Articles | Volume 23, issue 4
https://doi.org/10.5194/hess-23-1885-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-23-1885-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Anthropogenic and catchment characteristic signatures in the water quality of Swiss rivers: a quantitative assessment
Institute of Environmental Engineering, ETH Zurich, Switzerland, Stefano Franscini-Platz 5, 8093 Zurich, Switzerland
Paolo Burlando
Institute of Environmental Engineering, ETH Zurich, Switzerland, Stefano Franscini-Platz 5, 8093 Zurich, Switzerland
Simone Fatichi
Institute of Environmental Engineering, ETH Zurich, Switzerland, Stefano Franscini-Platz 5, 8093 Zurich, Switzerland
Related authors
Martina Botter, Matthias Zeeman, Paolo Burlando, and Simone Fatichi
Biogeosciences, 18, 1917–1939, https://doi.org/10.5194/bg-18-1917-2021, https://doi.org/10.5194/bg-18-1917-2021, 2021
Yue Zhu, Paolo Burlando, Puay Yok Tan, Christian Geiß, and Simone Fatichi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-207, https://doi.org/10.5194/nhess-2024-207, 2024
Preprint under review for NHESS
Short summary
Short summary
This study addresses the challenge of accurately predicting floods in regions with limited terrain data. By utilizing a deep learning model, we developed a method that improves the resolution of digital elevation data by fusing low-resolution elevation data with high-resolution satellite imagery. This approach not only substantially enhances flood prediction accuracy, but also holds potential for broader applications in simulating natural hazards that require terrain information.
Shanti Shwarup Mahto, Simone Fatichi, and Stefano Galelli
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-441, https://doi.org/10.5194/essd-2024-441, 2024
Preprint under review for ESSD
Short summary
Short summary
The MSEA-Res database offers an open-access dataset tracking absolute water storage for 185 large reservoirs across Mainland Southeast Asia from 1985–2023. It provides valuable insights into how reservoir storage has grown by 130 % between 2008 and 2017, driven by dams in key river basins. Our data also reveal how droughts, like the 2019–2020 event, significantly impacted water reservoirs. This resource can aid water management, drought planning, and research globally.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
EGUsphere, https://doi.org/10.5194/egusphere-2024-2072, https://doi.org/10.5194/egusphere-2024-2072, 2024
Short summary
Short summary
We outline and validate developments to the pre-existing process-based model T&C to better represent cropland processes. Foreseen applications of T&C-CROP include hydrological and carbon storage implications of land-use transitions involving crop, forest, and pasture conversion, as well as studies on optimal irrigation and fertilization under a changing climate.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Yiran Wang, Naika Meili, and Simone Fatichi
EGUsphere, https://doi.org/10.5194/egusphere-2024-768, https://doi.org/10.5194/egusphere-2024-768, 2024
Short summary
Short summary
Our study uses climate model simulations and process-based ecohydrological modeling to assess the direct and climate feedback induced effects of solar radiation changes on hydrological variables. Results show that solar radiation without climate feedback primarily affects sensible heat with limited effects on hydrology and vegetation. However, climate feedback exacerbates the effects of radiation changes on evapotranspiration and affects vegetation productivity.
Stefano Manzoni, Simone Fatichi, Xue Feng, Gabriel G. Katul, Danielle Way, and Giulia Vico
Biogeosciences, 19, 4387–4414, https://doi.org/10.5194/bg-19-4387-2022, https://doi.org/10.5194/bg-19-4387-2022, 2022
Short summary
Short summary
Increasing atmospheric carbon dioxide (CO2) causes leaves to close their stomata (through which water evaporates) but also promotes leaf growth. Even if individual leaves save water, how much will be consumed by a whole plant with possibly more leaves? Using different mathematical models, we show that plant stands that are not very dense and can grow more leaves will benefit from higher CO2 by photosynthesizing more while adjusting their stomata to consume similar amounts of water.
Michael Schirmer, Adam Winstral, Tobias Jonas, Paolo Burlando, and Nadav Peleg
The Cryosphere, 16, 3469–3488, https://doi.org/10.5194/tc-16-3469-2022, https://doi.org/10.5194/tc-16-3469-2022, 2022
Short summary
Short summary
Rain is highly variable in time at a given location so that there can be both wet and dry climate periods. In this study, we quantify the effects of this natural climate variability and other sources of uncertainty on changes in flooding events due to rain on snow (ROS) caused by climate change. For ROS events with a significant contribution of snowmelt to runoff, the change due to climate was too small to draw firm conclusions about whether there are more ROS events of this important type.
