Articles | Volume 24, issue 6
https://doi.org/10.5194/hess-24-2981-2020
https://doi.org/10.5194/hess-24-2981-2020
Research article
 | 
08 Jun 2020
Research article |  | 08 Jun 2020

Impact of downscaled rainfall biases on projected runoff changes

Stephen P. Charles, Francis H. S. Chiew, Nicholas J. Potter, Hongxing Zheng, Guobin Fu, and Lu Zhang

Related authors

Bias in dynamically downscaled rainfall characteristics for hydroclimatic projections
Nicholas J. Potter, Francis H. S. Chiew, Stephen P. Charles, Guobin Fu, Hongxing Zheng, and Lu Zhang
Hydrol. Earth Syst. Sci., 24, 2963–2979, https://doi.org/10.5194/hess-24-2963-2020,https://doi.org/10.5194/hess-24-2963-2020, 2020
Short summary
Seasonal streamflow forecasting in the upper Indus Basin of Pakistan: an assessment of methods
Stephen P. Charles, Quan J. Wang, Mobin-ud-Din Ahmad, Danial Hashmi, Andrew Schepen, Geoff Podger, and David E. Robertson
Hydrol. Earth Syst. Sci., 22, 3533–3549, https://doi.org/10.5194/hess-22-3533-2018,https://doi.org/10.5194/hess-22-3533-2018, 2018
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation?
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023,https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Regionalisation of rainfall depth–duration–frequency curves with different data types in Germany
Bora Shehu, Winfried Willems, Henrike Stockel, Luisa-Bianca Thiele, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 1109–1132, https://doi.org/10.5194/hess-27-1109-2023,https://doi.org/10.5194/hess-27-1109-2023, 2023
Short summary
The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023,https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023,https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023,https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary

Cited articles

Addor, N. and Seibert, J.: Bias correction for hydrological impact studies – beyond the daily perspective, Hydrolog. Process., 28, 4823–4828, https://doi.org/10.1002/hyp.10238, 2014. 
Andréassian, V., Oddos, A., Michel, C., Anctil, F., Perrin, C., and Loumagne, C.: Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds, Water Resour. Res., 40, W05209, https://doi.org/10.1029/2003wr002854, 2004. 
Casanueva, A., Kotlarski, S., Herrera, S., Fernández, J., Gutiérrez, J. M., Boberg, F., Colette, A., Christensen, O. B., Goergen, K., Jacob, D., Keuler, K., Nikulin, G., Teichmann, C., and Vautard, R.: Daily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations, Clim. Dynam., 47, 719–737, https://doi.org/10.1007/s00382-015-2865-x, 2016. 
Chen, J., Brissette, F. P., Chaumont, D., and Braun, M.: Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America, Water Resour. Res., 49, 4187–4205, https://doi.org/10.1002/wrcr.20331, 2013. 
Chiew, F. H. S., Teng, J., Vaze, J., Post, D. A., Perraud, J. M., Kirono, D. G. C., and Viney, N. R.: Estimating climate change impact on runoff across southeast Australia: Method, results, and implications of the modeling method, Water Resour. Res., 45, W10414, https://doi.org/10.1029/2008WR007338, 2009. 
Short summary
This paper assesses the suitability of bias-corrected (BC) WRF daily rainfall across the state of Victoria, Australia, for input to hydrological models to determine plausible climate change impacts on runoff. It compares rainfall and runoff changes using BC WRF with those obtained from empirical scaling (ES) using raw WRF changes. It concludes that BC-derived changes are more plausible than ES-derived changes but that remaining biases in BC WRF daily data add uncertainty to runoff projections.