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Abstract. The Soil Moisture Active Passive (SMAP) Level-
4 (L4) product provides global estimates of surface soil
moisture (SSM) and root-zone soil moisture (RZSM) via
the assimilation of SMAP brightness temperature (Tb)
observations into the NASA Catchment Land Surface
Model (CLSM). Here, using in situ measurements from
2474 sites in China, we evaluate the performance of soil
moisture estimates from the L4 data assimilation (DA) sys-
tem and from a baseline “open-loop” (OL) simulation of
CLSM without Tb assimilation. Using random forest regres-
sion, the efficiency of the L4 DA system (i.e., the perfor-
mance improvement in DA relative to OL) is attributed to
eight control factors related to the CLSM as well as τ–ω
radiative transfer model (RTM) components of the L4 sys-
tem. Results show that the Spearman rank correlation (R) for
L4 SSM with in situ measurements increases for 77 % of the
in situ measurement locations (relative to that of OL), with
an average R increase of approximately 14 % (1R = 0.056).
RZSM skill is improved for about 74 % of the in situ mea-
surement locations, but the average R increase for RZSM
is only 7 % (1R = 0.034). Results further show that the
SSM DA skill improvement is most strongly related to the
difference between the RTM-simulated Tb and the SMAP Tb
observation, followed by the error in precipitation forcing

data and estimated microwave soil roughness parameter h.
For the RZSM DA skill improvement, these three dominant
control factors remain the same, although the importance of
soil roughness exceeds that of the Tb simulation error, as the
soil roughness strongly affects the ingestion of DA incre-
ments and further propagation to the subsurface. For the skill
of the L4 and OL estimates themselves, the top two control
factors are the precipitation error and the SSM–RZSM cou-
pling strength error, both of which are related to the CLSM
component of the L4 system. Finally, we find that the L4 sys-
tem can effectively filter out errors in precipitation. There-
fore, future development of the L4 system should focus on
improving the characterization of the SSM–RZSM coupling
strength.

1 Introduction

Soil moisture modulates water and energy feedback between
the land surface and the lower atmosphere by determining
the partitioning of incoming net radiation into latent and
sensible heat (Seneviratne et al., 2010, 2013). High-quality,
global-scale soil moisture products have become increas-
ingly available in recent years. In particular, the L-band
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NASA Soil Moisture Active Passive (SMAP) satellite mis-
sion (Entekhabi et al., 2010; Piepmeier et al., 2017) has sig-
nificantly improved the skill of available, global-scale soil
moisture products. However, the SMAP observations con-
tain temporal data gaps and are only representative of con-
ditions within only the first 5 cm of the vertical soil mois-
ture column (Entekhabi et al., 2010). To address these limi-
tations, the SMAP Level-4 surface and root-zone soil mois-
ture (L4) algorithm assimilates SMAP brightness tempera-
ture (Tb) observations into the NASA Catchment Land Sur-
face Model (CLSM) to derive an analysis of surface (0–
5 cm) and root-zone (0–100 cm) soil moisture estimates with
global, 3-hourly coverage (Reichle et al., 2017a, b, 2019).

However, the performance of a land data assimilation (DA)
system is sensitive to the DA parameterization and re-
quires careful assessment. For instance, Reichle et al. (2008)
demonstrate that DA based on incorrect assumptions of mod-
eling errors and observation errors can degrade soil moisture
estimates, compared with the case of not performing DA,
which is commonly referred to as the “open-loop” (OL) base-
line. Theoretically, the optimality of DA can be evaluated
using so-called “innovations”, or observation-minus-forecast
residuals; however, an investigation of the innovations alone
is often insufficient to determine if the soil moisture analysis
is optimal, as the innovations are affected by multiple factors
(Crow and Van Loon, 2006).

Recently, Dong et al. (2019a) proposed a novel statisti-
cal framework for evaluating the performance of a soil mois-
ture DA system. Specifically, they demonstrated that the rel-
ative skill of surface soil moisture (SSM) estimates acquired
with and without DA can be estimated using the ratio of
their correlations with just one noisy but independent an-
cillary remote sensing product. This approach was applied
to the SMAP L4 system using Advanced Scatterometer soil
moisture retrievals. Their results show that the benefit of
SMAP DA is closely related to densities of both rain gauge
and vegetation. Generally, higher rain gauge density indi-
cates lower error in precipitation forcing, and lower vegeta-
tion density indicates higher background model performance
– both conditions lead to reduced SMAP DA benefit. How-
ever, due to the limited availability of independent root-zone
soil moisture (RZSM) products for performing statistical er-
ror estimation, this method is only applicable for SSM esti-
mates.

Relative to SSM, the efficiency of assimilating land sur-
face observations to improve RZSM is complicated by model
structural error that affects the ability of the DA to update
unobserved model states. For instance, Kumar et al. (2009)
identified the surface–root zone coupling strength, which is
the result of a model-dependent representation of processes
related to the partitioning of rainfall into infiltration, runoff,
and evaporation components, as an important factor for de-
termining RZSM improvement associated with the assimila-
tion of SSM retrievals. Their synthetic experiments suggest
that, faced with unknown true subsurface physics, overesti-

mating the surface–root zone coupling in the land model is a
more robust strategy for obtaining skill improvements in the
root zone than underestimating the coupling. Likewise, Chen
et al. (2011) suggested that the Soil and Water Assessment
Tool significantly under-predicts the magnitude of vertical
soil water coupling in the Cobb Creek Watershed in south-
western Oklahoma, USA, and this lack of coupling impedes
the ability of DA to effectively update soil moisture in deep
layers, groundwater flow, and surface runoff. In the context
of the present paper, the evaluation of L4 RZSM estimates
has been limited to SMAP core validation and sparse net-
work sites (Reichle et al., 2017a, b, 2019). With such lim-
ited validation sites, the RZSM skill of the L4 product at the
global scale remains uncertain.

