Articles | Volume 24, issue 12
https://doi.org/10.5194/hess-24-5919-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-5919-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Diverging hydrological drought traits over Europe with global warming
Carmelo Cammalleri
CORRESPONDING AUTHOR
European Commission, Joint Research Centre (JRC), 21027 Ispra (VA), Italy
Gustavo Naumann
European Commission, Joint Research Centre (JRC), 21027 Ispra (VA), Italy
Lorenzo Mentaschi
European Commission, Joint Research Centre (JRC), 21027 Ispra (VA), Italy
Bernard Bisselink
European Commission, Joint Research Centre (JRC), 21027 Ispra (VA), Italy
Emiliano Gelati
European Commission, Joint Research Centre (JRC), 21027 Ispra (VA), Italy
Ad De Roo
European Commission, Joint Research Centre (JRC), 21027 Ispra (VA), Italy
Luc Feyen
European Commission, Joint Research Centre (JRC), 21027 Ispra (VA), Italy
Related authors
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024, https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Short summary
In hydrology, the probability distributions are used to determine the probability of occurrence of rainfall events. In this study, two different methods for modeling rainfall time characteristics have been applied: a direct method and an indirect method that make it possible to relax the assumptions of the renewal process. The analysis was extended to two additional time variables that may be of great interest for practical hydrological applications: wet chains and dry chains.
Carmelo Cammalleri, Carlo De Michele, and Andrea Toreti
Hydrol. Earth Syst. Sci., 28, 103–115, https://doi.org/10.5194/hess-28-103-2024, https://doi.org/10.5194/hess-28-103-2024, 2024
Short summary
Short summary
Precipitation and soil moisture have the potential to be jointly used for the modeling of drought conditions. In this research, we analysed how their statistical inter-relationship varies across Europe. We found some clear spatial patterns, especially in the so-called tail dependence (which measures the strength of the relationship for the extreme values). The results suggest that the tail dependence needs to be accounted for to correctly assess the value of joint modeling for drought.
Carmelo Cammalleri, Niall McCormick, and Andrea Toreti
Nat. Hazards Earth Syst. Sci., 22, 3737–3750, https://doi.org/10.5194/nhess-22-3737-2022, https://doi.org/10.5194/nhess-22-3737-2022, 2022
Short summary
Short summary
We evaluated the ability of vegetation indices derived from satellite data to capture annual yield variations across Europe. The strength of the relationship varies throughout the year, with March–October representing the optimal period in most cases. Spatial differences were also observed, with the best results obtained in the Mediterranean regions.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Brunella Bonaccorso, Carmelo Cammalleri, Athanasios Loukas, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 1857–1862, https://doi.org/10.5194/nhess-22-1857-2022, https://doi.org/10.5194/nhess-22-1857-2022, 2022
Carmelo Cammalleri, Carolina Arias-Muñoz, Paulo Barbosa, Alfred de Jager, Diego Magni, Dario Masante, Marco Mazzeschi, Niall McCormick, Gustavo Naumann, Jonathan Spinoni, and Jürgen Vogt
Nat. Hazards Earth Syst. Sci., 21, 481–495, https://doi.org/10.5194/nhess-21-481-2021, https://doi.org/10.5194/nhess-21-481-2021, 2021
Short summary
Short summary
Building on almost ten years of expertise and operational application of the Combined Drought Indicator (CDI) for the monitoring of agricultural droughts in Europe within the European Commission's European Drought Observatory (EDO), this paper proposes a revised version of the index. This paper shows that the proposed revised CDI reliably reproduces the evolution of major droughts, outperforming the current version of the indicator, especially for long-lasting events.
Mohammad Hadi Bahmanpour, Alois Tilloy, Michalis Vousdoukas, Ivan Federico, Giovanni Coppini, Luc Feyen, and Lorenzo Mentaschi
EGUsphere, https://doi.org/10.5194/egusphere-2025-843, https://doi.org/10.5194/egusphere-2025-843, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
As natural hazards evolve, understanding how extreme events interact over time is crucial. While single extremes have been widely studied, joint extremes remain challenging to analyze. We present a framework that combines advanced statistical modeling with copula theory to capture changing dependencies. Applying it to historical data reveals dynamic patterns in extreme events. To support broader use, we provide an open-source tool for improved hazard assessment.
