Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 19, issue 12
Hydrol. Earth Syst. Sci., 19, 4811–4830, 2015
https://doi.org/10.5194/hess-19-4811-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 19, 4811–4830, 2015
https://doi.org/10.5194/hess-19-4811-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 16 Dec 2015

Research article | 16 Dec 2015

Comparing the ensemble and extended Kalman filters for in situ soil moisture assimilation with contrasting conditions

D. Fairbairn, A. L. Barbu, J.-F. Mahfouf, J.-C. Calvet, and E. Gelati D. Fairbairn et al.
  • CNRM-GAME, UMR3589 – Météo-France, CNRS, Toulouse, France

Abstract. Two data assimilation (DA) methods are compared for their ability to produce an accurate soil moisture analysis using the Météo-France land surface model: (i) SEKF, a simplified extended Kalman filter, which uses a climatological background-error covariance, and (ii) EnSRF, the ensemble square root filter, which uses an ensemble background-error covariance and approximates random rainfall errors stochastically. In situ soil moisture observations at 5 cm depth are assimilated into the surface layer and 30 cm deep observations are used to evaluate the root-zone analysis on 12 sites in south-western France (SMOSMANIA network). These sites differ in terms of climate and soil texture. The two methods perform similarly and improve on the open loop. Both methods suffer from incorrect linear assumptions which are particularly degrading to the analysis during water-stressed conditions: the EnSRF by a dry bias and the SEKF by an over-sensitivity of the model Jacobian between the surface and the root-zone layers. These problems are less severe for the sites with wetter climates. A simple bias correction technique is tested on the EnSRF. Although this reduces the bias, it modifies the soil moisture fluxes and suppresses the ensemble spread, which degrades the analysis performance. However, the EnSRF flow-dependent background-error covariance evidently captures seasonal variability in the soil moisture errors and should exploit planned improvements in the model physics.

Synthetic twin experiments demonstrate that when there is only a random component in the precipitation forcing errors, the correct stochastic representation of these errors enables the EnSRF to perform better than the SEKF. It might therefore be possible for the EnSRF to perform better than the SEKF with real data, if the rainfall uncertainty was accurately captured. However, the simple rainfall error model is not advantageous in our real experiments. More realistic rainfall error models are suggested.

Publications Copernicus
Download
Short summary
The ensemble Kalman filter (EnKF) and simplified extended Kalman filter (SEKF) root-zone soil moisture analyses are compared when assimilating in situ surface observations. In the synthetic experiments, the EnKF performs best because it can stochastically capture the errors in the precipitation. The two methods perform similarly in the real experiments. During the summer period, both methods perform poorly as a result of nonlinearities in the land surface model.
The ensemble Kalman filter (EnKF) and simplified extended Kalman filter (SEKF) root-zone soil...
Citation