The primary objective of this study is to assess the DA skill
improvement of the L4 product, i.e., the performance im-
provement in L4 DA results relative to the OL baseline, and
to further determine how DA skill improvement varies as a
function of the major aspects in the system. As mentioned
above, the modeling portion of the L4 system consists of
two components: land surface modeling (LSM) and radiative
transfer modeling (RTM). Therefore, we select control fac-
tors from each of the two components. For the LSM compo-
nent, the errors can be attributed to potential factors includ-
ing (1) model input forcing errors of (a) precipitation, (b) leaf
area index (LAI), and (c) the presence of vertical variability
in soil properties; (2) model structure errors in characterizing
SSM–RZSM coupling strength; and (3) model output error
of the latent heat flux (LE). For the RTM component, errors
are characterized by (1) Tb innovation, i.e., SMAP-observed
minus RTM-simulated Tb; and (2) the environmental factors
that complicate the DA analysis when assimilating Tb obser-
vations, which include the magnitude of (a) microwave soil
roughness and (b) LAI. Figure 1 illustrates the conceptual
relationship between these factors. Specifically, precipitation
and LAI are selected since they have been proven important
for SMAP L4 SSM accuracy in a previous study (Dong et
al., 2019a). The presence of errors in the vertical variabil-
ity of soil properties and SSM–RZSM coupling strength are
selected because both factors control the propagation of soil
moisture error from the surface soil layer to deeper layers,
and we focus on both the SSM and RZSM retrieval accuracy.
Error in CLSM LE output is selected because of its connec-
tion between the water and energy balance. Error in Tb inno-
vation is selected because of its direct impact on the size of
the DA update. Error in microwave soil roughness is selected
owing to its high impact on RTM accuracy. These eight con-
trol factors from the above-mentioned five aspects determine
the crucial aspects of both the LSM and RTM components
in the L4 system and are readily quantifiable using remote
sensing products. Thus, they are selected to investigate the
mechanism underlying the L4 improvement observed in this
study.

Therefore, to achieve the two major objectives, we first
evaluate the performance of L4 SSM and RZSM estimates
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Figure 1. Systematic connection in the DA framework and the association between the eight selected factors in the analysis.

using 2474 sites in China with soil moisture profile mea-
surements (generally acquired at subsurface depths between
10 and 50 cm) during the 2-year period of 2017 to 2018.
Next, the in situ measurements are used to assess the DA skill
improvement of the L4 system, which is defined as the
skill difference between the L4 estimates and the OL base-
line. Additionally, we apply a machine learning technique
to quantify by how much the eight potential control factors
drive the spatial variations in the efficiency of the L4 system.
In this way, we seek to prioritize future enhancements to the
L4 system.

2 Data and methods

In this section, we briefly describe the SMAP L4 soil mois-
ture product (Sect. 2.1), the network of in situ soil moisture
observations in China (Sect. 2.2), the above-mentioned con-
trol factors and ancillary data sources (Sect. 2.3), and the ver-
tical coupling metric used in the skill assessment (Sect. 2.4).
Next, we introduce the double instrumental variable (IVd)
method employed to determine the errors in control fac-
tors that cannot be determined using ground observations
(Sect. 2.5). Finally, we describe the random forest (RF) re-
gression method used to identify the main factor(s) (out of
the eight control factors from both CLSM and RTM aspects)

that affect the spatial variations in SMAP L4 DA skill im-
provement and L4 performance (Sect. 2.6).

2.1 SMAP L4 soil moisture product

The SMAP L4 soil moisture product (version 4; Re-
ichle et al., 2019) is generated by assimilating the
SMAP L1C Radiometer half-orbit 36 km Equal-Area Scal-
able Earth (EASE) Grid Tb observations (Version 4
SPL1CTB; Chan et al., 2016) into the CLSM. The SMAP
Tb observations are assimilated at 3 h intervals using a
spatially distributed, 24-member ensemble Kalman filter
(Reichle et al., 2017b). The surface meteorological forc-
ing data are from the global Goddard Earth Observing
System (GEOS) Forward Processing atmospheric analy-
sis (Lucchesi, 2013), with precipitation corrected using the
daily, 0.5◦, gauge-based Climate Prediction Center Uni-
fied (CPCU) product (Xie et al., 2007). The L4 product pro-
vides global, 9 km, 3-hourly surface (0–5 cm), and root-zone
(0–100 cm) soil moisture estimates along with related land
surface fields and analysis diagnostics. For the present study,
we aggregate all soil moisture estimates to daily averaged
(00:00 to 23:59 UTC) data. The OL baseline is a model-
only, ensemble CLSM simulation without the assimilation of
SMAP Tb observations but otherwise using the same config-
uration, including perturbations, as in the L4 system (Reichle
et al., 2021).
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The SMAP L4 assimilation system includes a zero-order
τ–ω forward RTM (De Lannoy et al., 2013) that converts
SSM and surface soil temperature into L-band brightness
temperature estimates. Selected parameters of the L4 RTM,
including the microwave soil roughness parameter h, veg-
etation structure parameter τ , and the microwave scatter-
ing albedo ω, are calibrated using multi-angular L-band
brightness temperature observations from the Soil Mois-
ture Ocean Salinity (SMOS) mission (De Lannoy et al.,
2014a). The L4 RTM parameterizes microwave soil rough-
ness as a function of SSM (De Lannoy et al., 2013;
their Eq. B1). Here, we use this parameterization to com-
pute the 2017–2018 daily averaged microwave soil rough-
ness estimates as one potential indicator of DA skill im-
provement (Sect. 2.3). The necessary parameters are ob-
tained from L4 Land Model Constants output collection
(https://doi.org/10.5067/KGLC3UH4TMAQ; Reichle et al.,
2018a). The L4 Analysis Update Data output collection in-
cludes RTM predictions of Tb and the assimilated SMAP Tb
observations (https://doi.org/10.5067/60HB8VIP2T8W; Re-
ichle et al., 2018b).

To avoid the impact of seasonality, we perform our analy-
sis using anomaly time series, derived by subtracting a sea-
sonally varying (daily) climatology from each raw time se-
ries. The climatology of a given time series is obtained by
sampling the mean value of all soil moisture estimates that
fall within a 31 d moving window centered on a particular
day of year. Moreover, L4 estimates of LE, sensible heat
flux (H ), and the climatological LAI inputs to CLSM and the
RTM are obtained from the L4 Geophysical Data output col-
lection (https://doi.org/10.5067/KPJNN2GI1DQR; Reichle
et al., 2018c). These datasets are also used to compute control
factors to explain spatial variations in the DA skill improve-
ment of the L4 system (Sect. 2.3).