Aloïs Tilloy, Dominik Paprotny, Stefania Grimaldi, Goncalo Gomes, Alessandra Bianchi, Stefan Lange, Hylke Beck, Cinzia Mazzetti, and Luc Feyen
Earth Syst. Sci. Data, 17, 293–316, https://doi.org/10.5194/essd-17-293-2025, https://doi.org/10.5194/essd-17-293-2025, 2025
Short summary
Short summary
This article presents a reanalysis of Europe's river streamflow for the period 1951–2020. Streamflow is estimated through a state-of-the-art hydrological simulation framework benefitting from detailed information about the landscape, climate, and human activities. The resulting Hydrological European ReAnalysis (HERA) can be a valuable tool for studying hydrological dynamics, including the impacts of climate change and human activities on European water resources and flood and drought risks.
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Giorgio Baiamonte, Carmelo Agnese, Carmelo Cammalleri, Elvira Di Nardo, Stefano Ferraris, and Tommaso Martini
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 51–67, https://doi.org/10.5194/ascmo-10-51-2024, https://doi.org/10.5194/ascmo-10-51-2024, 2024
Short summary
Short summary
In hydrology, the probability distributions are used to determine the probability of occurrence of rainfall events. In this study, two different methods for modeling rainfall time characteristics have been applied: a direct method and an indirect method that make it possible to relax the assumptions of the renewal process. The analysis was extended to two additional time variables that may be of great interest for practical hydrological applications: wet chains and dry chains.
Carmelo Cammalleri, Carlo De Michele, and Andrea Toreti
Hydrol. Earth Syst. Sci., 28, 103–115, https://doi.org/10.5194/hess-28-103-2024, https://doi.org/10.5194/hess-28-103-2024, 2024
Short summary
Short summary
Precipitation and soil moisture have the potential to be jointly used for the modeling of drought conditions. In this research, we analysed how their statistical inter-relationship varies across Europe. We found some clear spatial patterns, especially in the so-called tail dependence (which measures the strength of the relationship for the extreme values). The results suggest that the tail dependence needs to be accounted for to correctly assess the value of joint modeling for drought.
Martin Morlot, Simone Russo, Luc Feyen, and Giuseppe Formetta
Nat. Hazards Earth Syst. Sci., 23, 2593–2606, https://doi.org/10.5194/nhess-23-2593-2023, https://doi.org/10.5194/nhess-23-2593-2023, 2023
Short summary
Short summary
We analyzed recent trends in heat and cold wave (HW and CW) risk in a European alpine region, defined by a time and spatially explicit framework to quantify hazard, vulnerability, exposure, and risk. We find a statistically significant increase in HW hazard and exposure. A decrease in vulnerability is observed except in the larger cities. HW risk increased in 40 % of the region, especially in highly populated areas. Stagnant CW hazard and declining vulnerability result in reduced CW risk.
Carmelo Cammalleri, Niall McCormick, and Andrea Toreti
Nat. Hazards Earth Syst. Sci., 22, 3737–3750, https://doi.org/10.5194/nhess-22-3737-2022, https://doi.org/10.5194/nhess-22-3737-2022, 2022
Short summary
Short summary
We evaluated the ability of vegetation indices derived from satellite data to capture annual yield variations across Europe. The strength of the relationship varies throughout the year, with March–October representing the optimal period in most cases. Spatial differences were also observed, with the best results obtained in the Mediterranean regions.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Brunella Bonaccorso, Carmelo Cammalleri, Athanasios Loukas, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 22, 1857–1862, https://doi.org/10.5194/nhess-22-1857-2022, https://doi.org/10.5194/nhess-22-1857-2022, 2022
Kees C. H. van Ginkel, Francesco Dottori, Lorenzo Alfieri, Luc Feyen, and Elco E. Koks
Nat. Hazards Earth Syst. Sci., 21, 1011–1027, https://doi.org/10.5194/nhess-21-1011-2021, https://doi.org/10.5194/nhess-21-1011-2021, 2021
Short summary
Short summary
This study presents a state-of-the-art approach to assess flood damage for each unique road segment in Europe. We find a mean total flood risk of EUR 230 million per year for all individual road segments combined. We identify flood hotspots in the Alps, along the Sava River, and on the Scandinavian Peninsula. To achieve this, we propose a new set of damage curves for roads and challenge the community to validate and improve these. Analysis of network effects can be easily added to our analysis.
