Articles | Volume 24, issue 9
https://doi.org/10.5194/hess-24-4413-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-4413-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
In situ measurements of soil and plant water isotopes: a review of approaches, practical considerations and a vision for the future
Institute for Geoecology, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
Groundwater Resources and Dynamics, German Federal Institute for Geosciences and Natural Resources (BGR), 30655 Hannover, Germany
Kathrin Kühnhammer
Institute for Geoecology, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
Chair of Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany
Maren Dubbert
Chair of Ecosystem Physiology, University of Freiburg, Georges-Köhler-Allee 53, 79110 Freiburg, Germany
Related authors
Daniele Penna, Luisa Hopp, Francesca Scandellari, Scott T. Allen, Paolo Benettin, Matthias Beyer, Josie Geris, Julian Klaus, John D. Marshall, Luitgard Schwendenmann, Till H. M. Volkmann, Jana von Freyberg, Anam Amin, Natalie Ceperley, Michael Engel, Jay Frentress, Yamuna Giambastiani, Jeff J. McDonnell, Giulia Zuecco, Pilar Llorens, Rolf T. W. Siegwolf, Todd E. Dawson, and James W. Kirchner
Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018, https://doi.org/10.5194/bg-15-6399-2018, 2018
Short summary
Short summary
Understanding how water flows through ecosystems is needed to provide society and policymakers with the scientific background to manage water resources sustainably. Stable isotopes of hydrogen and oxygen in water are a powerful tool for tracking water fluxes, although the heterogeneity of natural systems and practical methodological issues still limit their full application. Here, we examine the challenges in this research field and highlight new perspectives based on interdisciplinary research.
This article is included in the Encyclopedia of Geosciences
Josefina Tulimevava Hamutoko, Heike Wanke, Matthias Beyer, Marcel Gaj, and Paul Koeniger
Proc. IAHS, 378, 29–35, https://doi.org/10.5194/piahs-378-29-2018, https://doi.org/10.5194/piahs-378-29-2018, 2018
Short summary
Short summary
The key finding was that groundwater chemistry of perched aquifers is controlled by dissolution of carbonate or evaporitic minerals, silicate weathering and ion exchange and stable isotopes signify recent recharge. Spatial and temporal variations indicate that groundwater from perched aquifers are chemically different reflecting the aquifer lithologies and hydrological landscape thus groundwater management practices should always be designed taking into account these specific characteristics.
This article is included in the Encyclopedia of Geosciences
Marcel Gaj, Matthias Beyer, Paul Koeniger, Heike Wanke, Josefina Hamutoko, and Thomas Himmelsbach
Hydrol. Earth Syst. Sci., 20, 715–731, https://doi.org/10.5194/hess-20-715-2016, https://doi.org/10.5194/hess-20-715-2016, 2016
Wael Al Hamwi, Maren Dubbert, Jörg Schaller, Matthias Lück, Marten Schmidt, and Mathias Hoffmann
Biogeosciences, 21, 5639–5651, https://doi.org/10.5194/bg-21-5639-2024, https://doi.org/10.5194/bg-21-5639-2024, 2024
Short summary
Short summary
We present a fully automatic, low-cost soil–plant enclosure system to monitor CO2 and evapotranspiration fluxes within greenhouse experiments. It operates in two modes: independent, using low-cost sensors, and dependent, where multiple chambers connect to a single gas analyzer via a low-cost multiplexer. This system provides precise, accurate measurements and high temporal resolution, enabling comprehensive monitoring of plant–soil responses to various treatments and conditions.
This article is included in the Encyclopedia of Geosciences
Marco M. Lehmann, Josie Geris, Ilja van Meerveld, Daniele Penna, Youri Rothfuss, Matteo Verdone, Pertti Ala-Aho, Matyas Arvai, Alise Babre, Philippe Balandier, Fabian Bernhard, Lukrecija Butorac, Simon Damien Carrière, Natalie C. Ceperley, Zuosinan Chen, Alicia Correa, Haoyu Diao, David Dubbert, Maren Dubbert, Fabio Ercoli, Marius G. Floriancic, Teresa E. Gimeno, Damien Gounelle, Frank Hagedorn, Christophe Hissler, Frédéric Huneau, Alberto Iraheta, Tamara Jakovljević, Nerantzis Kazakis, Zoltan Kern, Karl Knaebel, Johannes Kobler, Jiří Kocum, Charlotte Koeber, Gerbrand Koren, Angelika Kübert, Dawid Kupka, Samuel Le Gall, Aleksi Lehtonen, Thomas Leydier, Philippe Malagoli, Francesca Sofia Manca di Villahermosa, Chiara Marchina, Núria Martínez-Carreras, Nicolas Martin-StPaul, Hannu Marttila, Aline Meyer Oliveira, Gaël Monvoisin, Natalie Orlowski, Kadi Palmik-Das, Aurel Persoiu, Andrei Popa, Egor Prikaziuk, Cécile Quantin, Katja T. Rinne-Garmston, Clara Rohde, Martin Sanda, Matthias Saurer, Daniel Schulz, Michael Paul Stockinger, Christine Stumpp, Jean-Stéphane Venisse, Lukas Vlcek, Stylianos Voudouris, Björn Weeser, Mark E. Wilkinson, Giulia Zuecco, and Katrin Meusburger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-409, https://doi.org/10.5194/essd-2024-409, 2024
Preprint under review for ESSD
Short summary
Short summary
This study describes a unique large-scale isotope dataset to study water dynamics in European forests. Researchers collected data from 40 beech and spruce forest sites in spring and summer 2023, using a standardized method to ensure consistency. The results show that water sources for trees change between seasons and vary by tree species. This large dataset offers valuable information for understanding plant water use, improving ecohydrological models, and mapping water cycles across Europe.
This article is included in the Encyclopedia of Geosciences
Adrian Dahlmann, John D. Marshall, David Dubbert, Mathias Hoffmann, and Maren Dubbert
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-43, https://doi.org/10.5194/amt-2024-43, 2024
Revised manuscript under review for AMT
Short summary
Short summary
Water-stable isotopes are commonly used in hydrological and ecological research. Until now, measurements were obtained either destructive or directly in the field. Here, we present a novel, affordable, and easy-to-use approach to measure the stable isotope signatures of soil water. Our gas bag approach demonstrates a high accuracy and extends the usability by allowing water vapor samples to be collected and stored in the field without the need for an instrument or a permanent power supply.
This article is included in the Encyclopedia of Geosciences
Reena Macagga, Michael Asante, Geoffroy Sossa, Danica Antonijević, Maren Dubbert, and Mathias Hoffmann
Atmos. Meas. Tech., 17, 1317–1332, https://doi.org/10.5194/amt-17-1317-2024, https://doi.org/10.5194/amt-17-1317-2024, 2024
Short summary
Short summary
Using only low-cost microcontrollers and sensors, we constructed a measurement device to accurately and precisely obtain atmospheric carbon dioxide and water fluxes. The device was tested against known concentration increases and high-cost, commercial sensors during a laboratory and field experiment. We additionally tested the device over a longer period in a field study in Ghana during which the net ecosystem carbon balance and water use efficiency of maize cultivation were studied.
This article is included in the Encyclopedia of Geosciences
Adrian Dahlmann, Mathias Hoffmann, Gernot Verch, Marten Schmidt, Michael Sommer, Jürgen Augustin, and Maren Dubbert
Hydrol. Earth Syst. Sci., 27, 3851–3873, https://doi.org/10.5194/hess-27-3851-2023, https://doi.org/10.5194/hess-27-3851-2023, 2023
Short summary
Short summary
Evapotranspiration (ET) plays a pivotal role in terrestrial water cycling, returning up to 90 % of precipitation to the atmosphere. We studied impacts of soil type and management on an agroecosystem using an automated system with modern modeling approaches. We modeled ET at high spatial and temporal resolution to highlight differences in heterogeneous soils on an hourly basis. Our results show significant differences in yield and smaller differences in ET overall, impacting water use efficiency.
This article is included in the Encyclopedia of Geosciences
Aaron Smith, Doerthe Tetzlaff, Jessica Landgraf, Maren Dubbert, and Chris Soulsby
Biogeosciences, 19, 2465–2485, https://doi.org/10.5194/bg-19-2465-2022, https://doi.org/10.5194/bg-19-2465-2022, 2022
Short summary
Short summary
This research utilizes high-spatiotemporal-resolution soil and vegetation measurements, including water stable isotopes, within an ecohydrological model to partition water flux dynamics and identify flow paths and durations. Results showed high vegetation water use and high spatiotemporal dynamics of vegetation water source and vegetation isotopes. The evaluation of these dynamics further revealed relatively fast flow paths through both shallow soil and vegetation.
This article is included in the Encyclopedia of Geosciences
Jessica Landgraf, Dörthe Tetzlaff, Maren Dubbert, David Dubbert, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, https://doi.org/10.5194/hess-26-2073-2022, 2022
Short summary
Short summary
Using water stable isotopes, we studied from which water source (lake water, stream water, groundwater, or soil water) two willows were taking their water. We monitored the environmental conditions (e.g. air temperature and soil moisture) and the behaviour of the trees (water flow in the stem). We found that the most likely water sources of the willows were the upper soil layers but that there were seasonal dynamics.
This article is included in the Encyclopedia of Geosciences
Youri Rothfuss, Maria Quade, Nicolas Brüggemann, Alexander Graf, Harry Vereecken, and Maren Dubbert
Biogeosciences, 18, 3701–3732, https://doi.org/10.5194/bg-18-3701-2021, https://doi.org/10.5194/bg-18-3701-2021, 2021
Short summary
Short summary
The partitioning of evapotranspiration into evaporation from soil and transpiration from plants is crucial for a wide range of parties, from farmers to policymakers. In this work, we focus on a particular partitioning method, based on the stable isotopic analysis of water. In particular, we aim at highlighting the challenges that this method is currently facing and, in light of recent methodological developments, propose ways forward for the isotopic-partitioning community.
This article is included in the Encyclopedia of Geosciences
Daniele Penna, Luisa Hopp, Francesca Scandellari, Scott T. Allen, Paolo Benettin, Matthias Beyer, Josie Geris, Julian Klaus, John D. Marshall, Luitgard Schwendenmann, Till H. M. Volkmann, Jana von Freyberg, Anam Amin, Natalie Ceperley, Michael Engel, Jay Frentress, Yamuna Giambastiani, Jeff J. McDonnell, Giulia Zuecco, Pilar Llorens, Rolf T. W. Siegwolf, Todd E. Dawson, and James W. Kirchner
Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018, https://doi.org/10.5194/bg-15-6399-2018, 2018
Short summary
Short summary
Understanding how water flows through ecosystems is needed to provide society and policymakers with the scientific background to manage water resources sustainably. Stable isotopes of hydrogen and oxygen in water are a powerful tool for tracking water fluxes, although the heterogeneity of natural systems and practical methodological issues still limit their full application. Here, we examine the challenges in this research field and highlight new perspectives based on interdisciplinary research.
This article is included in the Encyclopedia of Geosciences
Natalie Orlowski, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, Jens Dyckmans, Barbora Gallagher, Benjamin Gralher, Barbara Herbstritt, Pedro Hervé-Fernández, Christophe Hissler, Paul Koeniger, Arnaud Legout, Chandelle Joan Macdonald, Carlos Oyarzún, Regine Redelstein, Christof Seidler, Rolf Siegwolf, Christine Stumpp, Simon Thomsen, Markus Weiler, Christiane Werner, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, https://doi.org/10.5194/hess-22-3619-2018, 2018
Short summary
Short summary
To extract water from soils for isotopic analysis, cryogenic water extraction is the most widely used removal technique. This work presents results from a worldwide laboratory intercomparison test of cryogenic extraction systems. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to interactions between soil type and properties, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy.