2.2 Soil moisture validation data

In situ soil moisture measurements during 2017 and 2018
are collected from a national network of Chinese Auto-
matic Soil Moisture Observation Stations (CASMOS) main-
tained by the Chinese Meteorological Administration (CMA;
Han et al., 2017). In total, soil moisture measurements from
2474 separate stations across China, and covering differ-
ent land use types, are collected. At each CASMOS site,
frequency domain reflectometry-based instruments (DNZ1,
DNZ2, and DNZ3) are used to record hourly volumetric soil
moisture content within the following vertical depth ranges:
0–10, 10–20, 20–30, 30–40, and 40–50 cm below the sur-
face. This instrumentation – DNZ1, DNZ2, and DNZ3 – is
separately produced by Shanghai Changwang Meteorologi-
cal Science and Technology Corporation (Shanghai, China),
Henan Meteorological Science Research Institute and the
27th Institute of China National Electric Power Corporation
(Zhengzhou, China), and China Huayun Technology Devel-
opment Corporation (Beijing, China), respectively. From the

Figure 2. The number of in situ CASMOS sites within each 9 km
EASE grid across the study area.

above-mentioned instruments, the hourly estimates (at mul-
tiple depths) are then aggregated into daily values and lin-
early averaged (vertically) to produce 0–10 cm (SSM) and 0–
50 cm (RZSM) in situ soil moisture measurements, which are
subsequently used to validate the L4 and OL SSM (0–5 cm)
and RZSM (0–100 cm) estimates. Note that Spearman’s cor-
relation rather than Pearson’s correlation is used for L4 and
OL validation because Pearson’s correlation assumes linear
consistency of the underlying variables and is more sensi-
tive to outliers. By employing Spearman’s rank correlation,
we do not need to exclude soil moisture outliers and thus
avoid introducing ad hoc thresholds that would define out-
liers. Nonetheless, we repeat the analysis based on Pearson’s
correlation (not shown) and find that the results are qualita-
tively consistent with the results using Spearman’s correla-
tion.

Ground observations within the same 9 km EASE grid
were averaged for comparisons against the collocated 9 km
L4 and OL soil moisture estimates. A total of 2287 individ-
ual 9 km EASE grid cells within China are included in the
analysis. Among them, 92.35 % of grid cells contain one in
situ site, 7.26 % contain two sites, seven grid cells contain
three sites, and the remaining two grid cells contain four and
five sites respectively. Figure 2 shows the number of in situ
CASMOS sites within each 9 km EASE grid.

2.3 Explanatory data products

As discussed above, our hypothesis is that the efficiency of
the SMAP L4 system will be sensitive to the ability of the
ensemble-based L4 analysis in filtering errors that exist in
CLSM, the RTM forecast Tb, and the assimilated SMAP
Tb observations. We therefore consider two separate cate-
gories of factors that potentially control spatial variations in
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DA skill improvement. The factors are summarized in Ta-
ble 1.

The first category represents a range of factors known
to affect the skill of soil moisture estimates derived from
the LSM (in this case, CLSM). The five control factors
in this category are (1) the error in precipitation forcing,
(2) the error in (input) LAI, (3) the error in (output) LE,
(4) the magnitude of mean error in CLSM SSM–RZSM cou-
pling strength, and (5) the presence of vertical variability
in soil properties (defined as the difference in clay frac-
tion across the vertical soil profile). Note that such variabil-
ity represents a potential source of error because, with the
exception of some surface-layer moisture transport param-
eters, CLSM assumes soil texture and associated soil pa-
rameters are vertically homogeneous within the soil column.
However, the Harmonized World Soil Database (HWSD;
FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) often captures dis-
tinct vertical variations in soil properties, which are neglected
by CLSM. Therefore the magnitude of vertical heterogeneity
in soil texture may be an effective proxy for overall CLSM
soil moisture accuracy. HWSD is selected due to its extensive
use in soil science (De Lannoy et al., 2014b), and switching
from HWSD to the high-resolution soil hydraulic and ther-
mal properties dataset derived from the Global Soil Dataset
for Earth System Models and SoilGrids (Dai et al., 2019)
does not qualitatively change our conclusion or the impor-
tance ranking of vertical variability in soil properties (figure
not shown). In addition, given the high specific surface area
of clay and its high influence on soil structure and aggre-
gation, the clay fraction is very important for soil moisture
retention (Hillel, 1998), and thus the clay fraction is chosen
over silt and sand fractions in the analysis. Besides, note that
since LE and H are generally (strongly) anti-correlated, it
is not appropriate to include both in a single random forest
analysis – since including both would yield biased (high) re-
gression weights for LE and H .

The second category contains three factors that affect ra-
diative transfer modeling (RTM) and therefore DA updates.
These include (1) estimates of the Tb innovation, namely the
difference between SMAP Tb observations and RTM Tb sim-
ulations; (2) the magnitude of microwave soil roughness; and
(3) the magnitude of LAI (as a proxy for the vegetation op-
tical depth at microwave frequencies, which modulates the
contribution of surface soil to the observed Tb).

The control factors take a variety of forms. Some factors
are based on estimates of the errors fed into the L4 system,
namely (1) the error in CLSM rainfall forcing data, (2) the
error in SSM–RZSM coupling strength, (3) the vertical vari-
ability of clay fraction, (4) the SMAP L4 LAI error, (5) the
output LE error, and (6) the error in Tb innovation. Other
factors consist of the magnitude of the variable itself, namely
the magnitude of microwave soil roughness and annual mean
LAI. Note that LAI is used in both ways: LAI error is used to
predict OL performance (because LAI is an important input
into CLSM), while mean LAI is used to explain DA perfor-

mance (because increased LAI is associated with decreased
soil moisture information in microwave observations).

Note that the LAI used in the L4 system is a merged clima-
tology from Moderate Resolution Imaging Spectroradiome-
ter (MODIS) and Geoland data based on satellite observa-
tions of the normalized difference vegetation index (Ma-
hanama et al., 2015; Reichle et al., 2017a). Therefore, to
indicate the magnitude by which the LAI of each grid cell
typically deviates from its long-term climatology, we use the
temporal standard deviation for the anomaly time series of
a benchmark LAI time series as a measure of the error in
the LAI value used in the L4 system. This benchmark LAI
is from the SPOT-VEGETATION (SPOT VGT) product and
includes inter-annual variations (Sect. 2.3.3). Owing to the
lack of reference Tb observations at similar satellite over-
pass times and locations, errors in Tb innovation are gauged
using the time series standard deviation of the observation-
minus-forecast (O−F ) Tb residuals, which indicate the typ-
ical misfit between the RTM forecast Tb and the rescaled
SMAP Tb observations. This rescaling process ensures zero-
mean differences between Tb observations and forecasts and
involves a seasonal multi-year-mean bias correction, which
makes sure that the DA only corrects for errors in short-
term and inter-annual variations and not for errors in the cli-
matological seasonal cycles of the modeled soil moisture or
other land surface fields. The standard deviation of theO−F
Tb residuals measures the total error in Tb observation space.