Carmelo Cammalleri, Carolina Arias-Muñoz, Paulo Barbosa, Alfred de Jager, Diego Magni, Dario Masante, Marco Mazzeschi, Niall McCormick, Gustavo Naumann, Jonathan Spinoni, and Jürgen Vogt
Nat. Hazards Earth Syst. Sci., 21, 481–495, https://doi.org/10.5194/nhess-21-481-2021, https://doi.org/10.5194/nhess-21-481-2021, 2021
Short summary
Short summary
Building on almost ten years of expertise and operational application of the Combined Drought Indicator (CDI) for the monitoring of agricultural droughts in Europe within the European Commission's European Drought Observatory (EDO), this paper proposes a revised version of the index. This paper shows that the proposed revised CDI reliably reproduces the evolution of major droughts, outperforming the current version of the indicator, especially for long-lasting events.
Emiliano Gelati, Zuzanna Zajac, Andrej Ceglar, Simona Bassu, Bernard Bisselink, Marko Adamovic, Jeroen Bernhard, Anna Malagó, Marco Pastori, Fayçal Bouraoui, and Ad de Roo
Adv. Sci. Res., 17, 227–253, https://doi.org/10.5194/asr-17-227-2020, https://doi.org/10.5194/asr-17-227-2020, 2020
Short summary
Short summary
In this modelling study, we conclude that groundwater is used unsustainably for irrigation in several areas of the
Euro-Mediterranean region. In the southern Iberian Peninsula, we estimate the potential effects of reducing irrigation groundwater abstractions to sustainable amounts to prevent long-term decline of groundwater storage. These restrictions may cause crop production losses but halt groundwater depletion and increase river flow during dry periods which is beneficial for ecosystems.
Cited articles
Alfieri, L., Feyen, L., Dottori, F., Mentaschi, L., Cammalleri, C., Bisselink, B., and De Roo, A.: Hazards: floods, drought and water resources, European Commission, Joint Research Centre (JRC) [Dataset] PID, http://data.europa.eu/89h/20247f06-469c-4607-8af1-a5a670082471, 2020.
Arnal, L., Asp, S.-S., Baugh, C., de Roo, A., Disperati, J., Dottori, F., Garcia, R., GarciaPadilla, M., Gelati, E., Gomes, G., Kalas, M., Krzeminski, B., Latini, M., Lorini, V., Mazzetti, C., Mikulickova, M., Muraro, D., Prudhomme, C., Rauthe-Schöch, A., Rehfeldt, K., Salamon, P., Schweim, C., Skoien, J. O., Smith, P., Sprokkereef, E., Thiemig, V., Wetterhall, F., and Ziese, M.:
EFAS upgrade for the extended model domain – technical documentation, JRC Technical Reports, EUR 29323 EN,
Publications Office of the European Union, Luxembourg, 58 pp., https://doi.org/10.2760/806324, 2019.
Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.: From meteorological to hydrological drought using standardised indicators, Hydrol. Earth Syst. Sci., 20, 2483–2505, https://doi.org/10.5194/hess-20-2483-2016, 2016.
Batista e Silva, F., Gallego, J., and Lavalle, C.:
A high-resolution population grid map for Europe,
J. Maps,
9, 16–28, https://doi.org/10.1080/17445647.2013.764830, 2013.
Bisselink, B., Bernhard, J., Gelati, E., Adamovic, M., Guenther, S., Mentaschi, L., and De Roo, A.:
Impact of a changing climate, land use, and water usage on Europe's water resources, JRC Technical Reports, EUR 29130 EN,
Publications Office of the European Union, Luxembourg, 86 pp., https://doi.org/10.2760/847068, 2018.
Bosshard, T. and Kotlarski, S.:
Hydrological climate-impact projections for the Rhine river: GCM–RCM uncertainty and separate temperature and precipitation effects,
J Hydrometeorol.,
15, 697–713, https://doi.org/10.1175/JHM-D-12-098.1, 2014.