This article is included in the Encyclopedia of Geosciences
Josefina Tulimevava Hamutoko, Heike Wanke, Matthias Beyer, Marcel Gaj, and Paul Koeniger
Proc. IAHS, 378, 29–35, https://doi.org/10.5194/piahs-378-29-2018, https://doi.org/10.5194/piahs-378-29-2018, 2018
Short summary
Short summary
The key finding was that groundwater chemistry of perched aquifers is controlled by dissolution of carbonate or evaporitic minerals, silicate weathering and ion exchange and stable isotopes signify recent recharge. Spatial and temporal variations indicate that groundwater from perched aquifers are chemically different reflecting the aquifer lithologies and hydrological landscape thus groundwater management practices should always be designed taking into account these specific characteristics.
This article is included in the Encyclopedia of Geosciences
Arndt Piayda, Maren Dubbert, Rolf Siegwolf, Matthias Cuntz, and Christiane Werner
Biogeosciences, 14, 2293–2306, https://doi.org/10.5194/bg-14-2293-2017, https://doi.org/10.5194/bg-14-2293-2017, 2017
Short summary
Short summary
Complex plant–soil interactions in the hydrological cycle of a Mediterranean cork oak ecosystem are investigated with stable water isotopes. Trees largely foster infiltration due to altered microclimatic conditions below crowns but compete with understorey plants for the same water source in deeper soil layers. The presence of understorey plants does not alter water losses compared to bare soil, but water utilization for carbon sequestration and nitrogen fixation is largely increased.
This article is included in the Encyclopedia of Geosciences
Marcel Gaj, Matthias Beyer, Paul Koeniger, Heike Wanke, Josefina Hamutoko, and Thomas Himmelsbach
Hydrol. Earth Syst. Sci., 20, 715–731, https://doi.org/10.5194/hess-20-715-2016, https://doi.org/10.5194/hess-20-715-2016, 2016
A. Piayda, M. Dubbert, C. Rebmann, O. Kolle, F. Costa e Silva, A. Correia, J. S. Pereira, C. Werner, and M. Cuntz
Biogeosciences, 11, 7159–7178, https://doi.org/10.5194/bg-11-7159-2014, https://doi.org/10.5194/bg-11-7159-2014, 2014
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Instruments and observation techniques
Seasonal shifts in depth-to-water uptake by young thinned and overstocked lodgepole pine (Pinus contorta) forests under drought conditions in the Okanagan Valley, British Columbia, Canada
Hydrological and pedological effects of combining Italian alder and blackberries in an agroforestry windbreak system in South Africa
Rainfall redistribution in subtropical Chinese forests changes over 22 years
The influence of hillslope topography on beech water use: a comparative study in two different climates
Real-time biological early-warning system based on freshwater mussels’ valvometry data
Root water uptake patterns are controlled by tree species interactions and soil water variability
The seasonal origins and ages of water provisioning streams and trees in a tropical montane cloud forest
Benefits of a robotic chamber system for determining evapotranspiration in an erosion-affected, heterogeneous cropland
Quantifying river water contributions to the transpiration of riparian trees along a losing river: lessons from stable isotopes and an iteration method
Dye-tracer-aided investigation of xylem water transport velocity distributions
Technical note: Lessons from and best practices for the deployment of the Soil Water Isotope Storage System
Throughfall spatial patterns translate into spatial patterns of soil moisture dynamics – empirical evidence
Routing stemflow water through the soil via preferential flow: a dual-labelling approach with artificial tracers
Improving soil aquifer treatment efficiency using air injection into the subsurface
Dynamic root growth in response to depth-varying soil moisture availability: a rhizobox study
Controls on leaf water hydrogen and oxygen isotopes: a local investigation across seasons and altitude
Resolving seasonal and diel dynamics of non-rainfall water inputs in a Mediterranean ecosystem using lysimeters
The effect of rainfall amount and timing on annual transpiration in a grazed savanna grassland
Inter- and intra-event rainfall partitioning dynamics of two typical xerophytic shrubs in the Loess Plateau of China
A comparative study of plant water extraction methods for isotopic analyses: Scholander-type pressure chamber vs. cryogenic vacuum distillation
Technical note: Conservative storage of water vapour – practical in situ sampling of stable isotopes in tree stems
Xylem water in riparian willow trees (Salix alba) reveals shallow sources of root water uptake by in situ monitoring of stable water isotopes
Technical note: High-accuracy weighing micro-lysimeter system for long-term measurements of non-rainfall water inputs to grasslands
Response of water fluxes and biomass production to climate change in permanent grassland soil ecosystems
Ecohydrological travel times derived from in situ stable water isotope measurements in trees during a semi-controlled pot experiment
Insights into the isotopic mismatch between bulk soil water and Salix matsudana Koidz trunk water from root water stable isotope measurements
The role of dew and radiation fog inputs in the local water cycling of a temperate grassland during dry spells in central Europe
Co-evolution of xylem water and soil water stable isotopic composition in a northern mixed forest biome
Vapor plumes in a tropical wet forest: spotting the invisible evaporation
Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations
Throughfall isotopic composition in relation to drop size at the intra-event scale in a Mediterranean Scots pine stand
Rainfall interception and redistribution by a common North American understory and pasture forb, Eupatorium capillifolium (Lam. dogfennel)
Coalescence of bacterial groups originating from urban runoffs and artificial infiltration systems among aquifer microbiomes
A combination of soil water extraction methods quantifies the isotopic mixing of waters held at separate tensions in soil
Using water stable isotopes to understand evaporation, moisture stress, and re-wetting in catchment forest and grassland soils of the summer drought of 2018
Partitioning growing season water balance within a forested boreal catchment using sap flux, eddy covariance, and a process-based model
Technical note: Long-term probe misalignment and proposed quality control using the heat pulse method for transpiration estimations
Contribution of understory evaporation in a tropical wet forest during the dry season
Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem
Responses of soil water storage and crop water use efficiency to changing climatic conditions: a lysimeter-based space-for-time approach
Neighbourhood and stand structure affect stemflow generation in a heterogeneous deciduous temperate forest
Technical Note: A global database of the stable isotopic ratios of meteoric and terrestrial waters
Temporally dependent effects of rainfall characteristics on inter- and intra-event branch-scale stemflow variability in two xerophytic shrubs
Dissolved organic carbon driven by rainfall events from a semi-arid catchment during concentrated rainfall season in the Loess Plateau, China
Dew frequency across the US from a network of in situ radiometers
Seasonal origins of soil water used by trees
Forest harvesting impacts on microclimate conditions and sediment transport activities in a humid periglacial environment
Hydrogeochemical controls on brook trout spawning habitats in a coastal stream
Speculations on the application of foliar 13C discrimination to reveal groundwater dependency of vegetation and provide estimates of root depth and rates of groundwater use
Evaporation from cultivated and semi-wild Sudanian Savanna in west Africa
Emory C. Ellis, Robert D. Guy, and Xiaohua A. Wei
Hydrol. Earth Syst. Sci., 28, 4667–4684, https://doi.org/10.5194/hess-28-4667-2024, https://doi.org/10.5194/hess-28-4667-2024, 2024
Short summary
Short summary
This study analyzes water-stable isotope composition by analyzing the impact of forest thinning on lodgepole pine depth-to-water uptake and water-use strategies. Lodgepole pine's primary source is spring snowmelt and shifts to rely on deeper soil water to maintain water uptake. There was no effect of decreased stand density on depth-to-water uptake. It will become more critical that we know how much water forests are using and which strategies trees use to sustain their water supply.
This article is included in the Encyclopedia of Geosciences
Svenja Hoffmeister, Rafael Bohn Reckziegel, Ben du Toit, Sibylle K. Hassler, Florian Kestel, Rebekka Maier, Jonathan P. Sheppard, and Erwin Zehe
Hydrol. Earth Syst. Sci., 28, 3963–3982, https://doi.org/10.5194/hess-28-3963-2024, https://doi.org/10.5194/hess-28-3963-2024, 2024
Short summary
Short summary
We studied a tree–crop ecosystem consisting of a blackberry field and an alder windbreak. In the water-scarce region, irrigation provides sufficient water for plant growth. The windbreak lowers the irrigation amount by reducing wind speed and therefore water transport into the atmosphere. These ecosystems could provide sustainable use of water-scarce landscapes, and we studied the complex interactions by observing several aspects (e.g. soil, nutrients, carbon assimilation, water).
This article is included in the Encyclopedia of Geosciences
Wanjun Zhang, Thomas Scholten, Steffen Seitz, Qianmei Zhang, Guowei Chu, Linhua Wang, Xin Xiong, and Juxiu Liu
Hydrol. Earth Syst. Sci., 28, 3837–3854, https://doi.org/10.5194/hess-28-3837-2024, https://doi.org/10.5194/hess-28-3837-2024, 2024
Short summary
Short summary
Rainfall input generally controls soil water and plant growth. We focus on rainfall redistribution in succession sequence forests over 22 years. Some changes in rainwater volume and chemistry in the throughfall and stemflow and drivers were investigated. Results show that shifted open rainfall over time and forest factors induced remarkable variability in throughfall and stemflow, which potentially makes forecasting future changes in water resources in the forest ecosystems more difficult.
This article is included in the Encyclopedia of Geosciences
Ginevra Fabiani, Julian Klaus, and Daniele Penna
Hydrol. Earth Syst. Sci., 28, 2683–2703, https://doi.org/10.5194/hess-28-2683-2024, https://doi.org/10.5194/hess-28-2683-2024, 2024
Short summary
Short summary
There is a limited understanding of the role that topography and climate play in tree water use. Through a cross-site comparison in Luxembourg and Italy, we investigated beech water use along slopes in different climates. Our findings indicate that in landscapes characterized by stronger hydraulic and climatic gradients there is greater spatial variation in tree physiological responses. This highlights how differing growing conditions across landscapes can lead to contrasting tree performances.
This article is included in the Encyclopedia of Geosciences
Ashkan Pilbala, Nicoletta Riccardi, Nina Benistati, Vanessa Modesto, Donatella Termini, Dario Manca, Augusto Benigni, Cristiano Corradini, Tommaso Lazzarin, Tommaso Moramarco, Luigi Fraccarollo, and Sebastiano Piccolroaz
Hydrol. Earth Syst. Sci., 28, 2297–2311, https://doi.org/10.5194/hess-28-2297-2024, https://doi.org/10.5194/hess-28-2297-2024, 2024
Short summary
Short summary
This study investigates the impact of floods on the aquatic ecosystem using freshwater mussels instrumented with sensors to monitor the opening of their valves. Signal analysis techniques were used to gain insight into their responses in terms of changes in the intensity and frequency of valve opening. The approach used in the study enables the development of real-time monitoring systems for ecological purposes and provides a pathway for practical biological early-warning systems.
This article is included in the Encyclopedia of Geosciences
Gökben Demir, Andrew J. Guswa, Janett Filipzik, Johanna Clara Metzger, Christine Römermann, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 28, 1441–1461, https://doi.org/10.5194/hess-28-1441-2024, https://doi.org/10.5194/hess-28-1441-2024, 2024
Short summary
Short summary
Experimental evidence is scarce to understand how the spatial variation in below-canopy precipitation affects root water uptake patterns. Here, we conducted field measurements to investigate drivers of root water uptake patterns while accounting for canopy induced heterogeneity in water input. We found that tree species interactions and soil moisture variability, rather than below-canopy precipitation patterns, control root water uptake patterns in a mixed unmanaged forest.
This article is included in the Encyclopedia of Geosciences
Emily I. Burt, Gregory R. Goldsmith, Roxanne M. Cruz-de Hoyos, Adan Julian Ccahuana Quispe, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 4173–4186, https://doi.org/10.5194/hess-27-4173-2023, https://doi.org/10.5194/hess-27-4173-2023, 2023
Short summary
Short summary
When it rains, water remains in the ground for variable amounts of time before it is taken up by plants or becomes streamflow. Understanding how long water stays in the ground before it is taken up by plants or becomes streamflow helps predict what will happen to the water cycle in future climates. Some studies suggest that plants take up water that has been in the ground for a long time; in contrast, we find that plants take up a significant amount of recent rain.