The exact datasets and the metrics utilized for evaluating
all eight control factors are summarized in Table 1.

2.3.1 Gauge-based precipitation gridded product

Errors in the precipitation data used to force the CLSM
within the SMAP L4 system are estimated via Spearman’s
rank correlation with available rain gauge observations.
These network observations are based on an analysis
of ∼ 2400 rain gauge stations distributed across China
(Shen and Xiong, 2015). Recently, the China Gauge-
based Daily Precipitation Analysis (CGDPA) with a
spatial resolution of 0.25◦× 0.25◦ based on this net-
work was constructed and has been made operational
over China (http://data.cma.cn/data/cdcdetail/dataCode/
SEVP_CLI_CHN_PRE_DAY_GRID_0.25.html, last ac-
cess: 28 April 2020). CGDPA uses a modified version of
climatology-based optimal interpolation (OI) with topo-
graphic correction proposed by Xie et al. (2007). In this
process, the daily precipitation climatology over China is
optimized and rebuilt using the 30-year average precipitation
observations from ∼ 2400 gauges of the period 1971–2000
(Shen et al., 2010). CGDPA is shown to have smaller bias
and root mean square error (for instance, 13.51 mm d−1

vs. 17.02 mm d−1 for precipitation of 25.0–50.0 mm d−1)
than the CPCU product used in the SMAP L4 system, which
is based on fewer than 400 gauge sites over China (Shen and
Xiong, 2015).
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Table 1. Benchmark datasets and metrics used for evaluating control factors of SMAP L4.

Factor Control factor Dataset/benchmark Temporal Spatial Data Metrics
category resolution resolution range

LSM

Precipitation Rain gauge (CGDPA) daily 0.25◦ 2017–2018 Spearman’s rank
error correlation R

SSM–RZSM CASMOS daily n/a 2017–2018 1CP (see Sect. 2.4)
coupling strength
error

Vertical HWSD n/a 9 km n/a Difference in clay
variability of fraction between
clay fraction topsoil (0–30 cm)

and root-zone (0–100 cm)
layers

SMAP L4 LAI SPOT-VGT LAI 10 d 1 km 2017–2018 Temporal standard
error deviation of SPOT

VGT LAI anomaly

LE error FLUXCOM daily (1/120)◦ 2017–2018 IVd-based R

RTM

Error in Tb SMAP L4 daily 9 km 2017–2018 Temporal standard
innovation deviation of O −F Tb

residuals

Microwave soil SMAP L4 daily 9 km 2017–2018 Temporal average
roughness based on De Lannoy

et al. (2013)

Annual mean MODIS–Geoland- daily 9 km 2017–2018 Climatological mean
LAI based product

n/a stands for not applicable.

2.3.2 FLUXCOM LE estimates

The FLUXCOM ensemble of global land–atmosphere en-
ergy fluxes is used to evaluate error in L4 LE estimates.
This ensemble merges energy flux measurements from
FLUXNET eddy covariance towers with remote sensing and
meteorological data based on four broad categories of ma-
chine learning method (namely tree-based methods, regres-
sion splines, neural networks, and kernel methods) to esti-
mate global gridded net radiation, LE and H , and their re-
lated uncertainties (Jung et al., 2019). The resulting FLUX-
COM database has a 0.0833◦ spatial resolution when applied
using MODIS remote sensing data. The monthly energy flux
data of all ensemble members, as well as the ensemble es-
timates from the FLUXCOM initiative, are freely available
(CC4.0 BY license) from the Data Portal, while the daily and
8 d FLUXCOM products are acquired from dataset provider
Martin Jung (http://fluxcom.org/, last access: 16 April 2020).
To calculate the LE error, we collected the daily, high spa-
tial resolution FLUXCOM product and extracted the LE es-
timates where in situ soil moisture sites are located.

2.3.3 SPOT VGT LAI

The dataset used as a benchmark for assessing leaf area in-
dex (LAI) errors present in the SMAP L4 analysis is derived
from the SPOT/VEGETATION and PROBA-V LAI products
(version 2) that were generated every 10 d (at best) with a
spatial resolution of 1 km. The SPOT LAI version 2 prod-
uct GEOV2 is provided by the Copernicus Global Land Ser-
vice (https://land.copernicus.eu/global/products/LAI, last ac-
cess: 15 April 2020; Baret et al., 2013). It capitalizes on the
development of already existing products: CYCLOPES ver-
sion 3.1 and MODIS collection 5, based on neural networks
(Baret et al., 2013; Verger et al., 2008). Compared to ver-
sion 1, the version 2 products are derived from top of canopy
daily reflectances, which ensures reduced sensitivity to miss-
ing observations and avoids the need for a bidirectional re-
flectance distribution function model.

2.3.4 HWSD soil texture

The soil texture information is from the HWSD attribute
database (v1.2; FAO/IIASA/ISRIC/ISSCAS/JRC, 2012),
which is a 30 arcsec raster database with 15 773 different
soil-mapping units worldwide. It provides information on the
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standardized soil parameters for topsoil (0–30 cm) and sub-
soil (30–100 cm) separately. In this study, we use the differ-
ence of clay fractions between topsoil (0–30 cm) and the ag-
gregated 0–100 cm layer to measure the vertical clay fraction
variation at each 9 km grid cell.

2.4 Vertical coupling metric

The RZSM time series generally show decreased temporal
dynamics relative to SSM. As a result, overestimated SSM–
RZSM coupling tends to spuriously increase the (correlation-
based) similarity of SSM and RZSM time series and, thereby,
overestimate RZSM temporal variability. Therefore, analo-
gous to the Kling–Gupta efficiency (Gupta et al., 2009), we
define the SSM–RZSM coupling strength (CP) as

CP= 1−
√
(R− 1)2+ (α− 1)2, (1)

where R is Spearman’s rank correlation between SSM and
RZSM, and α is the ratio of temporal standard deviation
of SSM to that of RZSM. The CP estimation is based on
anomaly time series of both SSM and RZSM. A CP value
of 1 represents the extreme case where RZSM is identical to
SSM, i.e., a strongly coupled case. Likewise, a CP of 0 repre-
sents the opposing case of completely uncoupled time series.
Cases with negative CP do not exist in this study.

