here, we show that a long-term decline in EF can be strongly
impacted by an increase in surface resistance (rs). The latent
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heat flux (LvE) is expressed by the formula:

LvE = Lvρ
esat(Ts)− ea

ra+ rs
, (6)

where Lv is the latent heat of vaporization, E is evapora-
tion flux, ρ is air density, Ts is near-surface air temperature,
esat(Ts) is saturated vapor pressure at the surface, ea is actual
vapor pressure, ra is aerodynamic resistance and rs is surface
resistance. EF can be expressed as follows.

EF=
LvE

LvE+H
=

Lvρ
esat(Ts)−ea
ra+rs

Lvρ
esat(Ts)−ea
ra+rs

+H
(7)

We used the linearized Clausius–Clapeyron relation (Eqs. 8
and 9) to simplify Eq. (7).

esat(Ts)= esat(Ta)+1(Ts− Ta) (8)

Ts− Ta =
H

ρcp
, (9)

where Ta is the air temperature, esat(Ta) is saturated vapor
pressure of the air and 1= Lv

Rv

es
T 2 , where Rv is the gas con-

stant for water vapor. Furthermore, cp is the specific heat
capacity, which is 4216 J kg−1 K−1 when the temperature is
0 ◦C.

EF=
Lvρ
ra+rs

((esat(Ta)− ea))+
1H
ρcp

Lvρ
ra+rs

((esat(Ta)− ea))+H
(10)

=

Lvρ
ra+rs

{
VPD+ 1H

ρcp

}
Lvρ
ra+rs

{
VPD+ 1H

ρcp

}
+H

(11)

=
1

1+ ra+rs

Lvρ
(
1
ρcp+

VPD
H

) (12)

The incremental variation of VPD
H

is small because both vari-
ations of VPD and H are proportional to the temperature
variation. EF can be expressed as follows:

1
EF
= 1+

ra+ rs
Lv
cp
1
. (13)

Hence, rs is a function of EF.

rs =
Lv

cp
1

(
1

EF
− 1

)
− ra (14)

Annual EF ranges from 0 to 1, and EF is closely connected
with surface resistance and aerodynamic resistance. ra is a
function of wind speed, and the variation in ra is relatively
small, while the variations in rs can be strong. Thus, a decline
in EF can be induced and dominated by an increase in surface
resistance.

3 Results and discussion

3.1 ANN model retrievals

Cross-validations of the ANN models were performed in
terms of values and trends. We randomized samples of 10
randomly chosen flux towers from different PFTs as the val-
idation set and then used the remaining samples to train
the ANN models. The predicted daily λE(H) values of
the validation set were compared with their observed val-
ues (Fig. 2a). The R between predicted daily λE and ob-
served daily λE is 0.849, and the R between predicted daily
H and observed daily H is 0.743, and both correlations are
significant at the p<0.001 level. Moreover, we trained two
random forest (RF) models for predicting daily λE and H
based on the same Fluxnet2015 dataset as the ANN model.
The RF model shows very similar performance to the ANN
model. The correlation coefficients of the RF model in pre-
dicting daily λE and dailyH are 0.777 (p<0.001) and 0.756
(p<0.001), respectively (Fig. S3). Therefore, it is feasible to
use the neural network algorithm to retrieve surface fluxes.
Cross-validations were also performed in different land cov-
ers (Fig. S4). The abilities of the well-trained ANN models
for predicting latent heat and sensible heat fluxes were differ-
ent for various PFTs. With the exception of OSH (R = 0.680,
p<0.05), the R values of daily λE of DBF, MF, SAV, GRA,
CRO and WET were all greater than 0.80, and all corre-
lations were significant at the p<0.001 level. A common
feature of these PFTs is that they belong to the ecosystems
with relatively open water bodies or high vegetation cover-
age, while the OSH is mixed with vegetation and bare soil,
and thus the vegetation coverage is highly heterogeneous.
Therefore, the R at OSH was relatively low (R = 0.680), but
the correlation was significant at the p<0.05 level. With re-
spect to daily H , the correlation coefficients for all PFTs
were greater than 0.716 with the exception of R for CRO
(R = 0.656, p< 0.05), and all were statistically significant
at the p< 0.001 level. In addition, the trained ANN models
also show good simulation ability under some other ecosys-
tems with relatively sparse vegetation cover such as savan-
nas (SAV), grasslands (GRA), croplands (CRO) and wet-
lands (WET) (Fig. S5). In summary, in addition to OSH, the
accuracy of retrieving λE is relatively high in GRA, CRO,
WET and various forest ecosystems, and these ecosystems
were characterized by sufficient water supply or dense veg-
etation. For the estimation of H , except for the estimation
of H in GRA, the correlations of predicted and observed H
at all ecosystems are correlated at the p< 0.001 level, espe-
cially in forest. It needs to be emphasized that the magni-
tude of R could be affected by the number of samples, and
the sample number in those cross-validations is large. As for
the prediction of trends in λE and H , the ANN model also
shows good performance (Fig. 2b). All correlation coeffi-
cients between the estimated λE(H) trends and the observed
λE(H) trends exceeded 0.90 (p< 0.001) over ENF, DBF,
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GRA and WET, the correlations over MF, OSH and CRO ex-
ceeded 0.80 (p< 0.001) and the correlations are greater than
0.70 (p< 0.001) in EBF and SAV (Figs. S6 and S7). In most
cases, the estimations of λE(H) trends are more reliable than
the retrieved λE(H) values.