This article is included in the Encyclopedia of Geosciences
Adrian Dahlmann, Mathias Hoffmann, Gernot Verch, Marten Schmidt, Michael Sommer, Jürgen Augustin, and Maren Dubbert
Hydrol. Earth Syst. Sci., 27, 3851–3873, https://doi.org/10.5194/hess-27-3851-2023, https://doi.org/10.5194/hess-27-3851-2023, 2023
Short summary
Short summary
Evapotranspiration (ET) plays a pivotal role in terrestrial water cycling, returning up to 90 % of precipitation to the atmosphere. We studied impacts of soil type and management on an agroecosystem using an automated system with modern modeling approaches. We modeled ET at high spatial and temporal resolution to highlight differences in heterogeneous soils on an hourly basis. Our results show significant differences in yield and smaller differences in ET overall, impacting water use efficiency.
This article is included in the Encyclopedia of Geosciences
Yue Li, Ying Ma, Xianfang Song, Qian Zhang, and Lixin Wang
Hydrol. Earth Syst. Sci., 27, 3405–3425, https://doi.org/10.5194/hess-27-3405-2023, https://doi.org/10.5194/hess-27-3405-2023, 2023
Short summary
Short summary
We proposed an iteration method in combination with the MixSIAR model and water isotopes to quantify the river water contribution (RWC) to riparian deep-rooted trees nearby a losing river. River water can indirectly contribute by 20.3 % to water uptake of riparian trees. River recharged riparian groundwater rapidly with a short groundwater residence time (no more than 0.28 d). The RWC to riparian trees was negatively correlated with the water table depth and leaf δ13C in linear functions.
This article is included in the Encyclopedia of Geosciences
Stefan Seeger and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3393–3404, https://doi.org/10.5194/hess-27-3393-2023, https://doi.org/10.5194/hess-27-3393-2023, 2023
Short summary
Short summary
This study proposes a low-budget method to quantify the radial distribution of water transport velocities within trees at a high spatial resolution. We observed a wide spread of water transport velocities within a tree stem section, which were on average 3 times faster than the flux velocity. The distribution of transport velocities has implications for studies that use water isotopic signatures to study root water uptake and usually assume uniform or even implicitly infinite velocities.
This article is included in the Encyclopedia of Geosciences
Rachel E. Havranek, Kathryn Snell, Sebastian Kopf, Brett Davidheiser-Kroll, Valerie Morris, and Bruce Vaughn
Hydrol. Earth Syst. Sci., 27, 2951–2971, https://doi.org/10.5194/hess-27-2951-2023, https://doi.org/10.5194/hess-27-2951-2023, 2023
Short summary
Short summary
We present an automated, field-ready system that collects soil water vapor for stable isotope analysis. This system can be used to determine soil water evolution through time, which is helpful for understanding crop water use, water vapor fluxes to the atmosphere, and geologic proxy development. Our system can automatically collect soil water vapor and then store it for up to 30 d, which allows researchers to collect datasets from historically understudied, remote locations.
This article is included in the Encyclopedia of Geosciences
Christine Fischer-Bedtke, Johanna Clara Metzger, Gökben Demir, Thomas Wutzler, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 27, 2899–2918, https://doi.org/10.5194/hess-27-2899-2023, https://doi.org/10.5194/hess-27-2899-2023, 2023
Short summary
Short summary
Canopies change how rain reaches the soil: some spots receive more and others less water. It has long been debated whether this also leads to locally wetter and drier soil. We checked this using measurements of canopy drip and soil moisture. We found that the increase in soil water content after rain was aligned with canopy drip. Independently, the soil storage reaction was dampened in locations prone to drainage, like hig-macroporosity areas, suggesting that canopy drip enhances bypass flow.
This article is included in the Encyclopedia of Geosciences
Juan Pinos, Markus Flury, Jérôme Latron, and Pilar Llorens
Hydrol. Earth Syst. Sci., 27, 2865–2881, https://doi.org/10.5194/hess-27-2865-2023, https://doi.org/10.5194/hess-27-2865-2023, 2023
Short summary
Short summary
We investigated how stemflow (intercepted rainwater by the tree crown that travels down the stem) infiltrates within the soil. We simulated stemflow, applying coloured water along a tree trunk. Coloured patterns, observed when we excavated the soil after the experiment, were used to view and quantify preferential flow in the soil. We found that stemflow was mainly funnelled belowground along tree roots and macropores. Soil moisture near the trunk was affected both vertically and horizontally.
This article is included in the Encyclopedia of Geosciences
Ido Arad, Aviya Ziner, Shany Ben Moshe, Noam Weisbrod, and Alex Furman
Hydrol. Earth Syst. Sci., 27, 2509–2522, https://doi.org/10.5194/hess-27-2509-2023, https://doi.org/10.5194/hess-27-2509-2023, 2023
Short summary
Short summary
In a series of long-column experiments, subsurface air injection in soil aquifer treatment (Air-SAT) was tested as an alternative to conventional flooding–drying operation (FDO) in tertiary wastewater (WW) treatment. Our results show that Air-SAT allows for the treatment of increased WW volumes and results in similar or better effluent quality compared with FDO. These results highlight the possibility of using air injection to treat more effluent and alleviate the pressure on existing SAT sites.
This article is included in the Encyclopedia of Geosciences
Cynthia Maan, Marie-Claire ten Veldhuis, and Bas J. H. van de Wiel
Hydrol. Earth Syst. Sci., 27, 2341–2355, https://doi.org/10.5194/hess-27-2341-2023, https://doi.org/10.5194/hess-27-2341-2023, 2023
Short summary
Short summary
Their flexible growth provides the plants with a strong ability to adapt and develop resilience to droughts and climate change. But this adaptability is badly included in crop and climate models. To model plant development in changing environments, we need to include the survival strategies of plants. Based on experimental data, we set up a simple model for soil-moisture-driven root growth. The model performance suggests that soil moisture is a key parameter determining root growth.
This article is included in the Encyclopedia of Geosciences
Jinzhao Liu, Chong Jiang, Huawu Wu, Li Guo, Haiwei Zhang, and Ying Zhao
Hydrol. Earth Syst. Sci., 27, 599–612, https://doi.org/10.5194/hess-27-599-2023, https://doi.org/10.5194/hess-27-599-2023, 2023
Short summary
Short summary
What controls leaf water isotopes? We answered the question from two perspectives: respective and dual isotopes. On the one hand, the δ18O and δ2H values of leaf water responded to isotopes of potential source water (i.e., twig water, soil water, and precipitation) and meteorological parameters (i.e., temperature, RH, and precipitation) differently. On the other hand, dual δ18O and δ2H values of leaf water yielded a significant linear relationship associated with altitude and seasonality.
This article is included in the Encyclopedia of Geosciences
Sinikka Jasmin Paulus, Tarek Sebastian El-Madany, René Orth, Anke Hildebrandt, Thomas Wutzler, Arnaud Carrara, Gerardo Moreno, Oscar Perez-Priego, Olaf Kolle, Markus Reichstein, and Mirco Migliavacca
Hydrol. Earth Syst. Sci., 26, 6263–6287, https://doi.org/10.5194/hess-26-6263-2022, https://doi.org/10.5194/hess-26-6263-2022, 2022
Short summary
Short summary
In this study, we analyze small inputs of water to ecosystems such as fog, dew, and adsorption of vapor. To measure them, we use a scaling system and later test our attribution of different water fluxes to weight changes. We found that they occur frequently during 1 year in a dry summer ecosystem. In each season, a different flux seems dominant, but they all mainly occur during the night. Therefore, they could be important for the biosphere because rain is unevenly distributed over the year.
This article is included in the Encyclopedia of Geosciences
Matti Räsänen, Mika Aurela, Ville Vakkari, Johan P. Beukes, Juha-Pekka Tuovinen, Pieter G. Van Zyl, Miroslav Josipovic, Stefan J. Siebert, Tuomas Laurila, Markku Kulmala, Lauri Laakso, Janne Rinne, Ram Oren, and Gabriel Katul
Hydrol. Earth Syst. Sci., 26, 5773–5791, https://doi.org/10.5194/hess-26-5773-2022, https://doi.org/10.5194/hess-26-5773-2022, 2022
Short summary
Short summary
The productivity of semiarid grazed grasslands is linked to the variation in rainfall and transpiration. By combining carbon dioxide and water flux measurements, we show that the annual transpiration is nearly constant during wet years while grasses react quickly to dry spells and drought, which reduce transpiration. The planning of annual grazing strategies could consider the early-season rainfall frequency that was linked to the portion of annual transpiration.
This article is included in the Encyclopedia of Geosciences
Jinxia An, Guangyao Gao, Chuan Yuan, Juan Pinos, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 3885–3900, https://doi.org/10.5194/hess-26-3885-2022, https://doi.org/10.5194/hess-26-3885-2022, 2022
Short summary
Short summary
An in-depth investigation was conducted of all rainfall-partitioning components at inter- and intra-event scales for two xerophytic shrubs. Inter-event rainfall partitioning amount and percentage depended more on rainfall amount, and rainfall intensity and duration controlled intra-event rainfall-partitioning variables. One shrub has larger branch angle, small branch and smaller canopy area to produce stemflow more efficiently, and the other has larger biomass to intercept more rainfall.
This article is included in the Encyclopedia of Geosciences
Giulia Zuecco, Anam Amin, Jay Frentress, Michael Engel, Chiara Marchina, Tommaso Anfodillo, Marco Borga, Vinicio Carraro, Francesca Scandellari, Massimo Tagliavini, Damiano Zanotelli, Francesco Comiti, and Daniele Penna
Hydrol. Earth Syst. Sci., 26, 3673–3689, https://doi.org/10.5194/hess-26-3673-2022, https://doi.org/10.5194/hess-26-3673-2022, 2022
Short summary
Short summary
We analyzed the variability in the isotopic composition of plant water extracted by two different methods, i.e., cryogenic vacuum distillation (CVD) and Scholander-type pressure chamber (SPC). Our results indicated that the isotopic composition of plant water extracted by CVD and SPC was significantly different. We concluded that plant water extraction by SPC is not an alternative for CVD as SPC mostly extracts the mobile plant water whereas CVD retrieves all water stored in the sampled tissue.
This article is included in the Encyclopedia of Geosciences
Ruth-Kristina Magh, Benjamin Gralher, Barbara Herbstritt, Angelika Kübert, Hyungwoo Lim, Tomas Lundmark, and John Marshall
Hydrol. Earth Syst. Sci., 26, 3573–3587, https://doi.org/10.5194/hess-26-3573-2022, https://doi.org/10.5194/hess-26-3573-2022, 2022
Short summary
Short summary
We developed a method of sampling and storing water vapour for isotope analysis, allowing us to infer plant water uptake depth. Measurements can be made at high temporal and spatial resolution even in remote areas. We ensured that all necessary components are easily available, making this method cost efficient and simple to implement. We found our method to perform well in the lab and in the field, enabling it to become a tool for everyone aiming to resolve questions regarding the water cycle.
This article is included in the Encyclopedia of Geosciences
Jessica Landgraf, Dörthe Tetzlaff, Maren Dubbert, David Dubbert, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, https://doi.org/10.5194/hess-26-2073-2022, 2022
Short summary
Short summary
Using water stable isotopes, we studied from which water source (lake water, stream water, groundwater, or soil water) two willows were taking their water. We monitored the environmental conditions (e.g. air temperature and soil moisture) and the behaviour of the trees (water flow in the stem). We found that the most likely water sources of the willows were the upper soil layers but that there were seasonal dynamics.
This article is included in the Encyclopedia of Geosciences
Andreas Riedl, Yafei Li, Jon Eugster, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 26, 91–116, https://doi.org/10.5194/hess-26-91-2022, https://doi.org/10.5194/hess-26-91-2022, 2022
Short summary
Short summary
The aim of this study was to develop a high-accuracy micro-lysimeter system for the quantification of non-rainfall water inputs that overcomes existing drawbacks. The micro-lysimeter system had a high accuracy and allowed us to quantify and distinguish between different types of non-rainfall water inputs, like dew and fog. Non-rainfall water inputs occurred frequently in a Swiss Alpine grassland ecosystem. These water inputs can be an important water source for grasslands during dry periods.