Observed CP (CPobs) was based on comparisons between
0–10 cm surface and 0–50 cm root-zone in situ observa-
tions and used as a benchmark. In contrast, CP estimates of
OL (CPOL) was based on the comparison of 0–5 cm surface
and 0–100 cm root-zone estimates. Therefore, the surface
versus root-zone storage contrast in the observation time se-
ries is less than that of the L4 estimates. This will likely cause
the observed correlation between surface and root-zone time
series to be systematically higher than the analogous verti-
cal correlation calculation for L4 estimates. However, this
bias is partially corrected for by the second term in Eq. (1) –
since the observed α ratio will, by the same token, tend to be
smaller (i.e. closer to 1) than α sampled from the L4 analy-
sis. Such ability to compensate for vertical depth differences
is a key reason we apply CP, rather than simple correlation,
as a vertical coupling strength metric. Nevertheless, it should
be noted that our main interest here lies in describing spatial
variations in CPOL–CPobs, and care should be taken when in-
terpreting raw CPOL–CPobs differences as an absolute mea-
sure of L4 vertical coupling bias.

2.5 Double instrumental variable (IVd) method

The benchmark dataset of FLUXCOM LE described above
contains error that is assumed to be of a similar order of mag-
nitude as the L4 LE dataset it is applied to evaluate. There-
fore, in an attempt to correct for the impact of this error, the
LE error used here as a control factor is obtained via a dou-
ble instrumental variable (IVd; Dong et al., 2019b) analysis
approach that minimizes the spurious impact of random er-

rors in benchmark datasets. As shown in Dong et al. (2019b),
for the evaluation of two time series containing autocorre-
lated errors, IVd is more robust than a single instrumental-
variable-based algorithm; therefore we apply IVd to evaluate
the LE error.

IVd is a modified version of triple collocation (TC) anal-
ysis. In TC analysis (McColl et al., 2014), geophysical vari-
ables obtained from three independent sources (xt , yt , and zt )
at time t are assumed to be linearly related to the true sig-
nal Pt as

xt = αxPt +Bx + εx,t , (2)

where the αx is a scaling factor, Bx is a temporal constant
bias, and εx,t is the zero-mean random error.

As opposed to the TC method, IVd uses only two indepen-
dent products (x, y) to characterize geophysical data product
errors. This method introduces two instrumental variables I ,
which is the lag− 1 time series of x, and J , which is the
lag− 1 time series of y, respectively.

It = αxPt−1+Bx + εx,t−1 (3)
Jt = αyPt−1+By + εy,t−1 (4)

Therefore, assuming that the errors of two independent prod-
ucts are serially white, the covariance between instrumental
variables and products can be written as follows:

CIx = α
2
xLPP (5)

CJy = α
2
yLPP , (6)

where C represents the covariance of the subscript prod-
ucts. For instance, CIx represents the covariance of x and
its instrumental variable I . Variable LPP is the lag− 1 auto-
covariance of the true signal. Combining Eqs. (5) and (6), the
scaling ratio sivd of the two products x and y can be written
as

sivd =

√
CIx

CJy
. (7)

Based on Eq. (7), their correlation with truth can be estimated
as

R2
Px
=
Cxysivd

Cxx
(8)

R2
Py
=

Cxy

Cyysivd

. (9)

In this way, the error in the L4 LE (measured by IVd-based
correlation with truth) can be estimated robustly using the
FLUXCOM LE product described in Sect. 2.3.2.

2.6 Random forest regression

A random forest (RF) regression approach is used to quan-
tify and rank the importance of the eight control factors in-
troduced above (Table 1) for describing spatial patterns in
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DA skill improvement for both SSM and RZSM estimates.
The RF method is a supervised learning algorithm based
on an averaged ensemble of decision trees (Breiman, 2001).
Unlike linear regression approaches, RF can capture nonlin-
ear interactions between the features and the target. In ad-
dition, the normalization (or scaling) of data is not neces-
sary in RF application. Another advantage of the RF algo-
rithm is that it can readily measure the relative importance of
each feature on the estimates, which makes it highly suitable
for an attribution analysis. Therefore, based on the output
of RF, key control factors determining the skill improvement
of SMAP DA are evaluated and ranked. The RF estimates are
based on a 10-fold cross-validation approach.

3 Results

3.1 Validation of SMAP L4 and OL estimates of SSM
and RZSM anomalies

Figure 3 maps validation results (i.e., Spearman’s rank corre-
lation of anomaly with in situ observations, R) for SMAP L4
and associated OL soil moisture estimates. The skill pat-
terns for OL and L4 are, in general, quite spatially consis-
tent. Both are characterized by an increasing trend of SSM
estimation skill moving from northwestern to southeastern
China (Fig. 3a and b) that matches the increasing density
of the rain gauge network. In relative terms, the L4 prod-
uct surpasses the baseline OL’s SSM skill for 77 % of the
2287 9 km EASE grid cells containing ground observations
– with a mean R increase of 1R = 0.056 [–] and mean rela-
tive improvement versus ROL of 14 %.

Similar spatial patterns are observed for RZSM skill. As
with SSM, generally higher consistency with in situ RZSM
measurements is found in southeastern China relative to
northwestern China. However, relative to SSM, the benefit
of SMAP data assimilation (i.e., L4) is reduced for RZSM,
and the mean relative R improvement is only 7 % (1R =
0.034 [–]) (compare Fig. 3e and f). This reduction is expected
since assimilated SMAP Tbs are primarily sensitive to soil
moisture conditions in the surface (0–5 cm) layer.

