Articles | Volume 25, issue 3
https://doi.org/10.5194/hess-25-1569-2021
https://doi.org/10.5194/hess-25-1569-2021
Research article
 | 
29 Mar 2021
Research article |  | 29 Mar 2021

The benefit of brightness temperature assimilation for the SMAP Level-4 surface and root-zone soil moisture analysis

Jianxiu Qiu, Jianzhi Dong, Wade T. Crow, Xiaohu Zhang, Rolf H. Reichle, and Gabrielle J. M. De Lannoy

Related authors

A 1 km daily soil moisture dataset over China using in situ measurement and machine learning
Qingliang Li, Gaosong Shi, Wei Shangguan, Vahid Nourani, Jianduo Li, Lu Li, Feini Huang, Ye Zhang, Chunyan Wang, Dagang Wang, Jianxiu Qiu, Xingjie Lu, and Yongjiu Dai
Earth Syst. Sci. Data, 14, 5267–5286, https://doi.org/10.5194/essd-14-5267-2022,https://doi.org/10.5194/essd-14-5267-2022, 2022
Short summary
A multi-isotope model for simulating soil organic carbon cycling in eroding landscapes (WATEM_C v1.0)
Zhengang Wang, Jianxiu Qiu, and Kristof Van Oost
Geosci. Model Dev., 13, 4977–4992, https://doi.org/10.5194/gmd-13-4977-2020,https://doi.org/10.5194/gmd-13-4977-2020, 2020
Short summary

Cited articles

Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., and Smets, B.: GEOV1: LAI, FAPAR Essential Climate Variables and FCOVER global time series capitalizing over existing products. Part 1: Principles of development and production, Remote Sens. Environ., 137, 299–309, https://doi.org/10.1016/j.rse.2013.02.030, 2013. 
Bolten, J. D. and Crow, W. T.: Improved prediction of quasi-global vegetation conditions using remotely-sensed surface soil moisture, Geophys. Res. Lett., 39, L19406, https://doi.org/10.1029/2012GL053470, 2012. 
Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 
Chan, S., Njoku, E. G., and Colliander A.: SMAP L1C radiometer half-orbit 36 km EASE-Grid brightness temperatures, version 3, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA, https://doi.org/10.5067/E51BSP6V3KP7, 2016. 
Chen, F., Crow, W. T., Starks, P. J., and Moriasi, D. N.: Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture, Adv. Water Resour., 34, 526–536, https://doi.org/10.1016/j.advwatres.2011.01.011, 2011. 
Download
Short summary
The SMAP L4 dataset has been extensively used in hydrological applications. We innovatively use a machine learning method to analyze how the efficiency of the L4 data assimilation (DA) system is determined. It shows that DA efficiency is mainly related to Tb innovation, followed by error in precipitation forcing and microwave soil roughness. Since the L4 system can effectively filter out precipitation error, future development should focus on correctly specifying the SSM–RZSM coupling strength.
Share