This article is included in the Encyclopedia of Geosciences
Veronika Forstner, Jannis Groh, Matevz Vremec, Markus Herndl, Harry Vereecken, Horst H. Gerke, Steffen Birk, and Thomas Pütz
Hydrol. Earth Syst. Sci., 25, 6087–6106, https://doi.org/10.5194/hess-25-6087-2021, https://doi.org/10.5194/hess-25-6087-2021, 2021
Short summary
Short summary
Lysimeter-based manipulative and observational experiments were used to identify responses of water fluxes and aboveground biomass (AGB) to climatic change in permanent grassland. Under energy-limited conditions, elevated temperature actual evapotranspiration (ETa) increased, while seepage, dew, and AGB decreased. Elevated CO2 mitigated the effect on ETa. Under water limitation, elevated temperature resulted in reduced ETa, and AGB was negatively correlated with an increasing aridity.
This article is included in the Encyclopedia of Geosciences
David Mennekes, Michael Rinderer, Stefan Seeger, and Natalie Orlowski
Hydrol. Earth Syst. Sci., 25, 4513–4530, https://doi.org/10.5194/hess-25-4513-2021, https://doi.org/10.5194/hess-25-4513-2021, 2021
Short summary
Short summary
In situ stable water isotope measurements are a recently developed method to measure water movement from the soil through the plant to the atmosphere in high resolution and precision. Here, we present important advantages of the new method in comparison to commonly used measurement methods in an experimental setup. Overall, this method can help to answer research questions such as plant responses to climate change with potentially shifting water availability or temperatures.
This article is included in the Encyclopedia of Geosciences
Ying Zhao and Li Wang
Hydrol. Earth Syst. Sci., 25, 3975–3989, https://doi.org/10.5194/hess-25-3975-2021, https://doi.org/10.5194/hess-25-3975-2021, 2021
Short summary
Short summary
At our study site during the experimental period, trunk water was only isotopically similar to root water at 100–160 cm depths. The isotopic composition of root water deviated from that of bulk soil water but overlapped with the composition derived for less mobile water. These findings suggest that the isotopic offset between bulk soil water and trunk water was due to the isotopic mismatch between root water and bulk soil water associated with soil water heterogeneity.
This article is included in the Encyclopedia of Geosciences
Yafei Li, Franziska Aemisegger, Andreas Riedl, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 25, 2617–2648, https://doi.org/10.5194/hess-25-2617-2021, https://doi.org/10.5194/hess-25-2617-2021, 2021
Short summary
Short summary
During dry spells, dew and fog potentially play an increasingly important role in temperate grasslands. Research on the combined mechanisms of dew and fog inputs to ecosystems and distillation of water vapor from soil to plant surfaces is rare. Our results using stable water isotopes highlight the importance of dew and fog inputs to temperate grasslands during dry spells and reveal the complexity of the local water cycling in such conditions, including different pathways of dew and fog inputs.
This article is included in the Encyclopedia of Geosciences
Jenna R. Snelgrove, James M. Buttle, Matthew J. Kohn, and Dörthe Tetzlaff
Hydrol. Earth Syst. Sci., 25, 2169–2186, https://doi.org/10.5194/hess-25-2169-2021, https://doi.org/10.5194/hess-25-2169-2021, 2021
Short summary
Short summary
Co-evolution of plant and soil water isotopic composition throughout the growing season in a little-studied northern mixed forest landscape was explored. Marked inter-specific differences in the isotopic composition of xylem water relative to surrounding soil water occurred, despite thin soil cover constraining inter-species differences in rooting depths. We provide potential explanations for differences in temporal evolution of xylem water isotopic composition in this northern landscape.
This article is included in the Encyclopedia of Geosciences
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Bart Schilperoort, Adriana del Pilar González-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 25, 619–635, https://doi.org/10.5194/hess-25-619-2021, https://doi.org/10.5194/hess-25-619-2021, 2021
Short summary
Short summary
During rainfall events, evaporation from tropical forests is usually ignored. However, the water retained in the canopy during rainfall increases the evaporation despite the high-humidity conditions. In a tropical wet forest in Costa Rica, it was possible to depict vapor plumes rising from the forest canopy during rainfall. These plumes are evidence of forest evaporation. Also, we identified the conditions that allowed this phenomenon to happen using time-lapse videos and meteorological data.
This article is included in the Encyclopedia of Geosciences
Miao Zhang and Xing Yuan
Hydrol. Earth Syst. Sci., 24, 5579–5593, https://doi.org/10.5194/hess-24-5579-2020, https://doi.org/10.5194/hess-24-5579-2020, 2020
Short summary
Short summary
We identify flash drought events by considering the decline rate of soil moisture and the drought persistency, and we detect the response of ecosystem carbon and water fluxes to flash droughts based on FLUXNET observations. We find rapid declines in carbon assimilation within 16–24 d of flash drought onset, where savannas show the highest sensitivity. Water use efficiency increases for forests but decreases for herbaceous ecosystems during the recovery stage of flash droughts.
This article is included in the Encyclopedia of Geosciences
Juan Pinos, Jérôme Latron, Kazuki Nanko, Delphis F. Levia, and Pilar Llorens
Hydrol. Earth Syst. Sci., 24, 4675–4690, https://doi.org/10.5194/hess-24-4675-2020, https://doi.org/10.5194/hess-24-4675-2020, 2020
Short summary
Short summary
Water that drips or splashes from a canopy or passes through it is termed throughfall. This is the first known study to examine interrelationships between throughfall isotopic fractionation and throughfall drop size. Working in a mountainous Scots pine forest, we found that throughfall splash droplets were more prevalent at the onset of rain when vapour pressure deficits were larger. This finding has important implications for water mixing in the canopy and for theories of canopy interception.
This article is included in the Encyclopedia of Geosciences
D. Alex R. Gordon, Miriam Coenders-Gerrits, Brent A. Sellers, S. M. Moein Sadeghi, and John T. Van Stan II
Hydrol. Earth Syst. Sci., 24, 4587–4599, https://doi.org/10.5194/hess-24-4587-2020, https://doi.org/10.5194/hess-24-4587-2020, 2020
Short summary
Short summary
Where plants exist, rain must pass through canopies to reach soils. We studied how rain interacts with dogfennel – a highly problematic weed that is abundant in pastures, grasslands, rangelands, urban forests and along highways. Dogfennels evaporated large portions (approx. one-fifth) of rain and drained significant (at times > 25 %) rain (and dew) down their stems to their roots (via stemflow). This may explain how dogfennel survives and even invades managed landscapes during extended droughts.
This article is included in the Encyclopedia of Geosciences
Yannick Colin, Rayan Bouchali, Laurence Marjolet, Romain Marti, Florian Vautrin, Jérémy Voisin, Emilie Bourgeois, Veronica Rodriguez-Nava, Didier Blaha, Thierry Winiarski, Florian Mermillod-Blondin, and Benoit Cournoyer
Hydrol. Earth Syst. Sci., 24, 4257–4273, https://doi.org/10.5194/hess-24-4257-2020, https://doi.org/10.5194/hess-24-4257-2020, 2020
Short summary
Short summary
Stormwater infiltration systems (SISs) are a source of pollution that may have adverse ecological and sanitary impacts. The incidence of a SIS on the coalescence of microbial communities from runoff waters and aboveground sediments with those of an aquifer was investigated. Aquifer waters showed lower coalescence with aboveground bacterial taxa than aquifer biofilms. These biofilms were colonized by bacterial hydrocarbon degraders and harboured undesirable human-opportunistic pathogens.
This article is included in the Encyclopedia of Geosciences
William H. Bowers, Jason J. Mercer, Mark S. Pleasants, and David G. Williams
Hydrol. Earth Syst. Sci., 24, 4045–4060, https://doi.org/10.5194/hess-24-4045-2020, https://doi.org/10.5194/hess-24-4045-2020, 2020
Short summary
Short summary
Determining the chemical composition of soil water can help to address questions concerning water transport and use. However, there are many observations of incompletely mixed soil water within various soil pore domains. We applied two contrasting waters to soil samples and then removed water from the soils with three sequential and increasing applied energy steps to assess soil water mixing and equilibration over time. We found it took more than 3 d for soil water to mix and equilibrate.
This article is included in the Encyclopedia of Geosciences
Lukas Kleine, Doerthe Tetzlaff, Aaron Smith, Hailong Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 24, 3737–3752, https://doi.org/10.5194/hess-24-3737-2020, https://doi.org/10.5194/hess-24-3737-2020, 2020
Short summary
Short summary
We investigated the effects of the 2018 drought on water partitioning in a lowland catchment under grassland and forest in north-eastern Germany. Conditions resulted in drying up of streams, yield losses, and lower groundwater levels. Oak trees continued to transpire during the drought. We used stable isotopes to assess the fluxes and ages of water. Sustainable use of resource water requires such understanding of ecohydrological water partitioning.
This article is included in the Encyclopedia of Geosciences
Nataliia Kozii, Kersti Haahti, Pantana Tor-ngern, Jinshu Chi, Eliza Maher Hasselquist, Hjalmar Laudon, Samuli Launiainen, Ram Oren, Matthias Peichl, Jörgen Wallerman, and Niles J. Hasselquist
Hydrol. Earth Syst. Sci., 24, 2999–3014, https://doi.org/10.5194/hess-24-2999-2020, https://doi.org/10.5194/hess-24-2999-2020, 2020
Short summary
Short summary
The hydrologic cycle is one of the greatest natural processes on Earth and strongly influences both regional and global climate as well as ecosystem functioning. Results from this study clearly show the central role trees play in regulating the water cycle of boreal catchments, implying that forest management impacts on stand structure as well as climate change effects on tree growth are likely to have large cascading effects on the way water moves through boreal forested landscapes.
This article is included in the Encyclopedia of Geosciences
Elisabeth K. Larsen, Jose Luis Palau, Jose Antonio Valiente, Esteban Chirino, and Juan Bellot
Hydrol. Earth Syst. Sci., 24, 2755–2767, https://doi.org/10.5194/hess-24-2755-2020, https://doi.org/10.5194/hess-24-2755-2020, 2020
Short summary
Short summary
To improve long-term sap flow measurements when using the heat ratio method, this study introduces a dynamic probe misalignment correction method. This work uses sap flow data from four Aleppo pines from April 2017 to December 2018 and shows how a classical probe correction approach declines in accuracy over time. Additionally, it is proposed that a new set of statistical information be recorded along with the sap flow readings to ensure the quality of the raw data.
This article is included in the Encyclopedia of Geosciences
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Jochen Wenninger, Adriana Gonzalez-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 24, 2179–2206, https://doi.org/10.5194/hess-24-2179-2020, https://doi.org/10.5194/hess-24-2179-2020, 2020
Short summary
Short summary
Tropical forest ecosystems are able to export a lot of water to the atmosphere by means of evaporation. However, little is known on how their complex structure affects this water flux. This paper analyzes the contribution of three canopy layers in terms of water fluxes and stable water isotope signatures. During the dry season in 2018 the two lower canopy layers provide 20 % of measured evaporation, highlighting the importance of knowing how forest structure can affect the hydrological cycle.
This article is included in the Encyclopedia of Geosciences
Lyssette Elena Muñoz-Villers, Josie Geris, María Susana Alvarado-Barrientos, Friso Holwerda, and Todd Dawson
Hydrol. Earth Syst. Sci., 24, 1649–1668, https://doi.org/10.5194/hess-24-1649-2020, https://doi.org/10.5194/hess-24-1649-2020, 2020
Short summary
Short summary
Our research showed, consistently, a complementary use of soil water sources between coffee (Coffea Arabica var. typica) plants and shade tree species during the dry and wet seasons in a traditional agroforestry ecosystem in central Veracruz, Mexico. However, more variability in plant water sources was observed among species in the rainy season when higher soil moisture conditions were present and water stress was largely absent.