3.2 Spatial distribution of potential factors controlling
SMAP L4 DA performance

As described in Sect. 2.3, we select eight control factors that
potentially influence the skill of SMAP L4 soil moisture es-
timates. Using the attribution analysis described in Sect. 2.6,
these factors are used to explain the spatial variations in DA
skill and DA skill improvement seen in Fig. 3. As a first step,
this section examines the spatial patterns inherent in the eight
control factors. Errors in the CLSM precipitation forcing are
relatively higher in northwestern China (Fig. 4a), where the
gauge density is generally sparser than in southern China.
Among the factors representing CLSM structural errors, a
predominantly negative bias is observed in SSM–RZSM cou-

pling strength generally across China (i.e., lower CPOL com-
pared to CPobs), while a very small number of grid cells show
a positive coupling strength bias in eastern China (dark green
dots in Fig. 4b). This is expected since the coupling strength
generally decreases with coarser resolution; i.e., the verti-
cal coupling strength of the model is assumed much lower
than that of any single site. In addition, this may be par-
tially attributed to layer depth differences, since CLSM rep-
resents surface and root-zone depths of 0–5 and 0–100 cm,
respectively, whereas the corresponding in situ observations
represent the 0–10 and 0–50 cm layers. Therefore, CPOL is
likely to be systematically smaller than CPobs. In addition,
the vertical variability of the clay fraction seems to show lit-
tle spatial variation across China (Fig. 4c). With respect to
CLSM LAI error, regions in southern China that have gen-
erally higher LAI show larger standard deviations in SPOT
LAI time series (Fig. 4d and h). The IVd-based estimates of
SMAP L4 LE error, which represent a potential control fac-
tor for water-balance errors in CLSM, generally show a low
level of error across China (Fig. 4e).

For O −F Tb residuals describing RTM-related error, a
higher standard deviation of O −F Tb residuals is observed
in the North China Plain (Fig. 4f), which is very consistent
in spatial distribution with areas displaying the highest and
most significant SSM prediction improvement (Fig. 3c). This
is expected, as mentioned above, becauseO−F Tb residuals
are the basis for the soil moisture corrections (or increments)
that are applied in the DA system as part of the L4 analysis.
The 2017–2018 mean of soil roughness shows a relatively
scattered spatial pattern (Fig. 4g), while the 2017–2018 mean
LAI shows higher values in southwestern and southeastern
China (Fig. 4h).

3.3 Attribution of SMAP L4 versus OL performance to
control factors

3.3.1 Attribution using random forest regression

As mentioned above, RF regression is used to identify the
relative importance of our eight control factors for determin-
ing the improvement of SMAP L4 DA (i.e., 1R = RL4−

ROL) and also RL4 and ROL. We first investigate the robust-
ness of RF for predicting 1R. To estimate the magnitude
of randomness in the RF algorithm, we use 50 bootstrap
runs. As shown in Fig. 5a, the 10-fold cross-validation test
(228 validation samples) shows that the predicted and in situ-
based 1R have a mean correlation of 0.72 and 0.46 for SSM
and RZSM, respectively. In Fig. 5a, the mean and median of
the cross-validation correlation are shown by the black circle
and black line respectively within the boxes, while the sec-
ond and third quartiles of the cross-validation correlation are
shown by the edges of boxes.

Given the sampling errors of 1R, which is based on a 2-
year validation period, and the relatively low spatial variabil-
ity in RZSM skill (Fig. 2f), the performance of RF is accept-
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Figure 3. OL (a, b) and L4 (c, d) skills (R values) for SSM (a, c, e) and RZSM (b, d, f). DA skill improvement (1R = RL4−ROL) for
(e) SSM and (f) RZSM. Blue (red) colors in (e) and (f) indicate grid cells where L4 estimates are better (worse) than OL. Non-significant
differences (based on a 1000-member bootstrapping analysis) are shaded grey. The lower left inset in each subplot indicates the frequency of
binned R values across all 9 km EASE grid cells containing ground observations.

able. In addition, the upscaling error of the ground measure-
ment is likely a significant contributor to unexplainable spa-
tial variability for 1R in Fig. 3. In fact, Chen et al. (2016)
found large spatial variability in the ability of point-scale
SSM ground observations to describe grid-cell-scale SSM
dynamics. In situ sites associated with larger random point-
to-grid upscaling errors will introduce a spurious low bias
into sampled estimates of 1R values (see Appendix B in
Dong et al., 2020). Therefore, part of the1R spatial variabil-
ity observed in Fig. 3 is unrelated to any aspect of the L4 sys-

tem and, therefore, unexplainable via our eight selected con-
trol factors.

Independent representativeness errors have an equal im-
pact on both the L4 and OL skill assessments and should
therefore not bias the relative skill assessments of L4 ver-
sus OL, particularly when these assessments are based on
averaging across multiple grid cells. This holds if the loca-
tion of ground-based measurements sites (within a footprint)
is purely random. For the systematic sampling errors, we
analyze the site representativeness using the 500 m MODIS
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Figure 4. Factors potentially influencing SMAP L4 performance over the study area: (a) CLSM precipitation error measured by the Spear-
man’s rank correlation between CLSM precipitation and ground observations; (b) SSM–RZSM coupling strength error (CPOL minus CPobs);
(c) clay fraction variation (difference) across the soil profile; (d) error in LAI input to L4; (e) IVd-based error of LE from L4; (f) O −F Tb
standard deviation; (g) L4 microwave soil roughness; (h) climatology mean of LAI input to L4. The last row shows factors that consist of the
magnitude of the variable itself, while the other rows show factors based on estimates of the errors that are fed into the L4 system.
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Figure 5. Attribution analysis of SMAP L4 DA skill improvement: (a) cross-validation of RF regression method in predicting DA skill
improvement1R = RL4−ROL based on our eight control factors (Table 1). Relative importance of eight control factors determining spatial
patterns in (b) DA skill improvement (1R), (c) OL performance (ROL), and (d) L4 performance (RL4). Red (blue) bars represent predictor
importance for SSM (RZSM). Error bars reflect the standard deviation from 50-member bootstrapping of the RF importance estimates. Since
RTM-related errors do not impact the SM skill in the OL simulation, the corresponding bars in panel (c) are shown as semi-transparent (see
text for details).

Land Cover product (MCD12Q1 v6) of 2017, using the
IGBP dataset. First, we take the land cover (LC) type of the
MODIS grid cell where a given in situ site is located as the
ground-based LC type. Next, we search all the MODIS grid
cells that fall within the SMAP 9 km EASE grid cell where
this in situ site is located. The latter area consists of about
20× 20= 400 MODIS grid cells. We calculate the fraction
of these 400 MODIS grid cells that have the same LC type as
the ground-based LC and define this fraction as the site rep-
resentativeness. We find that 52 % of the 2474 sites have site
representativeness higher than 50 %. When we use only these
sites for the RF attribute analysis, the top three factors con-
trolling skill improvement (RL4−ROL), L4 skill (RL4), and
OL skill (ROL) are still the same, although the precipitation
error becomes the top influencer for RL4 (not shown).