The uncertainty and bias characteristics of the ANN model
retrievals were further analyzed on both daily and monthly
scales. At the daily scale, the RMSE of λE(H) ranged from
26.05 to 26.32 W m−2 (28.61 to 29.15 W m−2), and more
than 80 % of the 212 flux towers had a correlation greater
than 0.70. As for the RMSE, 85 % and 89 % of the daily λE
and H were less than 30 W m−2, respectively (Fig. S8). It
was obvious that flux towers with large biases were mainly
located on the coast of Australia and the west coast and Great
Lakes region of the United States, as well as the Mediter-
ranean region, all of which are strongly impacted by advec-
tion from neighboring open water bodies. The biases of the
monthly λE(H) were smaller than the biases of the daily
λE(H). More than 89 % and 90 % of the sites had an R value
greater than 0.70 (Fig. S9). Meanwhile, the λE estimation at
more than 88 % of the sites and the H estimation at more
than 89 % of the sites showed an RMSE less than 30 W m−2.
Finally, the daily λE and H of each weather station over the
past few decades were predicted by the well-trained ANN
model. The spatial distribution patterns of mean annual λE
and H are consistent with the results in the Fluxnet-MTE
(Jung et al., 2011) (Fig. S10). The Fluxnet-MTE is a ma-
ture and widely applied machine learning product that can be
used as a benchmark. This ensemble of statistical estimates
of λE was obtained from the Department of Biogeochemical
Integration (BGI) of the Max Planck Institute (MPI) (https://
www.bgc-jena.mpg.de/geodb/projects/Data.php, last access:
23 June 2021). The mean annual ET of the MET model
ranged from 0 to 1400 mm (Jung et al., 2010), while the mean
annual ET of this study ranged from 0 to 1416 mm during the
1982–2008 period (Fig. S11). In different large-scale latitude
intervals, the temporal changes of the ANN-model-estimated
λE and the temporal changes of the MET-model-estimated
λE are significantly correlated at the p< 0.05 level, which
further emphasizes the reliability of the ANN model retrieval
results (Fig. S12).

3.2 Attribution of trends in climate variables

The attribution of trends in climate variables were estimated
for two reasons: (1) to quantify the changes in the atmo-
spheric water supply and (2) to estimate the long-term trends
in atmospheric evaporative demand factors including VPD,
air temperature, and surface wind speed. Annual precipita-
tion exhibited an increasing trend ranging from 3 to 40 mm
per decade in western Europe, the United States, Southeast
Asia and Australia. Conversely, annual precipitation exhib-
ited a decreasing trend ranging from −3 to −30 mm per
decade in northern Eurasia, the savanna region of Brazil and
southern Africa (Fig. 3a). In particular, annual precipitation

showed a more obvious upward trend than before in a large
area of land in recent period, i.e., 2001–2017 (Fig. S13). Ris-
ing air temperature and the associated increasing water hold-
ing capacity of the atmosphere were the primary causes for
the substantial increase in precipitation (Byrne et al., 2015;
Wang et al., 2017), except for some regions (e.g., Russia)
with insufficient moisture advection from ocean or regional
evaporation.