This article is included in the Encyclopedia of Geosciences
Jannis Groh, Jan Vanderborght, Thomas Pütz, Hans-Jörg Vogel, Ralf Gründling, Holger Rupp, Mehdi Rahmati, Michael Sommer, Harry Vereecken, and Horst H. Gerke
Hydrol. Earth Syst. Sci., 24, 1211–1225, https://doi.org/10.5194/hess-24-1211-2020, https://doi.org/10.5194/hess-24-1211-2020, 2020
Johanna C. Metzger, Jens Schumacher, Markus Lange, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 23, 4433–4452, https://doi.org/10.5194/hess-23-4433-2019, https://doi.org/10.5194/hess-23-4433-2019, 2019
Short summary
Short summary
Variation in stemflow (rain water running down the stem) enhances the formation of flow hot spots at the forest floor. Investigating drivers based on detailed measurements, we find that forest structure affects stemflow, both for individual trees and small communities. Densely packed forest patches received more stemflow, due to a higher proportion of woody structure and canopy morphology adjustments, which increase the potential for flow path generation connecting crowns and soil.
This article is included in the Encyclopedia of Geosciences
Annie L. Putman and Gabriel J. Bowen
Hydrol. Earth Syst. Sci., 23, 4389–4396, https://doi.org/10.5194/hess-23-4389-2019, https://doi.org/10.5194/hess-23-4389-2019, 2019
Short summary
Short summary
We describe an open-access, global database of stable water isotope ratios of various water types. The database facilitates data archiving, supports standardized metadata collection, and decreases the time investment for metanalyses. To promote data discovery and collaboration, the database exposes metadata and data owner contact information for private data but only permits download of public data. Two companion apps support digital data collection and processing and upload of analyzed data.
This article is included in the Encyclopedia of Geosciences
Chuan Yuan, Guangyao Gao, Bojie Fu, Daming He, Xingwu Duan, and Xiaohua Wei
Hydrol. Earth Syst. Sci., 23, 4077–4095, https://doi.org/10.5194/hess-23-4077-2019, https://doi.org/10.5194/hess-23-4077-2019, 2019
Short summary
Short summary
The stemflow dynamics of two xerophytic shrubs were investigated at the inter- and intra-event scales with high-temporal-resolution data in 54 rain events. Stemflow process was depicted by intensity, duration and time lags to rain events. Funneling ratio was calculated as the ratio of stemflow to rainfall intensities. Rainfall intensity and raindrop momentum controlled stemflow intensity and time lags. Influences of rainfall characteristics on stemflow variables showed temporal dependence.
This article is included in the Encyclopedia of Geosciences
Linhua Wang, Haw Yen, Xinhui E, Liding Chen, and Yafeng Wang
Hydrol. Earth Syst. Sci., 23, 3141–3153, https://doi.org/10.5194/hess-23-3141-2019, https://doi.org/10.5194/hess-23-3141-2019, 2019
Short summary
Short summary
A high-frequency approach was used to monitor dynamic changes of DOC exported during the concentrated rainfall season in LPR, China. DOC concentration and flux from an ecologically restored catchment in the LPR was investigated. Hysteresis analysis indicated non-linear relationships between DOC concentration and discharge rate in a rainfall event. DOC export is substantially affected by the interaction of rainfall and antecedent conditions for a rainfall event.
This article is included in the Encyclopedia of Geosciences
François Ritter, Max Berkelhammer, and Daniel Beysens
Hydrol. Earth Syst. Sci., 23, 1179–1197, https://doi.org/10.5194/hess-23-1179-2019, https://doi.org/10.5194/hess-23-1179-2019, 2019
Short summary
Short summary
There currently is no standardized approach for measuring dew formation, making it difficult to compare its frequency and importance across ecosystems. Recently, canopy surface temperature data from 30 sites in the US were measured continuously using in situ infrared radiometers. The analysis presented here provides the first continental-scale standardized synthesis of dew formation. This work provides a basis for considering how changing climate and land use will influence dew formation.
This article is included in the Encyclopedia of Geosciences
Scott T. Allen, James W. Kirchner, Sabine Braun, Rolf T. W. Siegwolf, and Gregory R. Goldsmith
Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, https://doi.org/10.5194/hess-23-1199-2019, 2019
Short summary
Short summary
We used stable isotopes of xylem water to study differences in the seasonal origin of water in more than 900 individual trees from three dominant species in 182 Swiss forested sites. We discovered that midsummer transpiration was mostly supplied by winter precipitation across diverse humid climates. Our findings provide new insights into tree vulnerability to droughts, transport of water (and thus solutes) in soils, and the climatic information conveyed by plant-tissue isotopes.
This article is included in the Encyclopedia of Geosciences
Fumitoshi Imaizumi, Ryoko Nishii, Kenichi Ueno, and Kousei Kurobe
Hydrol. Earth Syst. Sci., 23, 155–170, https://doi.org/10.5194/hess-23-155-2019, https://doi.org/10.5194/hess-23-155-2019, 2019
Short summary
Short summary
We investigated seasonal changes in sediment transport activities following forest harvesting in a humid periglacial area. Removal of the forest canopy by forest harvesting alters the type of winter soil creep. Winter creep velocity of the ground surface sediment in the harvested site was significantly higher than that in the non-harvested site. Meanwhile, sediment flux on the hillslopes decreased in the harvested site because of capture of sediment by branches of harvested trees.
This article is included in the Encyclopedia of Geosciences
Martin A. Briggs, Judson W. Harvey, Stephen T. Hurley, Donald O. Rosenberry, Timothy McCobb, Dale Werkema, and John W. Lane Jr.
Hydrol. Earth Syst. Sci., 22, 6383–6398, https://doi.org/10.5194/hess-22-6383-2018, https://doi.org/10.5194/hess-22-6383-2018, 2018
Short summary
Short summary
Brook trout are known to seek out groundwater-discharge zones for spawning. However, in a groundwater-dominated system, we observed trout using a few locations for repeatedly laying eggs. To improve the management of this cold-water species, we wanted to know why these specific groundwater-discharge zones were desirable. Through a combination of geophysical and chemical measurements, we found that locations where the stream intersects the sandy valley wall create oxygen-rich seepage zones.
This article is included in the Encyclopedia of Geosciences
Rizwana Rumman, James Cleverly, Rachael H. Nolan, Tonantzin Tarin, and Derek Eamus
Hydrol. Earth Syst. Sci., 22, 4875–4889, https://doi.org/10.5194/hess-22-4875-2018, https://doi.org/10.5194/hess-22-4875-2018, 2018
Short summary
Short summary
Groundwater is a significant water resource for humans and for groundwater-dependent vegetation. Several challenges to managing both groundwater resources and dependent vegetation include defining the location of dependent vegetation, the rate of groundwater use, and the depth of roots accessing groundwater. In this study we demonstrate a novel application of measurements of stable isotopes of carbon that can be used to identify the location, the rooting depth, and the rate of groundwater use.
This article is included in the Encyclopedia of Geosciences
Natalie C. Ceperley, Theophile Mande, Nick van de Giesen, Scott Tyler, Hamma Yacouba, and Marc B. Parlange
Hydrol. Earth Syst. Sci., 21, 4149–4167, https://doi.org/10.5194/hess-21-4149-2017, https://doi.org/10.5194/hess-21-4149-2017, 2017
Short summary
Short summary
We relate land cover (savanna forest and agriculture) to evaporation in Burkina Faso, west Africa. We observe more evaporation and temperature movement over the savanna forest in the headwater area relative to the agricultural section of the watershed. We find that the fraction of available energy converted to evaporation relates to vegetation cover and soil moisture. From the results, evaporation can be calculated where ground-based measurements are lacking, frequently the case across Africa.
This article is included in the Encyclopedia of Geosciences
Cited articles
Aleinov, I. and Schmidt, G. A.:
Water isotopes in the GISS ModelE land surface scheme,
Global Planet. Change,
51, 108–120, https://doi.org/10.1016/j.gloplacha.2005.12.010, 2006.
Allison, G. B., Colin-Kaczala, C., Filly, A., and Fontes, J. C.:
Measurement of isotopic equilibrium between water, water vapour and soil CO2 in arid zone soils,
J. Hydrol.,
95, 131–141, https://doi.org/10.1016/0022-1694(87)90120-X, 1987.
Asadollahi, M., Stumpp, C., Rinaldo, A., and Benettin, P.:
Transport and Water Age Dynamics in Soils: A Comparative Study of Spatially Integrated and Spatially Explicit Models,
Water Resour. Res.,
56, e2019WR025539, https://doi.org/10.1029/2019WR025539, 2020.
Barbeta, A., Jones, S. P., Clavé, L., Wingate, L., Gimeno, T. E., Fréjaville, B., Wohl, S., and Ogée, J.: Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest, Hydrol. Earth Syst. Sci., 23, 2129–2146, https://doi.org/10.5194/hess-23-2129-2019, 2019.
Barbeta, A., Gimeno, T. E., Clavé, L., Fréjaville, B., Jones, S. P., Delvigne, C., Wingate, L., and Ogée, J.:
An explanation for the isotopic offset between soil and stem water in a temperate tree species,
New Phytol., 227, 766–779, https://doi.org/10.1111/nph.16564, 2020.
Berry, Z. C., Evaristo, J., Moore, G., Poca, M., Steppe, K., Verrot, L., Asbjornsen, H., Borma, L. S., Bretfeld, M., Hervé-Fernández, P., Seyfried, M., Schwendenmann, L., Sinacore, K., De Wispelaere, L., and McDonnell, J.:
The two water worlds hypothesis: Addressing multiple working hypotheses and proposing a way forward,
Ecohydrology,
11, e1843, https://doi.org/10.1002/eco.1843, 2018.
Beyer, M., Kühnhammer, K., Dubbert, M., Gerchow, M., Saavedra, N., Cuntz, M., and Marshall, J. D.:
A novel combined method for high-resolution measurements of water stable isotopes in trees and soils,
in: International Symposium on Isotope Hydrology: Advancing the Understanding of Water Cycle Processes, IAEA, Vienna, Austria, Vienna, Austria, 2019.
Birkel, C. and Soulsby, C.:
Advancing tracer-aided rainfall-runoff modelling: a review of progress, problems and unrealised potential,
Hydrol. Process.,
29, 5227–5240, https://doi.org/10.1002/hyp.10594, 2015.
Birkel, C., Soulsby, C., and Tetzlaff, D.:
Developing a consistent process-based conceptualization of catchment functioning using measurements of internal state variables,
Water Resour. Res.,
50, 3481–3501, https://doi.org/10.1002/2013WR014925, 2014.
Bowling, D. R., Schulze, E. S., and Hall, S. J.:
Revisiting streamside trees that do not use stream water: can the two water worlds hypothesis and snowpack isotopic effects explain a missing water source?,
Ecohydrology,
10, e1771, https://doi.org/10.1002/eco.1771, 2017.
Brand, W. A., Geilmann, H., Crosson, E. R., and Rella, C. W.:
Cavity ring-down spectroscopy versus high-temperature conversion isotope ratio mass spectrometry; a case study on δ2H and δ18O of pure water samples and alcohol/water mixtures,
Rapid Commun. Mass Sp.,
23, 1879–1884, https://doi.org/10.1002/rcm.4083, 2009.
Brantley, S. L., Eissenstat, D. M., Marshall, J. A., Godsey, S. E., Balogh-Brunstad, Z., Karwan, D. L., Papuga, S. A., Roering, J., Dawson, T. E., Evaristo, J., Chadwick, O., McDonnell, J. J., and Weathers, K. C.: Reviews and syntheses: on the roles trees play in building and plumbing the critical zone, Biogeosciences, 14, 5115–5142, https://doi.org/10.5194/bg-14-5115-2017, 2017.
Braud, I., Bariac, T., Gaudet, J. P., and Vauclin, M.:
SiSPAT-Isotope, a coupled heat, water and stable isotope (HDO and ) transport model for bare soil. Part I. Model description and first verifications,
J. Hydrol.,
309, 277–300, https://doi.org/10.1016/j.jhydrol.2004.12.013, 2005a.
Braud, I., Bariac, T., Vauclin, M., Boujamlaoui, Z., Gaudet, J. P., Biron, P., and Richard, P.:
SiSPAT-Isotope, a coupled heat, water and stable isotope (HDO and H218O) transport model for bare soil. Part II. Evaluation and sensitivity tests using two laboratory data sets,
J. Hydrol.,
309, 301–320, https://doi.org/10.1016/j.jhydrol.2004.12.013, 2005b.