Based on the RF results, the Tb innovation is quantified
as the most prominent factor in determining DA skill im-
provement (i.e., 1R = RL4−ROL) – followed by precipi-

tation error and microwave soil roughness (Fig. 5b). The
RF-derived ranking of control-factor importance for RZSM
is similar to that of SSM in that the same three factors are
still the most explanatory. However, relative to SSM, the im-
portance of Tb innovation for RZSM decreased dramatically
from > 30 % to ∼ 15 %. Other modeling error sources (e.g.,
the vertical variability of soil properties) have only very lim-
ited impacts on SMAP DA improvement.

As seen in Fig. 5c, for the OL performance (ROL), the most
important factors identified by RF include precipitation error,
SSM–RZSM coupling error, and Tb innovation (microwave
soil roughness) for SSM (RZSM). Note that although the
Tb innovation is identified as the third most important factor
for ROL in SSM skill, this is an instance where correlation
does not imply a causal relationship (i.e., poorer skill hap-
pens to coincide with higher Tb innovation). Specifically, it
is expected that Tb innovations are higher in areas where the
OL performs worse, but a high Tb innovation is not the cause
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of a low OL performance. The same argument applies to
the relationship between microwave soil roughness and OL
skill for RZSM estimation. To retain the consistency with the
analysis of RL4 and avoid the misconnection between RTM-
related factors and ROL, the bars representing the importance
of RTM-related factors toROL are shown as semi-transparent
in Fig. 5c. The SMAP L4 system is able to reduce impact
of precipitation errors on both SSM and RZSM estimation
skill, rendering SSM–RZSM coupling error the most impor-
tant factor forRL4 (Fig. 5d). In addition, in the L4 system, the
high vegetation density effect on SSM and RZSM estimation
is clearly reduced, as the fourth most important factor of LAI
magnitude is replaced by Tb innovation.

The qualitative rankings provided by the RF analysis
in Fig. 5 are relatively robust to our particular choice
of the benchmark dataset to define the “error” of vari-
ous control variables. For instance, we replace the CGDPA
precipitation benchmark with the Climate Prediction Cen-
ter Morphing (CMORPH) merged product (Version 1,
https://doi.org/10.25921/w9va-q159; Xie et al., 2019), which
is the 0.1◦ merging product of CMORPH and observations
from more than 30 000 automatic weather stations in China.
In this case, the predictive power of the regression model es-
tablished by the RF is not affected (similar to Fig. 5a), and the
qualitative rankings of the precipitation error in ROL and RL4
are not impacted (similar to Fig. 5c and d).

3.3.2 Attribution using box plot comparisons

As stated in Sect. 2.6, the RF method is adept at summarizing
the impact of multiple (co-varying) control factors simultane-
ously in the established regression model and thus provides
more comprehensive insights than the examination of how
the target variable (DA improvement) fluctuates with each
individual control factor. However, it does not allow for the
investigation of the sign of the relationship between DA im-
provement and each control factor – which is important for
understanding how each factor influences the DA system. In
addition, since the net impact of various factors can enhance
DA skill improvement by either degrading the OL or enhanc-
ing the ability of DA to add more value, it is important to
decompose the source of variations in 1R. Therefore, in ad-
dition to examining how SMAP DA skill improvement, i.e.,
1R = RL4−ROL, varies as a function of the most prominent
control factors identified above in Sect. 3.3.1 (i.e., Tb inno-
vation, precipitation forcing error, and microwave soil rough-
ness), we also examine how precipitation error as a control
factor affects the OL performance, i.e., ROL.

To minimize the uncertainty caused by large errors in each
of the control factors, we exclude samples with errors (sep-
arately for each control factor) ranking above the 80th per-
centile in the following analysis. The relationship between
Tb innovations and L4 DA skill improvement is straightfor-
ward: higher Tb innovations are associated with higher 1R,

with 1R generally larger for SSM than for RZSM (Fig. 6a
and b).

For precipitation, this decomposition is illustrated in
Fig. 7. Note that, as expected, low-quality precipitation tends
to degrade the skill (i.e., correlation versus ground obser-
vations) of OL SSM and RZSM estimates (see Fig. 7a
and b). This degradation provides an enhanced opportunity
for SMAP L4 DA to provide benefit. As a result, 1R tends
to be an inversely proportional function of precipitation skill
(i.e., higher precipitation skill leads to lower1R; see Fig. 7c
and d). This inverse relationship is a well-known tendency
for land DA systems (Liu et al., 2011; Bolten and Crow,
2012; Dong et al., 2019a). Precipitation quality has a dimin-
ished impact on RZSM estimation skill compared to SSM es-
timation skill. This is expected since RZSM is (essentially)
the result of applying a low-pass time series filter to precipi-
tation. As such, it is less sensitive to high-frequency errors in
precipitation products than SSM is.

Figure 8 is analogous to Fig. 6 but shows skill differ-
ences1R as a function of microwave soil roughness. Similar
to Tb innovations, it is as expected that this control factor has
little impact on the OL performance, except that ROL shows
slight decreasing tendency with increasing soil roughness
(not shown). Given the fact that the OL does get worse with
increasing roughness, there is more room for improvement
in areas with higher soil roughness, which makes it plausible
that1R increases with increasing soil roughness (see Fig. 8a
and b).

Besides the above three control factors that dominate the
DA skill improvement, we also examine the top factor that
affects SMAP L4 performance, i.e., vertical coupling errors
(Fig. 9). As expected, larger (absolute) bias in SSM–RZSM
coupling in CLSM tends to be associated with degraded
OL estimates of both SSM and RZSM (see Fig. 9a and b),
although the analysis does not prove such a causal relation-
ship. Similar to precipitation errors above, decreased OL skill
(seen on the left-hand side of the figure panels) provides an
opportunity for increased DA skill improvement – which is
clearly seen in Fig. 9c and d. However, such increases are
much larger for SSM than for RZSM.

For RZSM, SSM–RZSM coupling bias exerts both posi-
tive and negative effects on estimation accuracy. While such
bias leads to an enhanced opportunity to improve upon a de-
graded OL, it should also hamper the ability of DA to trans-
fer SSM increments into the root zone – particularly when,
like here, the bias reflects the lack of vertical coupling in the
model (Kumar et al., 2009). This means that some of the
opportunity presented by the larger RZSM errors in OL is
squandered by sub-optimal DA. As a result, the increase in
RZSM DA skill improvement associated with biased SSM–
RZSM coupling (Fig. 9d) is smaller than the analogous in-
crease in SSM DA skill improvement (Fig. 9c).