With respect to the atmospheric water demand sides, VPD
primarily presented an increasing trend because of an in-
crease in air temperature and a decrease in relative humid-
ity, especially in the subtropics (Fig. 3b); this was consistent
with the expectations of atmospheric dynamics and the influ-
ence of free-tropospheric warming (Held and Soden, 2006;
Naumann et al., 2018). Additional meteorological variables
influencing the evaporative demand, such as the mean, maxi-
mum, and minimum temperatures, mostly presented increas-
ing trends on the global scale, with the exception of a few ar-
eas, such as the US–Canadian Corn Belt and Mexico, which
showed signs of cooling due to agricultural irrigation (Thiery
et al., 2017) (Fig. 3d–f). Therefore, both rising air tempera-
tures and increased VPD indicate that the driving forces of
soil evaporation and plant transpiration are increasing under
the climate warming trend. In addition, mean surface wind
speed – a meteorologic factor associated with evaporation
– showed an overall decreasing trend (i.e., global stilling)
except in the Amazon, Argentina, Australia, and Mongolia
(Fig. 3c).

3.3 Long-term trends in EF, ET, and P − ET

Annual EF ranges from 0 (full aridity stress) to 1 (no arid-
ity stress), and it is an indicator of surface aridity linked to
soil moisture availability and vegetation phenology, as well
as the physiological effects of atmospheric CO2 concentra-
tions on vegetation (Francesco et al., 2014; Lemordant et al.,
2018; Swann et al., 2016). The decreasing trend in the EF
varied from 0 to 0.05 per decade and was prevalent in several
land areas (Fig. 4a), except in the most humid areas of trop-
ical rainforest (e.g., the Amazon, West Africa, New Guinea
Island, and Southeast Asia) and dense agricultural irrigation
areas, including central North America and the Punjab region
in India (Fig. S14). Changes in the EF at different latitudinal
intervals were consistent with the “dry gets drier, wet gets
wetter” paradigm in the tropical areas (Chou et al., 2009;
Liu and Allan, 2013). Moreover, the observed increase in
EF further suggested a wet trend in western Sahel, where in-
creasing rainfall was reported recently (Biasutti, 2019; Dong
and Sutton, 2015). It was systematically determined that the
EF declined across large swaths of the globe and exhibited
different spatial patterns in different periods of the past few
decades, which emphasized that this is not a short-term phe-
nomenon (Fig. 5a–c). As the climate has warmed, decline in
EF has reflected an increase in surface resistance (see Ob-
servational data and methodology), which can be controlled
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Figure 2. Density scatter plot for (a) the cross-validation in terms of values and (b) the cross-validation in terms of trends. The validation
set of cross-validation values is composed of 10 flux towers randomly selected from different plant function types, and the validation set
of trends cross-validation is composed of the trends calculated from all time periods of the availability of the flux tower observations. The
trends are calculated using linear trend estimation.

by one of two factors – either an increase in stomatal resis-
tance associated with the physiological effects of CO2 or a
decrease in soil moisture. Therefore, if soil moisture or sur-
face runoff increases while EF decreases, it is a sign of in-
creased surface resistance impacting the water balance.

The evolution of El Niño–Southern Oscillation (ENSO)
can greatly influence the global hydrological cycle and pat-
terns of aridity/wetness (Fu et al., 2012; Miralles et al., 2013;
Nalley et al., 2019), and thus we analyzed the patterns of EF
in different ENSO phases based on the multivariate ENSO
index (MEI). However, no significant changes in EF trends
were detected between different ENSO phases, with the ex-
ception of La Niña showing a significant impact on the arid-
ity in East Asia (Fig. 5d–f). In addition, the predicted EF
trends using an ensemble from Phase 5 of the Coupled Model
Intercomparison Project (CMIP5) under the Representative
Concentration Pathway (RCP) 8.5 scenario (the warming
scenario with the highest CO2 emissions) also presented a
decreasing trend in most global land areas (Fig. S15a). Al-
though the trend magnitudes vary across different periods, it
indicated the direction of EF decline may be a long-term ex-
isting phenomenon. The model simulations further suggested
that increasing CO2 concentrations can affect the allocation
of surface energy and may cause a decrease in EF on large
land surfaces.