Braud, I., Biron, P., Bariac, T., Richard, P., Canale, L., Gaudet, J. P., and Vauclin, M.:
Isotopic composition of bare soil evaporated water vapor. Part I: RUBIC IV experimental setup and results,
J. Hydrol.,
369, 1–16, https://doi.org/10.1016/J.JHYDROL.2009.01.034, 2009a.
Braud, I., Bariac, T., Biron, P., and Vauclin, M.:
Isotopic composition of bare soil evaporated water vapor. Part II: Modeling of RUBIC IV experimental results,
J. Hydrol.,
369, 17–29, https://doi.org/10.1016/j.jhydrol.2009.01.038, 2009b.
Brinkmann, N., Seeger, S., Weiler, M., Buchmann, N., Eugster, W., and Kahmen, A.:
Employing stable isotopes to determine the residence times of soil water and the temporal origin of water taken up by Fagus sylvatica and Picea abies in a temperate forest,
New Phytol.,
219, 1300–1313, https://doi.org/10.1111/nph.15255, 2018.
Brooks, J. R., Barnard, H. R., Coulombe, R., and McDonnell, J. J.: Ecohydrologic separation of water between trees and streams in a Mediterranean climate, Nat. Geosci., 3, 100–104, https://doi.org/10.1038/ngeo722, 2010.
Brunel, J. P., Walker, G. R., Dighton, J. C., and Monteny, B.:
Use of stable isotopes of water to determine the origin of water used by the vegetation and to partition evapotranspiration. A case study from HAPEX-Sahel,
J. Hydrol.,
188–189, 466–481, https://doi.org/10.1016/S0022-1694(96)03188-5, 1997.
Burgess, S. S. O., Adams, M. A., Turner, N. C., and Ong, C. K.:
The redistribution of soil water by tree root systems,
Oecologia,
115, 306–311, https://doi.org/10.1007/s004420050521, 1998.
Cernusak, L. A., Barbour, M. M., Arndt, S. K., Cheesman, A. W., English, N. B., Feild, T. S., Helliker, B. R., Holloway-Phillips, M. M., Holtum, J. A. M., Kahmen, A., McInerney, F. A., Munksgaard, N. C., Simonin, K. A., Song, X., Stuart-Williams, H., West, J. B., and Farquhar, G. D.:
Stable isotopes in leaf water of terrestrial plants,
Plant. Cell Environ.,
39, 1087–1102, https://doi.org/10.1111/pce.12703, 2016.
Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D. J., Hooper, R. P., Kumar, M., Leung, L. R., Mackay, D. S., Maxwell, R. M., Shen, C., Swenson, S. C., and Zeng, X.:
Improving the representation of hydrologic processes in Earth System Models,
Water Resour. Res.,
51, 5929–5956, https://doi.org/10.1002/2015WR017096, 2015.
Craig, H. and Gordon, L. I.: Deuterium and oxygen 18 variations in the ocean and marine atmosphere, in: Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoleto, Italy, available at: https://www.semanticscholar.org/paper/Deuterium-and-oxygen-18-variations-in-the-ocean-and-Craig-Gordon/b803d3615c35b9c25d19fe88afd354f08368c085
(last access: 22 November 2019), 1965.
Crow, W. T., Ryu, D., and Famiglietti, J. S.:
Upscaling of field-scale soil moisture measurements using distributed land surface modeling,
Adv. Water Resour.,
28, 1–14, https://doi.org/10.1016/J.ADVWATRES.2004.10.004, 2005.
Dongmann, G., Nürnberg, H. W., Förstel, H., and Wagener, K.:
On the enrichment of H218O in the leaves of transpiring plants,
Radiat. Environ. Bioph.,
11, 41–52, https://doi.org/10.1007/BF01323099, 1974.
Dubbert, M., Cuntz, M., Piayda, A., Maguás, C., and Werner, C.:
Partitioning evapotranspiration – Testing the Craig and Gordon model with field measurements of oxygen isotope ratios of evaporative fluxes,
J. Hydrol.,
496, 142–153, https://doi.org/10.1016/j.jhydrol.2013.05.033, 2013.
Dubbert, M., Cuntz, M., Piayda, A., and Werner, C.:
Oxygen isotope signatures of transpired water vapor: the role of isotopic non-steady-state transpiration under natural conditions.,
New Phytol.,
203, 1242–52, https://doi.org/10.1111/nph.12878, 2014a.
Dubbert, M., Piayda, A., Cuntz, M., Correia, A. C., Costa E Silva, F., Pereira, J. S., and Werner, C.:
Stable oxygen isotope and flux partitioning demonstrates understory of an oak savanna contributes up to half of ecosystem carbon and water exchange,
Front. Plant Sci.,
5, 530, https://doi.org/10.3389/fpls.2014.00530, 2014b.
Dubbert, M., Kübert, A., and Werner, C.:
Impact of Leaf Traits on Temporal Dynamics of Transpired Oxygen Isotope Signatures and Its Impact on Atmospheric Vapor,
Front. Plant Sci.,
8, 5, https://doi.org/10.3389/fpls.2017.00005, 2017.
Dubbert, M., Caldeira, M. C., Dubbert, D., and Werner, C.:
A pool-weighted perspective on the two-water-worlds hypothesis,
New Phytol.,
222, 1271–1283, https://doi.org/10.1111/nph.15670, 2019.
Gaj, M. and McDonnell, J. J.:
Possible soil tension controls on the isotopic equilibrium fractionation factor for evaporation from soil,
Hydrol. Process.,
33, 1629–1634, https://doi.org/10.1002/hyp.13418, 2019.
Gaj, M., Beyer, M., Koeniger, P., Wanke, H., Hamutoko, J., and Himmelsbach, T.: In situ unsaturated zone water stable isotope (2H and 18O) measurements in semi-arid environments: a soil water balance, Hydrol. Earth Syst. Sci., 20, 715–731, https://doi.org/10.5194/hess-20-715-2016, 2016.
Gaj, M., Kaufhold, S., Koeniger, P., Beyer, M., Weiler, M., and Himmelsbach, T.:
Mineral mediated isotope fractionation of soil water,
Rapid Commun. Mass Sp.,
31, 269–280, https://doi.org/10.1002/rcm.7787, 2017.
Gaj, M., Lamparter, A., Woche, S. K., Bachmann, J., McDonnell, J. J., and Stange, C. F.:
The Role of Matric Potential, Solid Interfacial Chemistry, and Wettability on Isotopic Equilibrium Fractionation,
Vadose Zone J.,
18, 1–11, https://doi.org/10.2136/vzj2018.04.0083, 2019.
Gangi, L., Rothfuss, Y., Ogée, J., Wingate, L., Vereecken, H., and Brüggemann, N.:
A New Method for In Situ Measurements of Oxygen Isotopologues of Soil Water and Carbon Dioxide with High Time Resolution,
Vadose Zone J.,
14, 1–14, https://doi.org/10.2136/vzj2014.11.0169, 2015.
Goldsmith, G. R., Muñoz-Villers, L. E., Holwerda, F., McDonnell, J. J., Asbjornsen, H., and Dawson, T. E.: Stable isotopes reveal linkages among ecohydrological processes in a seasonally dry tropical montane cloud forest, Ecohydrology, 5, 779–790, https://doi.org/10.1002/eco.268, 2012.
Gralher, B., Herbstritt, B., Weiler, M., Wassenaar, L. I., and Stumpp, C.: Correcting Laser-Based Water Stable Isotope Readings Biased by Carrier Gas Changes, Environ. Sci. Technol., 50, 7074–7081, https://doi.org/10.1021/acs.est.6b01124, 2016.
Gralher, B., Herbstritt, B., Weiler, M., Wassenaar, L. I., and Stumpp, C.: Correcting for Biogenic Gas Matrix Effects on Laser-Based Pore Water-Vapor Stable Isotope Measurements, Vadose Zone J., 17, 1–10, https://doi.org/10.2136/vzj2017.08.0157, 2018.
Griffis, T. J., Sargent, S. D., Lee, X., Baker, J. M., Greene, J., Erickson, M., Zhang, X., Billmark, K., Schultz, N., Xiao, W., and Hu, N.:
Determining the Oxygen Isotope Composition of Evapotranspiration Using Eddy Covariance,
Bound.-Lay. Meteorol.,
137, 307–326, https://doi.org/10.1007/s10546-010-9529-5, 2010.
Haese, B., Werner, M., and Lohmann, G.: Stable water isotopes in the coupled atmosphere–land surface model ECHAM5-JSBACH, Geosci. Model Dev., 6, 1463–1480, https://doi.org/10.5194/gmd-6-1463-2013, 2013.
Harwood, K. G., Gillon, J. S., Griffiths, H., and Broadmeadow, M. S. J.:
Diurnal variation of Δ13CO2, ΔC18O16O and evaporative site enrichment of δH218O in Piper aduncum under field conditions in Trinidad,
Plant Cell Environ.,
21, 269–283, https://doi.org/10.1046/j.1365-3040.1998.00276.x, 1998.
Haverd, V. and Cuntz, M.:
Soil–Litter–Iso: A one-dimensional model for coupled transport of heat, water and stable isotopes in soil with a litter layer and root extraction,
J. Hydrol.,
388, 438–455, https://doi.org/10.1016/j.jhydrol.2010.05.029, 2010.
Haverd, V., Cuntz, M., Griffith, D., Keitel, C., Tadros, C., and Twining, J.:
Measured deuterium in water vapour concentration does not improve the constraint on the partitioning of evapotranspiration in a tall forest canopy, as estimated using a soil vegetation atmosphere transfer model,
Agr. Forest Meteorol.,
151, 645–654, https://doi.org/10.1016/J.AGRFORMET.2011.02.005, 2011.
Hendry, M. J., Richman, B., and Wassenaar, L. I.:
Correcting for Methane Interferences on δ2H and δ18O Measurements in Pore Water Using H2O(liquid)–H2O(vapor) Equilibration Laser Spectroscopy,
Anal. Chem.,
83, 5789–5796, https://doi.org/10.1021/ac201341p, 2011.
Hendry, M. J., Schmeling, E., Wassenaar, L. I., Barbour, S. L., and Pratt, D.: Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapour equilibration laser spectrometry method, Hydrol. Earth Syst. Sci., 19, 4427–4440, https://doi.org/10.5194/hess-19-4427-2015, 2015.
Herbstritt, B., Gralher, B., and Weiler, M.:
Continuous in situ measurements of stable isotopes in liquid water,
Water Resour. Res.,
48, W03601, https://doi.org/10.1029/2011WR011369, 2012.
Horita, J. and Wesolowski, D. J.:
Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature,
Geochim. Cosmochim. Ac.,
58, 3425–3437, https://doi.org/10.1016/0016-7037(94)90096-5, 1994.
Horita, J., Rozanski, K., and Cohen, S.:
Isotope effects in the evaporation of water: a status report of the Craig-Gordon model,
Isot. Environ. Healt S.,
44, 23–49, https://doi.org/10.1080/10256010801887174, 2008.
Izbicki, J., Radyk, J., and Michel, R. L.: Water movement through a thick unsaturated zone underlying an intermittent stream in the western Mojave Desert, southern California, USA,
J. Hydrol.,
238, 194–217, https://doi.org/10.1016/S0022-1694(00)00331-0, 2000.
Keeling, C. D.:
The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas,
Geochim. Cosmochim. Ac.,
13, 322–334, https://doi.org/10.1016/0016-7037(58)90033-4, 1958.
Knighton, J., Saia, S. M., Morris, C. K., Archiblad, J. A., and Walter, M. T.:
Ecohydrologic considerations for modeling of stable water isotopes in a small intermittent watershed,
Hydrol. Process.,
31, 2438–2452, https://doi.org/10.1002/hyp.11194, 2017.
Knighton, J., Kuppel, S., Smith, A., Soulsby, C., Sprenger, M., and Tetzlaff, D.:
Using isotopes to incorporate tree water storage and mixing dynamics into a distributed ecohydrologic modelling framework,
Ecohydrology,
31, 2438–2452, https://doi.org/10.1002/eco.2201, 2020.