Brunner, M. I., Liechti, K., and Zappa, M.: Extremeness of recent drought events in Switzerland: dependence on variable and return period choice, Nat. Hazards Earth Syst. Sci., 19, 2311–2323, https://doi.org/10.5194/nhess-19-2311-2019, 2019.
Burek, P., van der Knijff, J. M., and De Roo, A.:
LISFLOOD: Distributed Water Balance and Flood Simulation Model, JRC Technical Reports, EUR 26162 EN,
Publications Office of the European Union, Luxembourg, 142 pp., https://doi.org/10.2788/24719, 2013.
Cammalleri, C., Vogt, J., and Salamon, P.:
Development of an operational low-flow index for hydrological drought monitoring over Europe,
Hydrol. Sci. J.,
62, 346–358, https://doi.org/10.1080/02626667.2016.1240869, 2017.
Cammalleri, C., Barbosa, P., and Vogt, J. V.:
Evaluating simulated daily discharge for operational hydrological drought monitoring in the Global Drought Observatory (GDO),
Hydrolog. Sci. J.,
65(8), 1316–1325, https://doi.org/10.1080/02626667.2020.1747623, 2020.
Capros, P., Van Regemorter, D., Paroussos, L., and Karkatsoulis, P.:
GEM-E3 model documentation, JRC Technical Reports, EUR 26034 EN,
Publications Office of the European Union, Luxembourg, 158 pp., https://doi.org/10.2788/47872, 2013.
Cervi, F., Petronici, F., Castellarin, A., Marcaccio, M., Bertolini, A., and Borgatti, L.:
Climate-change potential effects on the hydrological regime of freshwater springs in the Italian northern Apennines,
Sci. Total Environ.,
622–623, 337–348, https://doi.org/10.1016/j.scitotenv.2017.11.231, 2018.
Chaturvedi, V., Hejazi, M., Edmonds, J., Clarke, L., Kyle, P., Davies, E., and Wise, M.:
Climate mitigation policy implications for global irrigation water demand,
Mitig. Adapt. Strat. Gl.,
20, 389–407, https://doi.org/10.1007/s11027-013-9497-4, 2015.
Chow, V. T., Maidment, D., and Mays, L. W.:
Applied Hydrology,
McGraw-Hill, New York, 1988.
Crausbay, S. D. and Ramirez, A. R.:
Defining ecological drought for the twenty-first century,
B. Am. Meteorol. Soc.,
2543–2550, https://doi.org/10.1175/BAMS-D-16-0292.1, 2017.
De Roo, A., Wesseling, C., and Van Deursen , W.:
Physically based river basin modelling within a GIS: the LISFLOOD model,
Hydrol. Process.,
14, 1981–1992, https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<1981::AID-HYP49>3.0.CO;2-F, 2000.
Donnelly, C., Greuell, W., Andersson, J., Gerten, D., Pisacane, G., Roudier, P., and Ludwig, F.:
Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level,
Climatic Change,
143, 13–26, https://doi.org/10.1007/s10584-017-1971-7, 2017.
Dosio, A.:
Mean and extreme climate in Europe under 1.5, 2, and 3 ∘C global warming, EUR 30194 EN,
Publications Office of the European Union, Luxembourg, ISBN 978-92-76-18430-0, https://doi.org/10.2760/826427, JRC120574, 2020.
Dosio, A. and Fischer, E. M.:
Will half a degree make a difference? Robust projections of indices of mean and extreme climate in Europe under 1.5 ∘C, 2 ∘C, and 3 ∘C global warming,
Geophys. Res. Lett.,
45, 935–944, https://doi.org/10.1002/2017GL076222, 2018.
Dosio, A., Paruolo, P., and Rojas, R.:
Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal,
J. Geophys. Res.-Atmos.,
117, https://doi.org/10.1029/2012JD017968, 2012.
Dubrovský, M., Hayes, M., Duce, P., Trnka, M., Svoboda, M., and Zara, P.:
Multi-GCM projections of future drought and climate variability indicators for the Mediterranean region,
Reg. Environ. Change,
14, 1907–1919, https://doi.org/10.1007/s10113-013-0562-z, 2014.