For the three strongest control factors that determine
DA skill improvement 1R, i.e., Tb innovation, precipitation
error, and microwave soil roughness, we further conducted
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Figure 6. SMAP L4 DA skill improvement (1R = RL4−ROL) as a function of Tb innovation for (a) SSM and (b) RZSM. Samples with
Tb innovation ranking above the 80th percentile are excluded from the analysis.

paired one-way analysis of variance. Results indicates that
for each of the five binned groups separated by each of the
above-mentioned three control factors, the inter-group dif-
ference in 1R caused by each control factor is significant
(p < 0.01) for both SSM and RZSM. In addition, except for
the groups with lowest mean 1R in Figs. 6a and 8a, the av-
erages of 1R from all groups are significantly higher than 0
(p < 0.01).

4 Conclusions

The SMAP L4 algorithm assimilates L-band Tb observations
into the CLSM to provide surface and root-zone soil moisture
estimates (i.e., SSM, RZSM) with 3-hourly, global coverage
at 9 km resolution. The performance of the L4 soil mois-
ture estimates compared to a baseline model-only simula-
tion (OL) is influenced by multiple control factors associated
with CLSM and the τ–ω RTM components of the L4 system.
In this study, we assess the performance of the SMAP L4 DA
system using 2 years of in situ soil moisture profile observa-
tions at 2474 sites across China. We apply a RF regression
to identify the dominant factors (from a predefined list) that
control the spatial distribution of the DA skill improvement
(defined as the skill difference between the L4 and OL es-
timates of SSM and RZSM as measured by their Spearman
rank correlation with in situ measurements). Results show
that L4 improves SSM prediction skill by 14 % on average,
with over 77 % of the 2287 9 km EASE grid cells showing an
increase in Spearman’s rank correlation with in situ observa-
tions. Similarly, widespread, though smaller, improvements
are observed in RZSM, with average R improvement of 7 %.

Based on the RF regression analysis, the benefit of
SMAP L4 DA for SSM is primarily determined by Tb innova-
tion (measured by standard deviation ofO−F Tb residuals),

followed by microwave soil roughness and daily precipita-
tion error. These three factors are also the most prominent
factors controlling SMAP DA improvement for RZSM, al-
beit with the Tb innovation being the least important of these
three factors for RZSM DA skill improvement.

Generally, the OL performance clearly decreases with in-
creasing precipitation error, whereas for L4 performance pre-
cipitation error is not identified as the most dominant con-
trol factor. This indicates that the L4 system is able to cor-
rect for errors in precipitation forcing. In addition, our re-
sults demonstrate that SMAP DA contributes the most bene-
fit for cases where CLSM underestimates SSM–RZSM verti-
cal coupling strength. However, due to the difference in top-
layer soil depth between the in situ observations (10 cm) and
the L4 analysis (5 cm), it is unclear whether or not the ob-
served SSM–RZSM coupling strength biases are real in an
absolute sense – or simply reflect inconsistencies in the depth
of modeled versus observed SSM and RZSM time series.
Nevertheless, it is worth stressing that, despite the ambigu-
ity about their absolute magnitude/sign, relative variations in
apparent SSM–RZSM coupling biases explain a significant
amount of the observed spatial variation in L4 performance.
Therefore, this finding clearly underpins the importance of
properly specifying SSM–RZSM coupling strength in CLSM
as a way to improve the SMAP L4 product.

For SMAP L4 SSM skill, the next most important factors
(after SSM–RZSM coupling) are the precipitation error, the
Tb innovation, and microwave soil roughness (Fig. 5d). For
L4 RZSM skill, the next most important factors (after SSM–
RZSM coupling) are the precipitation error, the Tb innova-
tion error, and the LE error, with the latter two factors of
comparable importance (Fig. 5d). To enhance the L4 perfor-
mance, additional focus should thus be placed on improv-
ing the model’s characterization of the microwave radiative
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Figure 7. OL performance (ROL) as a function of precipitation forcing skill R for (a) SSM and (b) RZSM. SMAP L4 DA skill improve-
ment (1R = RL4−ROL) as a function of precipitation skill for (c) SSM and (d) RZSM. Samples with precipitation skill ranking below the
20th percentile are excluded from the analysis.

Figure 8. As in Fig. 6 but for 1R as a function of microwave soil roughness.
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Figure 9. As in Fig. 7 but for ROL and 1R as a function of SSM–RZSM coupling error indicated by the CP difference (1CP= CPOL−
CPobs).

transfer modeling (Tb innovation), together with the parti-
tioning of the available energy into latent and sensible heat
(LE error).

Some of our RF analysis results fall squarely within ex-
pectation; for instance, the OL skill is predominately deter-
mined by precipitation error, which is in line with the previ-
ous studies using core validation site, sparse network sites,
and other microwave soil moisture datasets (Reichle et al.,
2017a, 2021; Dong et al., 2019a), and L4 skill improvement
(i.e., RL4−ROL) is mostly determined by Tb innovation. On
the other hand, there are also some more surprising results.
For instance, we found that SSM–RZSM coupling error and
precipitation error have a comparable impact on OL. For
L4 skill, however, the impact of SSM–RZSM coupling error
exceeds that of precipitation error. More specifically, L4 DA
contributes the most benefit for cases where CLSM underes-
timates SSM–RZSM vertical coupling strength. This is the

first quantification of the impact of different DA aspects (in-
cluding background model structure error and model input
error) on DA performance. These findings could be used for
L4 product development. In addition, this study pinpoints
that the L4 skill improvement is not heavily impacted by LAI
magnitude, which gives confidence for using the L4 product
over densely vegetated areas.

Data availability. The SMAP L4 datasets are available from
https://nsidc.org/data/SPL4SMAU/versions/4 (last access:
8 July 2020) (Reichle et al., 2020). The gauge-based precipi-
tation dataset CGDPA is from http://data.cma.cn/data/cdcdetail/
dataCode/SEVP_CLI_CHN_PRE_DAY_GRID_0.25.html (last
access: 28 April 2020) (Shen and Feng, 2020). The availabilities of
other datasets are stated in their corresponding subsections.
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