Koehler, G. and Wassenaar, L. I.:
Realtime Stable Isotope Monitoring of Natural Waters by Parallel-Flow Laser Spectroscopy,
Anal. Chem.,
83, 913–919, https://doi.org/10.1021/ac102584q, 2011.
Koeniger, P., Marshall, J. D., Link, T., and Mulch, A.:
An inexpensive, fast, and reliable method for vacuum extraction of soil and plant water for stable isotope analyses by mass spectrometry.,
Rapid Commun. Mass Sp.,
25, 3041–8, https://doi.org/10.1002/rcm.5198, 2011.
Kübert, A., Paulus, S., Dahlmann, A., Werner, C., Rothfuss, Y., Orlowski, N., and Dubbert, M.:
Water Stable Isotopes in Ecohydrological Field Research: Comparison Between In Situ and Destructive Monitoring Methods to Determine Soil Water Isotopic Signatures,
Front. Plant Sci.,
11, 387, https://doi.org/10.3389/fpls.2020.00387, 2020.
Kühnhammer, K., Kübert, A., Brüggemann, N., Deseano Diaz, P., Dusschoten, D., Javaux, M., Merz, S., Vereecken, H., Dubbert, M., and Rothfuss, Y.: Investigating the root plasticity response of Centaurea jacea to soil water availability changes from isotopic analysis, New Phytol., 226, 98–110, https://doi.org/10.1111/nph.16352, 2020.
Lin, Z., Kim-Hak, D., Popp, B., Wallsgrove, N., Kagawa-Viviani, A., and Johnson, J.:
Development and evaluation of a spectral analysis method to eliminate organic interference with cavity ring-down measurements of water isotope ratios,
EGU, Santa Clara, California, 2019.
Majoube, M.:
Fractionnement en oxygène 18 et en deutérium entre l'eau et sa vapeur,
J. Chim. Phys.,
68, 1423–1436, https://doi.org/10.1051/jcp/1971681423, 1971.
Marshall, J. D., Cuntz, M., Beyer, M., Dubbert, M., and Kuehnhammer, K.:
Borehole Equilibration: Testing a New Method to Monitor the Isotopic Composition of Tree Xylem Water in situ,
Front. Plant Sci.,
11, 358, https://doi.org/10.3389/fpls.2020.00358, 2020.
Martín-Gómez, P., Barbeta, A., Voltas, J., Peñuelas, J., Dennis, K., Palacio, S., Dawson, T. E., and Ferrio, J. P.:
Isotope-ratio infrared spectroscopy: a reliable tool for the investigation of plant-water sources?,
New Phytol., 207, 914–927, https://doi.org/10.1111/nph.13376, 2015.
Martín-Gómez, P., Serrano, L., and Ferrio, J. P.: Short-term dynamics of evaporative enrichment of xylem water in woody stems: implications for ecohydrology, edited by: L. Cernusak, Tree Physiol., 37, 511–522, https://doi.org/10.1093/treephys/tpw115, 2016.
McDonnell, J. J.:
The two water worlds hypothesis: ecohydrological separation of water between streams and trees?,
Wiley Interdiscip. Rev. Water,
1, 323–329, https://doi.org/10.1002/wat2.1027, 2014.
McDonnell, J. J. and Beven, K.:
Debates-The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph,
Water Resour. Res.,
50, 5342–5350, https://doi.org/10.1002/2013WR015141, 2014.
Meunier, F., Rothfuss, Y., Bariac, T., Biron, P., Richard, P., Durand, J.-L., Couvreur, V., Vanderborght, J., and Javaux, M.:
Measuring and Modeling Hydraulic Lift of Lolium multiflorum Using Stable Water Isotopes,
Vadose Zone J.,
17, 160134, https://doi.org/10.2136/vzj2016.12.0134, 2017.
Millar, C., Pratt, D., Schneider, D. J., and McDonnell, J. J.:
A comparison of extraction systems for plant water stable isotope analysis,
Rapid Commun. Mass Sp.,
32, 1031–1044, https://doi.org/10.1002/rcm.8136, 2018.
Munksgaard, N. C., Wurster, C. M., and Bird, M. I.:
Continuous analysis of δ18O and δD values of water by diffusion sampling cavity ring-down spectrometry: a novel sampling device for unattended field monitoring of precipitation, ground and surface waters,
Rapid Commun. Mass Sp.,
25, 3706–3712, https://doi.org/10.1002/rcm.5282, 2011.
Newberry, S. L., Nelson, D. B., and Kahmen, A.:
Cryogenic vacuum artifacts do not affect plant water-uptake studies using stable isotope analysis,
Ecohydrology,
10, e1892, https://doi.org/10.1002/eco.1892, 2017a.
Newberry, S. L., Prechsl, U. E., Pace, M., and Kahmen, A.:
Tightly bound soil water introduces isotopic memory effects on mobile and extractable soil water pools,
Isot. Environ. Healt S.,
53, 368–381, https://doi.org/10.1080/10256016.2017.1302446, 2017b.
Oerter, E. J. and Bowen, G.:
In situ monitoring of H and O stable isotopes in soil water reveals ecohydrologic dynamics in managed soil systems,
Ecohydrology,
10, e1841, https://doi.org/10.1002/eco.1841, 2017.
Oerter, E. J. and Bowen, G. J.:
Spatio-temporal heterogeneity in soil water stable isotopic composition and its ecohydrologic implications in semiarid ecosystems,
Hydrol. Process.,
33, 1724–1738, https://doi.org/10.1002/hyp.13434, 2019.
Oerter, E., Finstad, K., Schaefer, J., Goldsmith, G. R., Dawson, T., and Amundson, R.:
Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals,
J. Hydrol.,
515, 1–9, https://doi.org/10.1016/J.JHYDROL.2014.04.029, 2014.
Oerter, E. J., Perelet, A., Pardyjak, E., and Bowen, G.:
Membrane inlet laser spectroscopy to measure H and O stable isotope compositions of soil and sediment pore water with high sample throughput,
Rapid Commun. Mass Sp.,
31, 75–84, https://doi.org/10.1002/rcm.7768, 2017.
Oerter, E. J., Siebert, G., Bowling, D. R., and Bowen, G.:
Soil water vapour isotopes identify missing water source for streamside trees,
Ecohydrology,
12, e2083, https://doi.org/10.1002/eco.2083, 2019.
Ogée, J., Brunet, D., Loustou, P., Berbigier, P., and Delzon, S.:
MuSICA, a CO2, water and energy multilayer, multileaf pine forest model: evaluation from hourly to yearly time scales and sensitivity analysis,
Glob. Change Biol.,
9, 697–717, https://doi.org/10.1046/j.1365-2486.2003.00628.x, 2003.
Or, D., Lehmann, P., Shahraeeni, E., and Shokri, N.:
Advances in Soil Evaporation Physics – A Review,
Vadose Zone J.,
12, vzj2012.0163, https://doi.org/10.2136/vzj2012.0163, 2013.
Orlowski, N., Frede, H.-G., Brüggemann, N., and Breuer, L.: Validation and application of a cryogenic vacuum extraction system for soil and plant water extraction for isotope analysis, J. Sens. Sens. Syst., 2, 179–193, https://doi.org/10.5194/jsss-2-179-2013, 2013.
Orlowski, N., Breuer, L., and McDonnell, J. J.:
Critical issues with cryogenic extraction of soil water for stable isotope analysis,
Ecohydrology,
9, 1–5, https://doi.org/10.1002/eco.1722, 2016a.
Orlowski, N., Pratt, D. L., and McDonnell, J. J.:
Intercomparison of soil pore water extraction methods for stable isotope analysis,
Hydrol. Process.,
30, 3434–3449, https://doi.org/10.1002/hyp.10870, 2016b.
Orlowski, N., Winkler, A., McDonnell, J. J., and Breuer, L.:
A simple greenhouse experiment to explore the effect of cryogenic water extraction for tracing plant source water,
Ecohydrology,
11, e1967, https://doi.org/10.1002/eco.1967, 2018a.
Orlowski, N., Breuer, L., Angeli, N., Boeckx, P., Brumbt, C., Cook, C. S., Dubbert, M., Dyckmans, J., Gallagher, B., Gralher, B., Herbstritt, B., Hervé-Fernández, P., Hissler, C., Koeniger, P., Legout, A., Macdonald, C. J., Oyarzún, C., Redelstein, R., Seidler, C., Siegwolf, R., Stumpp, C., Thomsen, S., Weiler, M., Werner, C., and McDonnell, J. J.: Inter-laboratory comparison of cryogenic water extraction systems for stable isotope analysis of soil water, Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, 2018b.
Orlowski, N., Seeger, S., Mennekes, D., de Boer, H., Weiler, M., and Rinderer, M.:
Monitoring tree species-specific water uptake strategies via continuous in-situ stable water isotope
measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16786,
https://doi.org/10.5194/egusphere-egu2020-16786, 2020.
Penna, D., Hopp, L., Scandellari, F., Allen, S. T., Benettin, P., Beyer, M., Geris, J., Klaus, J., Marshall, J. D., Schwendenmann, L., Volkmann, T. H. M., von Freyberg, J., Amin, A., Ceperley, N., Engel, M., Frentress, J., Giambastiani, Y., McDonnell, J. J., Zuecco, G., Llorens, P., Siegwolf, R. T. W., Dawson, T. E., and Kirchner, J. W.: Ideas and perspectives: Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes – challenges and opportunities from an interdisciplinary perspective, Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018, 2018.
Piayda, A., Dubbert, M., Siegwolf, R., Cuntz, M., and Werner, C.: Quantification of dynamic soil–vegetation feedbacks following an isotopically labelled precipitation pulse, Biogeosciences, 14, 2293–2306, https://doi.org/10.5194/bg-14-2293-2017, 2017.
Picarro, I.:
Picarro A0101 Standard Delivery Module: Operation, Maintenance, and Troubleshooting User's Manual,
Picarro, Santa Clara, California, 2015.
Pratt, D. L., Lu, M., Lee Barbour, S., and Jim Hendry, M.:
An evaluation of materials and methods for vapour measurement of the isotopic composition of pore water in deep, unsaturated zones,
Isot. Environ. Healt S.,
52, 529–543, https://doi.org/10.1080/10256016.2016.1151423, 2016.
Quade, M., Brüggemann, N., Graf, A., Vanderborght, J., Vereecken, H., and Rothfuss, Y.:
Investigation of Kinetic Isotopic Fractionation of Water During Bare Soil Evaporation,
Water Resour. Res.,
54, 6909–6928, https://doi.org/10.1029/2018WR023159, 2018.
Quade, M., Klosterhalfen, A., Graf, A., Brüggemann, N., Hermes, N., Vereecken, H., and Rothfuss, Y.:
In-situ monitoring of soil water isotopic composition for partitioning of evapotranspiration during one growing season of sugar beet (Beta vulgaris),
Agr. Forest Meteorol.,
266–267, 53–64, https://doi.org/10.1016/J.AGRFORMET.2018.12.002, 2019.
Rinaldo, A., Benettin, P., Harman, C. J., Hrachowitz, M., McGuire, K. J., van der Velde, Y., Bertuzzo, E., and Botter, G.:
Storage selection functions: A coherent framework for quantifying how catchments store and release water and solutes,
Water Resour. Res.,
51, 4840–4847, https://doi.org/10.1002/2015WR017273, 2015.
Risi, C., Ogée, J., Bony, S., Bariac, T., Raz Yaseef, N., Wingate, L., Welker, J., Knohl, A., Besson, C. K., Leclerc, M., Zhang, G., Buchmann, N., Santrucek, J., Hronkova, M., David, T., Peylin, P., and Guglielmo, F.:
The Water Isotopic Version of the Land-Surface Model ORCHIDEE: Implementation, Evaluation, Sensitivity to Hydrological Parameters,
Hydrol. Curr. Res.,
7, 258, https://doi.org/10.4172/2157-7587.1000258, 2016.