As the climate warmed, ET showed a significant up-
ward trend ranging from 0 to 0.03 mm per day per year
(Fig. 4b), especially in the core regions of tropical rainfor-
est climate zones (e.g., the Amazon, West Africa and South-
east Asia), the coast of Australia and the areas with a high
density of agricultural irrigation (e.g., northern India, cen-
tral Asia and Central America). The increase in ET was pri-
marily induced by the radiative effect of a warming climate,
which can compensate for the observed decrease trend in EF
(ET=EF×Rn). Moreover, the observation-driven results
showed a declining trend in ET at a rate of 0 to −0.03 mm
per day per year on fractional land surfaces, such as North
America, southern Africa, Australia, Southeast Asia and the
Mediterranean region, which was consistent with the ET de-
clining trends simulated by the CMIP5 climate models in the
RCP8.5 scenario (Fig. S15b).
P −ET, a proxy for long-term runoff, assumes that

changes in storage due to human activity are negligible and
are closely linked to water availability and soil moisture
trends (Alkama et al., 2013; Sophocleous et al., 2002). There-
fore, long-term runoff mainly presented an increasing trend
on most of the global land, with the exception of a decrease
in northern Eurasia (Fig. 4c). To verify the retrieved P −ET
trend, we made an comparison between the P −ET trend and
the observed runoff trend during the same periods in small-
and medium-sized watersheds (5–1000 km2) (Fig. S16). The
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Figure 3. Long-term trends in annual precipitation, vapor pressure deficit (VPD), surface wind speed, mean temperature, maximum temper-
ature and minimum temperature. Values are not shown for the Greenland and Sahara region as weather stations are scarce, and the range of
the Sahara is referring to the existing study (Vicente-Serrano et al., 2015). Small gray squares show locations of the weather stations used to
interpolate global patterns.

P −ET and observed runoff presented different trends in
eastern Australia, which can be attributed to a decrease in
runoff caused by human activities such as reservoir schedul-
ing and agriculture irrigation (Bosmans et al., 2017; Lehner
et al., 2011). When we only considered the stations that are
not too influenced by large reservoirs, we found that the di-
rection and the spatial pattern of the P −ET trend (Fig. 4c)
are more obviously consistent with the observed runoff trend,
including the upward trend in northern Australia and the
downward trend in southern Australia, the upward trend in
western Europe and the downward trend in eastern Europe
(Fig. S16c). The spatial pattern of P −ET trends and ob-
served runoff trends are also generally consistent in other re-
gions including North and South America, southern Africa,
East Asia and Southeast Asia. We do not fully expect the
P −ET to be completely consistent with observed stream-
flow because in addition to measurement errors, the stream-
flow is strongly affected by human activities, especially over
a long-term period. Model predictions also showed an over-
all increasing trend in P–ET (Fig. S15c), while a decrease

was predicted (but it has not been observed) in the western
United States and western Europe, and P −ET was predicted
to increase in northern Eurasia.

3.4 Signs of covariations in long-term EF and runoff

The signs of covariations in normalized ET, i.e., EF, and nor-
malized P −ET, i.e., 1−ET / P , were further investigated
to determine the patterns of surface aridity. We superimposed
the EF trend, indicative of changes in aridity stress (e.g., tem-
perature and soil moisture) or plant physiological effects (see
Methodology), and the 1−ET / P trend, which was indica-
tive of changes in long-term runoff. Land areas with a de-
creased EF and an increased 1−ET / P were indicative of
a dominance of CO2 plant physiological effects, because a
long-term decline in ET with increasing runoff is mainly at-
tributable to surface vegetation control. A decline in the EF
caused by a decrease in surface conductance can be offset by
an increase in the EF caused by the effects of climate warm-
ing. Nevertheless, in 27.06 % of the global land areas, the
EF has declined and has been accompanied by an increase in
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Figure 4. Long-term trends in evaporative fraction (EF), evapotranspiration (ET) and precipitation (P ) minus ET (P −ET). ET was converted
from the ANN-retrieved latent heat flux. The red curve represents median trends at different latitudes.