EC:
The 2015 Ageing Report – Economic and budgetary projections for the 28 EU Member States (2013–2060),
European Commission, https://doi.org/10.2765/877631, 2015.
EEA:
Corine Land Cover (CLC), Version 18.5.1, Release Date: 19-09-2016,
European Environment Agency,
available at: https://land.copernicus.eu/pan-european/corine-land-cover (last access: 9 December 2020), 2016.
Ercin, A. E. and Hoekstra, A. Y.:
European Water Footprint Scenarios for 2050,
Water,
8, 226, https://doi.org/10.3390/w8060226, 2016.
European Commision: European Drought Observeratory, https://edo.jrc.ec.europa.eu/, last access: 14 December 2020.
EUROSTAT:
Archive: Statistics on regional population projections,
availbale at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Statistics_on_regional_population_projections#Projected_changes_in_regional_populations (last access: 11 September 2020), 2019.
Feng, S.:
Why do different drought indices show distinct future drought risk outcomes in the U.S. Great Plains?,
J. Climate,
30, 265–278, https://doi.org/10.1175/JCLI-D-15-0590.1, 2017.
Feyen, L. and Dankers, R.:
Impact of global warming on streamflow drought in Europe,
J. Geophys. Res.,
114, D17116, https://doi.org/10.1029/2008JD011438, 2009.
Forzieri, G., Feyen, L., Rojas, R., Flörke, M., Wimmer, F., and Bianchi, A.: Ensemble projections of future streamflow droughts in Europe, Hydrol. Earth Syst. Sci., 18, 85–108, https://doi.org/10.5194/hess-18-85-2014, 2014.
Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., and Stoffel, M.:
21st century climate change in the European Alps – A review,
Sci. Total Environ.,
493, 1138–1151, https://doi.org/10.1016/j.scitotenv.2013.07.050, 2014.
Graham, N. T., Davies, E. G. R., Hajazi, M. I., Calvin, K., Kim, S. H., Helinski, L., Miralles-Wilhelm, F. R., Clarke, L., Kyle, P., Patel, P., Wise, M. A., and Vernon, C. R.: Water sector assumptions for the Shared Socioeconomic Pathways in an integrated modeling framework, Water Resour. Res., 54, 6423–6440, https://doi.org/10.1029/2018WR023452, 2018.
Gu, L., Chen, J., Yin, J., Sullivan, S. C., Wang, H.-M., Guo, S., Zhang, L., and Kim, J.-S.: Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2 ∘C warmer climates, Hydrol. Earth Syst. Sci., 24, 451–472, https://doi.org/10.5194/hess-24-451-2020, 2020.
Gudmundsson, L. and Seneviratne, S. I.:
Anthropogenic climate change affects meteorological drought risk in Europe,
Environ. Res. Lett.,
11, 044005, https://doi.org/10.1088/1748-9326/11/4/044005, 2016.
Guerreiro, S. B., Birkinshaw, S., Kilsby, C., Fowler, H. J., and Lewis, E.:
Dry getting drier – The future of transnational river basins in Iberia,
J. Hydrol.-Regional Studies,
12, 238–252, https://doi.org/10.1016/j.ejrh.2017.05.009, 2017.
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.:
Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling,
J. Hydrol.,
377, 80–91, https://doi.org/10.1016/j.jhydrol.2009.08.003, 2009.
Haylock, M. R., Hofstra, N., Klein Tank, A. M. G., Klok, E. J., Jones, P. D., and New, M.:
A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006,
J. Geophys. Res.,
113, D20119, https://doi.org/10.1029/2008JD010201, 2008.
Heinrich, G. and Gobiet, A.:
The future of dry and wet spells in Europe: a comprehensive study based on the ENSEMBLES regional climate models,
Int. J. Climatol.,
32, 1951–1970, https://doi.org/10.1002/joc.2421, 2012.
Hellwig, J. and Stahl, K.: An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times, Hydrol. Earth Syst. Sci., 22, 6209–6224, https://doi.org/10.5194/hess-22-6209-2018, 2018.