Rothfuss, Y. and Javaux, M.: Reviews and syntheses: Isotopic approaches to quantify root water uptake: a review and comparison of methods, Biogeosciences, 14, 2199–2224, https://doi.org/10.5194/bg-14-2199-2017, 2017.
Rothfuss, Y., Biron, P., Braud, I., Canale, L., Durand, J.-L., Gaudet, J.-P., Richard, P., Vauclin, M., and Bariac, T.:
Partitioning evapotranspiration fluxes into soil evaporation and plant transpiration using water stable isotopes under controlled conditions,
Hydrol. Process.,
24, 3177–3194, https://doi.org/10.1002/hyp.7743, 2010.
Rothfuss, Y., Braud, I., Le Moine, N., Biron, P., Durand, J.-L., Vauclin, M., and Bariac, T.:
Factors controlling the isotopic partitioning between soil evaporation and plant transpiration: Assessment using a multi-objective calibration of SiSPAT-Isotope under controlled conditions,
J. Hydrol.,
442–443, 75–88, https://doi.org/10.1016/J.JHYDROL.2012.03.041, 2012.
Rothfuss, Y., Vereecken, H., and Brüggemann, N.:
Monitoring water stable isotopic composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy,
Water Resour. Res.,
49, 3747–3755, https://doi.org/10.1002/wrcr.20311, 2013.
Rothfuss, Y., Merz, S., Vanderborght, J., Hermes, N., Weuthen, A., Pohlmeier, A., Vereecken, H., and Brüggemann, N.: Long-term and high-frequency non-destructive monitoring of water stable isotope profiles in an evaporating soil column, Hydrol. Earth Syst. Sci., 19, 4067–4080, https://doi.org/10.5194/hess-19-4067-2015, 2015.
Saxena, R. K. and Dressie, Z.:
Estimation of groundwater recharge and moisture movement in sandy formations by tracing natural oxygen-18 and injected tritium profiles in the unsaturated zone,
in: IAEA Symposium, pp. 139–150,
available at: http://inis.iaea.org/Search/search.aspx?orig_q=RN:15067098 (last access: 3 July 2014), 1984.
Schmidt, M., Maseyk, K., Lett, C., Biron, P., Richard, P., Bariac, T., and Seibt, U.:
Concentration effects on laser-based δ18O and δ2H measurements and implications for the calibration of vapour measurements with liquid standards,
Rapid Commun. Mass Sp.,
24, 3553–3561, https://doi.org/10.1002/rcm.4813, 2010.
Schultz, N. M., Griffis, T. J., Lee, X., and Baker, J. M.:
Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water,
Rapid Commun. Mass Sp.,
25, 3360–3368, https://doi.org/10.1002/rcm.5236, 2011.
Simonin, K., Roddy, A., Link, P., Apodaca, R., Tu, K., Hu, J., Dawson, T., and Barbour, M.:
Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables,
Plant. Cell Environ.,
36, 2190–2206, https://doi.org/10.1111/pce.12129, 2013.
Soderberg, K., Good, S. P., Wang, L., and Caylor, K.:
Stable Isotopes of Water Vapor in the Vadose Zone: A Review of Measurement and Modeling Techniques,
Vadose Zone J.,
11, https://doi.org/10.2136/vzj2011.0165, 2012.
Song, X., Barbour, M., Farquhar, G., Vann, D., and Helliker, B.:
Transpiration rate relates to within- and across-species variations in effective path length in a leaf water model of oxygen isotope enrichment,
Plant. Cell Environ.,
36, 1338–1351, https://doi.org/10.1111/pce.12063, 2013.
Song, X., Loucos, K. E., Simonin, K. A., Farquhar, G. D., and Barbour, M. M.:
Measurements of transpiration isotopologues and leaf water to assess enrichment models in cotton,
New Phytol.,
206, 637–646, https://doi.org/10.1111/nph.13296, 2015a.
Song, X., Simonin, K. A., Loucos, K. E., and Barbour, M. M.:
Modelling non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette environment,
Plant. Cell Environ.,
38, 2618–2628, https://doi.org/10.1111/pce.12571, 2015b.
Sprenger, M., Volkmann, T. H. M., Blume, T., and Weiler, M.: Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes, Hydrol. Earth Syst. Sci., 19, 2617–2635, https://doi.org/10.5194/hess-19-2617-2015, 2015.
Sprenger, M., Leistert, H., Gimbel, K., and Weiler, M.:
Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes,
Rev. Geophys.,
54, 674–704, https://doi.org/10.1002/2015RG000515, 2016.
Sprenger, M., Tetzlaff, D., Buttle, J., Laudon, H., Leistert, H., Mitchell, C. P. J., Snelgrove, J., Weiler, M., and Soulsby, C.:
Measuring and Modeling Stable Isotopes of Mobile and Bulk Soil Water,
Vadose Zone J.,
17, https://doi.org/10.2136/vzj2017.08.0149, 2018.
Stern, L., Baisden, W. T., and Amundson, R.:
Processes controlling the oxygen isotope ratio of soil CO2: analytic and numerical modeling,
Geochim. Cosmochim. Ac.,
63, 799–814, https://doi.org/10.1016/S0016-7037(98)00293-2, 1999.
Stumpp, C., Brüggemann, N., and Wingate, L.:
Stable Isotope Approaches in Vadose Zone Research,
Vadose Zone J.,
17, https://doi.org/10.2136/vzj2018.05.0096, 2018.
Thoma, G., Esser, N., Sonntag, C., Weiss, W., Rudolph, J., and Leveque, P.:
New technique of in-situ soil-moisture sampling for environmental isotope analysis applied at Pilat sand dune near Bordeaux. HETP modelling of bomb tritium propagation in the unsaturated and saturated zones,
in: Proceedings of the International Symposium on Isotope Hydrology, edited by: IAEA, International Atomic Energy Agency, Neuherberg, Germany, 19–23,
available at: https://inis.iaea.org/search/search.aspx?orig_q=RN:10463006 (last access: 5 June 2019), 1979.
Thoma, M., Frentress, J., Tagliavini, M., and Scandellari, F.:
Comparison of pore water samplers and cryogenic distillation under laboratory and field conditions for soil water stable isotope analysis,
Isot. Environ. Healt S.,
54, 403–417, https://doi.org/10.1080/10256016.2018.1437034, 2018.
van Geldern, R. and Barth, J. A. C.:
Optimization of post-run corrections for water stable isotope measurements by laser spectroscopy,
Limnol. Oceanogr.-Meth.,
10, 1024–1036, 2012.
Volkmann, T. H. M. and Weiler, M.: Continual in situ monitoring of pore water stable isotopes in the subsurface, Hydrol. Earth Syst. Sci., 18, 1819–1833, https://doi.org/10.5194/hess-18-1819-2014, 2014.
Volkmann, T. H. M., Kühnhammer, K., Herbstritt, B., Gessler, A., and Weiler, M.:
A method for in situ monitoring of the isotope composition of tree xylem water using laser spectroscopy,
Plant. Cell Environ.,
39, 2055–2063, https://doi.org/10.1111/pce.12725, 2016a.
Volkmann, T. H. M., Haberer, K., Gessler, A., and Weiler, M.:
High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil-plant interface,
New Phytol.,
210, 839–849, https://doi.org/10.1111/nph.13868, 2016b.
von Caemmerer, S. and Farquhar, G. D.:
Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves,
Planta,
153, 376–387, https://doi.org/10.1007/BF00384257, 1981.
Walker, C. D. and Brunel, J.-P.:
Examining evapotranspiration in a semi-arid region using stable isotopes of hydrogen and oxygen,
J. Hydrol.,
118, 55–75, https://doi.org/10.1016/0022-1694(90)90250-2, 1990.
Wang, L., Good, S. P., Caylor, K. K., and Cernusak, L. A.:
Direct quantification of leaf transpiration isotopic composition,
Agr. Forest Meteorol.,
154–155, 127–135, https://doi.org/10.1016/J.AGRFORMET.2011.10.018, 2012.
Wang, L., Niu, S., Good, S. P., Soderberg, K., McCabe, M. F., Sherry, R. A., Luo, Y., Zhou, X., Xia, J., and Caylor, K. K.:
The effect of warming on grassland evapotranspiration partitioning using laser-based isotope monitoring techniques,
Geochim. Cosmochim. Ac.,
111, 28–38, https://doi.org/10.1016/J.GCA.2012.12.047, 2013.
Wang, X.-F. and Yakir, D.:
Using stable isotopes of water in evapotranspiration studies,
Hydrol. Process.,
14, 1407–1421, https://doi.org/10.1002/1099-1085(20000615)14:8<1407::AID-HYP992>3.0.CO;2-K, 2000.
Wassenaar, L. I., Hendry, M. J., Chostner, V. L., and Lis, G. P.:
High resolution pore water δ2H and δ18O measurements by H2O (liquid) and H2O (vapor) equilibration laser spectroscopy,
Environ. Sci. Technol.,
42, 9262–9267, https://doi.org/10.1021/es802065s, 2008.
Werner, C. and Dubbert, M.:
Resolving rapid dynamics of soil-plant-atmosphere interactions,
New Phytol.,
210, 767–769, https://doi.org/10.1111/nph.13936, 2016.
West, A. G., Goldsmith, G. R., Brooks, P. D., and Dawson, T. E.:
Discrepancies between isotope ratio infrared spectroscopy and isotope ratio mass spectrometry for the stable isotope analysis of plant and soil waters.,
Rapid Commun. Mass Sp.,
24, 1948–54, https://doi.org/10.1002/rcm.4597, 2010.
West, A. G., Goldsmith, G. R., Matimati, I., and Dawson, T. E.:
Spectral analysis software improves confidence in plant and soil water stable isotope analyses performed by isotope ratio infrared spectroscopy (IRIS),
Rapid Commun. Mass Sp.,
25, 2268–2274, https://doi.org/10.1002/rcm.5126, 2011.
Williams, D. G., Cable, W., Hultine, K., Hoedjes, J. C. B., Yepez, E. A., Simonneaux, V., Er-Raki, S., Boulet, G., de Bruin, H. A. R., Chehbouni, A., Hartogensis, O. K., and Timouk, F.:
Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques,
Agr. Forest Meteorol.,
125, 241–258, https://doi.org/10.1016/J.AGRFORMET.2004.04.008, 2004.
Wong, T. E., Nusbaumer, J., and Noone, D. C.:
Evaluation of modeled land–atmosphere exchanges with a comprehensive water isotope fractionation scheme in version 4 of the Community Land Model,
J. Adv. Model. Earth Sy.,
9, 978–1001, https://doi.org/10.1002/2016MS000842, 2017.
Wu, Y., Zhou, H., Zheng, X.-J., Li, Y., and Tang, L.-S.:
Seasonal changes in the water use strategies of three co-occurring desert shrubs,
Hydrol. Process.,
28, 6265–6275, https://doi.org/10.1002/hyp.10114, 2013.
Yepez, E. A., Williams, D. G., Scott, R. L., and Lin, G.:
Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor,
Agr. Forest Meteorol.,
119, 53–68, https://doi.org/10.1016/S0168-1923(03)00116-3, 2003.
Yepez, E. A., Scott, R. L., Cable, W. L., and Williams, D. G.:
Intraseasonal Variation in Water and Carbon Dioxide Flux Components in a Semiarid Riparian Woodland,
Ecosystems,
10, 1100–1115, https://doi.org/10.1007/s10021-007-9079-y, 2007.
Yoshimura, K., Miyazaki, S., Kanae, S., and Oki, T.:
Iso-MATSIRO, a land surface model that incorporates stable water isotopes,
Global Planet. Change,
51, 90–107, https://doi.org/10.1016/J.GLOPLACHA.2005.12.007, 2006.
Download
- Article
(4042 KB) - Full-text XML
Short summary
Water isotopes are a scientific tool that can be used to identify sources of water and answer questions such as
From which soil depths do plants take up water?, which are highly relevant under changing climatic conditions. In the past, the measurement of water isotopes required tremendous effort. In the last decade methods have advanced and can now be applied in the field. Herein, we review the current status of direct field measurements of water isotopes and discuss future applications.
Water isotopes are a scientific tool that can be used to identify sources of water and answer...