long-term runoff, which has been observed in most of North
America, parts of South America, the Mediterranean, Africa,
Australia and Southeast Asia (Fig. 6). These signals further
emphasized that the controls of surface vegetation and its re-
sponse to changing environments have a great influence on
the water cycle and surface aridity variability.

In addition, the signs of increase in EF with decreasing
runoff accounted for 17.34 % of the global land areas, which
was mainly due to agricultural irrigation and land use man-
agement, such as in the Punjab region of India, central Asia,
and downstream Amazon, where there is a high density of
irrigation (Fig. S14). The land areas showing increase trend
in both EF and runoff were typically located in humid re-
gions and accounted for 10.60 % of the global land surface.
With the increase of EF and 1−ET / P , the humid areas of
the Amazon, West Africa, Southeast Asia and the coast of

Australia are getting wetter (Fig. 6). Particularly, the previ-
ously reported wet trend in western Sahel was captured by
the increase trends in both EF and 1−ET / P . Additionally,
45.00 % of the global land areas experienced a decreasing
trend in EF and 1−ET / P , and thus aridity stress posed a
relatively larger risk to these regions. EF and 1−ET / P both
exhibited a decreasing trend in the arid regions of the Ama-
zon (e.g., the savanna region of Brazil), and thus those areas
are getting drier. Moreover, the Mediterranean region, north-
ern Eurasia and southern Africa also experienced a decrease
trend in EF and 1−ET / P , which was consistent with the
existing observation analysis or model predictions (Padrón
et al., 2020; Samaniego et al., 2018; Wang et al., 2021; Zhou
et al., 2019).
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Figure 5. Spatial patterns of EF trends during different periods. (a–c) The spatial patterns show EF trends during different historical periods.
(d–f) The spatial patterns show EF trends during the El Niño period, a neutral case period and the La Niña period, respectively.

Figure 6. Signs of covariation in EF and 1−ET / P . The panel on the right shows the area percentage of different signs, and the area fractions
are calculated by the spherical area.
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4 Concluding remarks

This study for the first time provided the strategy for retriev-
ing consistent latent heat and sensible heat fluxes on a global
scale, based on the perspective of the boundary layer en-
ergy budget and a machine learning approach driven by the
ground observations of globally distributed flux towers and
weather stations. After that, we quantified the attributions of
long-term changes in surface aridity/wetness. The latent heat
and sensible heat fluxes retrieved in this study can be an im-
portant supplement to the existing product. Our study has im-
portant implications for understanding the variability of sur-
face aridity under changing environments and providing con-
straints for model predictions. Although we attempted to in-
fer surface energy fluxes from ground observations and used
various data quality control methods to reduce uncertainty,
the quality of the observational data from flux towers and
weather stations can influence our retrievals.

In the absence of surface regulation of plant physiologi-
cal effects and changes in biomass, a warming climate was
expected to intensify ET at a rate roughly governed by the
Clausius–Clapeyron relation. However, a long-term relative
decrease in normalized ET accompanied by increasing runoff
was found in 27.06 % of the global land areas, which was
indicative of a reduction in surface conductance. The obser-
vational findings further emphasized that vegetation controls
have strong impacts in regulating the water cycle and sur-
face aridity variability. Climate models have captured some
of these changes; however, they have also exhibited large re-
gional discrepancies. Therefore, representations of land use
management and plant physiological effects are essential for
the improvement of future predictions with respect to water,
energy and carbon cycles.

Code and data availability. The eddy-covariance ob-
servational data of Fluxnet2015 are available from
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https://www.ncdc.noaa.gov/data-access/land-based-station-data/
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Data Center (GRDC) are available at https://www.bafg.de/GRDC/
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are available from a data center in NASA’s Earth Observ-
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(NASA, 2021). Global map of irrigated areas data are available
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