Hirpa, F. A., Salamon, P., Beck, H. E., Lorini, V., Alfieri, L., Zsoter, E., and Dadson, S. J.:
Calibration of the Global Flood Awareness System (GloFAS) using daily streamflow data,
J. Hydrol.,
566, 595–606, https://doi.org/10.1016/j.jhydrol.2018.09.052, 2018.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikukin, G., Haensler, A., Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin, E., Van Meijgaard, E., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R., Vautard, R., Weber, B., and Yiou, P.:
EURO-CORDEX: New high-resolution climate change projections for European impact research,
Reg. Environ. Change,
14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014.
Jacob, D., Kotova, L., Teichmann, C., Sobolowski, S. P., Vautard, R., Donnelly, C., Koutroulis, A. G., Grillakis, M. G., Tsanis, I. K., Damm, A., Sakalli, A., and Van Vliet, M. T. H.:
Climate Impacts in Europe Under +1.5 ∘C Global Warming,
Earths Future,
6, 264–285, https://doi.org/10.1002/2017EF000710, 2018.
Jacobs-Crisioni, C., Diogo, V., Perpiña Castillo, C., Baranzelli, C., Batista e Silva, F., Rosina, K., Kavalov, B., and Lavalle, C.:
The LUISA Territorial Reference Scenario 2017: A technical description, JRC Technical Reports, EUR 28800 EN,
Publications Office of the European Union, Luxembourg, 46 pp., https://doi.org/10.2760/902121, 2017.
Jakubowski, W. and Radczuk, L.:
Estimation of hydrological drought characteristics NIZOWKA2003 – Software Manual,
in: Hydrological Drought – Processes and estimation methods for Streamflow and groundwater,
edited by: Tallaksen, L. M. and van Lanen, H. A. J.,
Elsevier Sciences B.V., Amsterdam, [CD-ROM], 2004.
Jenicek, M., Seibert, J., and Staudinger, M.:
Modeling of future changes in seasonal snowpack and impacts on summer low flows in Alpine catchments,
Water Resour. Res.,
54, 538–556, https://doi.org/10.1002/2017WR021648, 2018.
Keramidas, K., Kitous, A., Després, J., and Schmitz, A.:
POLES-JRC model documentation, EUR 28728 EN,
Publications Office of the European Union, Luxembourg, ISBN 978-92-79-71801-4, https://doi.org/10.2760/225347, JRC107387, 2017.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Kovats, R., Valentini, R., Bouwer, L., Georgopoulou, E., Jacob, D., Martin, E., Rounsevell, M., and Soussana, J.-F.:
Europe,
in: ClimateChange 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Barros, V. R., Field, C. B., Dokken, D. J., Mastrandrea, M. D., Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L.,
Cambridge University Press, New York, NY, USA, 1267–1326, 2014.
Lehner, B., Döll, P., Alcamo, J., Henrichs, T., and Kaspar, F.:
Estimating the impact of global change on flood and drought risks in Europe: a continental integrated analysis,
Climatic Change,
75, 273–299, https://doi.org/10.1007/s10584-006-6338-4, 2006.
Lomax, K.:
Business failures: another example of the analysis of failure data,
J. Am. Stat. Assoc.,
49, 847–852, https://doi.org/10.2307/2281544, 1987.
Marx, A., Kumar, R., Thober, S., Rakovec, O., Wanders, N., Zink, M., Wood, E. F., Pan, M., Sheffield, J., and Samaniego, L.: Climate change alters low flows in Europe under global warming of 1.5, 2, and 3 ∘C, Hydrol. Earth Syst. Sci., 22, 1017–1032, https://doi.org/10.5194/hess-22-1017-2018, 2018.
Mentaschi, L., Alfieri, L., Dottori, F., Cammalleri, C., Bisselink, B., De Roo, A., and Feyen, L.:
Independence of future changes of river runoff in Europe from the pathway to global warming,
Climate,
8, 22, https://doi.org/10.3390/cli8020022, 2020.
Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Mücher, C. A., and Watkins, J. W.:
A climatic stratification of the environment of Europe,
Global Ecol. Biogeogr.,
14, 549–563, https://doi.org/10.1111/j.1466-822X.2005.00190.x, 2005.
Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, P., Genovese, E., Green, C., Hallegatte, S., Kreibich, H., Lequeux, Q., Logar, I., Papyrakis, E., Pfurtscheller, C., Poussin, J., Przyluski, V., Thieken, A. H., and Viavattene, C.: Review article: Assessing the costs of natural hazards – state of the art and knowledge gaps, Nat. Hazards Earth Syst. Sci., 13, 1351–1373, https://doi.org/10.5194/nhess-13-1351-2013, 2013.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.:
The next generation of scenarios for climate change research and assessment,
Nature,
463, 747–756, https://doi.org/10.1038/nature08823, 2010.
Mubareka, S., Maes, J., Lavalle, C., and De Roo, A.:
Estimation of water requirements by livestock in Europe,
Ecosyst. Serv.,
4, 139–145, https://doi.org/10.1016/j.ecoser.2013.03.001, 2013.
Nerantzaki, S. D., Efstathiou, D., Giannakis, G. V., Kritsotakis, M., Grillakis, M. G., Koutroulis, A. G., Tsanis, I. K., and Nikolaidis, N. P.:
Climate change impact on the hydrological budget of a large Mediterranean island,
Hydrolog. Sci. J.,
64, 1190–1203, https://doi.org/10.1080/02626667.2019.1630741, 2019.
Roudier, P., Andersson, J. C. M., Donnelly, C., Feyen, L., Greuell, W., and Ludwig, F.:
Projections of future floods and hydrological droughts in Europe under a +2 ∘C global warming,
Climatic Change,
135, 341–355, https://doi.org/10.1007/s10584-015-1570-4, 2016.
Rudd, A. C., Kay, A. L., and Bell, V. A.:
National-scale analysis of future river flow and soil moisture droughts: Potential changes in drought characteristics,
Climatic Change,
156, 323–340, https://doi.org/10.1007/s10584-019-02528-0, 2019.
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink, M., Sheffield, J., Wood, E. F., and Marx, A.:
Anthropogenic warming exacerbates European soil moisture droughts,
Nat. Clim. Change,
8, 421–426, https://doi.org/10.1038/s41558-018-0138-5, 2018.
Schmitz, C., Lotze-Campen, H., Gerten, D., Dietrich, J. P., Bodirsky, B., Biewald, A., and Popp, A.:
Blue water scarcity and the economic impacts of future agricultural trade and demand,
Water Resour. Res.,
49, 3601-3617, https://doi.org/10.1002/wrcr.20188, 2013.
Serinaldi, F.:
Dismissing return periods!,
Stoch. Env. Res. Risk A.,
29, 1179–1189, https://doi.org/10.1007/s00477-014-0916-1, 2015.
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., and Dosio, A.:
Will drought events become more frequent and severe in Europe?,
Int. J. Climatol.,
38, 1718–1736, https://doi.org/10.1002/joc.5291, 2018.
Stagge, J. H., Kingston, D. G., Tallaksen, L. M., and Hannah, D. M.:
Observed drought indices show increasing divergence across Europe,
Sci. Rep.-UK,
7, 14045, https://doi.org/10.1038/s41598-017-14283-2, 2017.
Stagl, J. and Hattermann, F. F.:
Impacts of climate change on the hydrological regime of the Danube river and its tributaries using an ensemble of climate scenarios,
Water,
7, 6139–6172, https://doi.org/10.3390/w7116139, 2015.
Stagl, J., Mayr, E., Koch, H., Hattermann, F. F., and Huang, S.:
Effects of climate change on the hydrological cycle in Central and Eastern Europe,
in: Managing Protected Areas in Central and Eastern Europe Under Climate Change, Advances in Global Change Research 58,
edited by: Rannow, S. and Neubert, M.,
Springer, Dordrecht, 2014.
Stahl, K., Tallaksen, L. M., Hannaford, J., and van Lanen, H. A. J.: Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble, Hydrol. Earth Syst. Sci., 16, 2035–2047, https://doi.org/10.5194/hess-16-2035-2012, 2012.
Tallaksen, L. M. and Van Lanen, H. A. J.:
Drought as natural hazard: Introduction,
in: Hydrological Drought – Processes and estimation methods for streamflow and groundwater,
edited by: Tallaksen, L. M. and Van Lanen, H. A. J.,
Elsevier Sciences B.V., Amsterdam, 3-17, 2004.
Tebaldi, C., Arblaster, J. M., and Knutti, R.:
Mapping model agreement on future climate projections,
Geophys. Res. Lett.,
38, L23701, https://doi.org/10.1029/2011GL049863, 2011.
Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet, M., Heinesch, B., Bernhofer, C., Grünwald, T., Prasse, H., and Spank, U.:
Evapotranspiration amplifies European summer drought,
Geophys. Res. Lett.,
40, 2071–2075, https://doi.org/10.1002/grl.50495, 2013.
UNFCCC:
The Paris Agreement, United Nations Framework Convention on Climate Change,
available at: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (last access: 9 December 2020), 2015.
Vandecasteele, I., Bianchi, A., Batista e Silva, F., Lavalle, C., and Batelaan, O.: Mapping current and future European public water withdrawals and consumption, Hydrol. Earth Syst. Sci., 18, 407–416, https://doi.org/10.5194/hess-18-407-2014, 2014.
Van Loon, A. F. and Van Lanen, H. A. J.: A process-based typology of hydrological drought, Hydrol. Earth Syst. Sci., 16, 1915–1946, https://doi.org/10.5194/hess-16-1915-2012, 2012.
Van Loon, A. F. and Van Lanen, H. A. J.:
Making the distinction between water scarcity and drought using an observation-modeling framework,
Water Resour. Res.,
49, 1483–1502, https://doi.org/10.1002/wrcr.20147, 2013.
Van Loon, A., Gleeson, T., Clark, J., Van Dijk, A. I. J. M., Stahl, K., Hannaford, J., Di Baldassarre, G., Teuling, A. J., Tallaksen, L. M., Uijlenhoet, R., Hannah, D. M., Sheffield, J., Svoboda, M., Verdeiren, B., Wagener, T., Rangecroft, S., Wanders, N., and Van Lanen, H. A. J.:
Drought in the Anthropocene,
Nat. Geosci.,
9, 89–91, https://doi.org/10.1038/ngeo2646, 2016.
Van Tiel, M., Teuling, A. J., Wanders, N., Vis, M. J. P., Stahl, K., and Van Loon, A. F.: The role of glacier changes and threshold definition in the characterisation of future streamflow droughts in glacierised catchments, Hydrol. Earth Syst. Sci., 22, 463–485, https://doi.org/10.5194/hess-22-463-2018, 2018.
Vautard, R., Gobiet, A., Sobolowski, S., Kjellström, E., Stegehuis, A., Watkiss, P., Mendlik, T., Landgren, O., Nikulin, G., Teichmann, C., and Jacob, D.:
The European climate under a 2 ∘C global warming,
Environ. Res. Lett.,
9, 034006, https://doi.org/10.1088/1748-9326/9/3/034006, 2014.
Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend, S., Satoh, Y., van Vliet, M. T. H., Yillia, P., Ringler, C., Burek, P., and Wiberg, D.: Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches, Geosci. Model Dev., 9, 175–222, https://doi.org/10.5194/gmd-9-175-2016, 2016.
Wilhite, D. A.:
Drought as a natural hazard: concepts and definitions,
in: Droughts: Global Assessment,
edited by: Wilhite, D. A.,
Routledge, London, 3–18, 2000.
Yevjevich, V.:
An objective approach to definitions and investigations of continental hydrological droughts, Hydrology Paper 23,
Colorado State University, Fort Collins, 1967.
Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrological model, Water Resour. Res., 44, W09417, https://doi.org/10.1029/2007WR006716, 2008.
Zelenhasić, E. and Salvai, A.:
A method of streamflow drought analysis,
Water Resour. Res.,
23, 156–168, https://doi.org/10.1029/WR023i001p00156, 1987.
Short summary
Climate change is anticipated to alter the demand and supply of water at the earth's surface. This study shows how hydrological droughts will change across Europe with increasing global warming levels, showing that at 3 K global warming an additional 11 million people and 4.5 ×106 ha of agricultural land will be exposed to droughts every year, on average. These effects are mostly located in the Mediterranean and Atlantic regions of Europe.
Climate change is anticipated to alter the demand and supply of water at the earth's surface....