Stefan Fugger, Catriona L. Fyffe, Simone Fatichi, Evan Miles, Michael McCarthy, Thomas E. Shaw, Baohong Ding, Wei Yang, Patrick Wagnon, Walter Immerzeel, Qiao Liu, and Francesca Pellicciotti
The Cryosphere, 16, 1631–1652, https://doi.org/10.5194/tc-16-1631-2022, https://doi.org/10.5194/tc-16-1631-2022, 2022
Short summary
Short summary
The monsoon is important for the shrinking and growing of glaciers in the Himalaya during summer. We calculate the melt of seven glaciers in the region using a complex glacier melt model and weather data. We find that monsoonal weather affects glaciers that are covered with a layer of rocky debris and glaciers without such a layer in different ways. It is important to take so-called turbulent fluxes into account. This knowledge is vital for predicting the future of the Himalayan glaciers.
Martina Botter, Matthias Zeeman, Paolo Burlando, and Simone Fatichi
Biogeosciences, 18, 1917–1939, https://doi.org/10.5194/bg-18-1917-2021, https://doi.org/10.5194/bg-18-1917-2021, 2021
Lianyu Yu, Simone Fatichi, Yijian Zeng, and Zhongbo Su
The Cryosphere, 14, 4653–4673, https://doi.org/10.5194/tc-14-4653-2020, https://doi.org/10.5194/tc-14-4653-2020, 2020
Short summary
Short summary
The role of soil water and heat transfer physics in portraying the function of a cold region ecosystem was investigated. We found that explicitly considering the frozen soil physics and coupled water and heat transfer is important in mimicking soil hydrothermal dynamics. The presence of soil ice can alter the vegetation leaf onset date and deep leakage. Different complexity in representing vadose zone physics does not considerably affect interannual energy, water, and carbon fluxes.
Giulia Battista, Peter Molnar, and Paolo Burlando
Earth Surf. Dynam., 8, 619–635, https://doi.org/10.5194/esurf-8-619-2020, https://doi.org/10.5194/esurf-8-619-2020, 2020
Short summary
Short summary
Suspended sediment load in rivers is highly uncertain because of spatial and temporal variability. By means of a hydrology and suspended sediment transport model, we investigated the effect of spatial variability in precipitation and surface erodibility on catchment sediment fluxes in a mesoscale river basin.
We found that sediment load depends on the spatial variability in erosion drivers, as this affects erosion rates and the location and connectivity to the channel of the erosion areas.
Naika Meili, Gabriele Manoli, Paolo Burlando, Elie Bou-Zeid, Winston T. L. Chow, Andrew M. Coutts, Edoardo Daly, Kerry A. Nice, Matthias Roth, Nigel J. Tapper, Erik Velasco, Enrique R. Vivoni, and Simone Fatichi
Geosci. Model Dev., 13, 335–362, https://doi.org/10.5194/gmd-13-335-2020, https://doi.org/10.5194/gmd-13-335-2020, 2020
Short summary
Short summary
We developed a novel urban ecohydrological model (UT&C v1.0) that is able to account for the effects of different plant types on the urban climate and hydrology, as well as the effects of the urban environment on plant well-being and performance. UT&C performs well when compared against energy flux measurements in three cities in different climates (Singapore, Melbourne, Phoenix) and can be used to assess urban climate mitigation strategies that aim at increasing or changing urban green cover.
Nadav Peleg, Chris Skinner, Simone Fatichi, and Peter Molnar
Earth Surf. Dynam., 8, 17–36, https://doi.org/10.5194/esurf-8-17-2020, https://doi.org/10.5194/esurf-8-17-2020, 2020
Short summary
Short summary
Extreme rainfall is expected to intensify with increasing temperatures, which will likely affect rainfall spatial structure. The spatial variability of rainfall can affect streamflow and sediment transport volumes and peaks. The sensitivity of the hydro-morphological response to changes in the structure of heavy rainfall was investigated. It was found that the morphological components are more sensitive to changes in rainfall spatial structure in comparison to the hydrological components.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Sahani Pathiraja, Daniela Anghileri, Paolo Burlando, Ashish Sharma, Lucy Marshall, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 22, 2903–2919, https://doi.org/10.5194/hess-22-2903-2018, https://doi.org/10.5194/hess-22-2903-2018, 2018
Short summary
Short summary
Hydrologic modeling methodologies must be developed that are capable of predicting runoff in catchments with changing land cover conditions. This article investigates the efficacy of a recently developed approach that allows for runoff prediction in catchments with unknown land cover changes, through experimentation in a deforested catchment in Vietnam. The importance of key elements of the method in ensuring its success, such as the chosen hydrologic model, is investigated.
Nadav Peleg, Frank Blumensaat, Peter Molnar, Simone Fatichi, and Paolo Burlando
Hydrol. Earth Syst. Sci., 21, 1559–1572, https://doi.org/10.5194/hess-21-1559-2017, https://doi.org/10.5194/hess-21-1559-2017, 2017
Short summary
Short summary
We investigated the relative contribution of the spatial versus climatic rainfall variability for flow peaks by applying an advanced stochastic rainfall generator to simulate rainfall for a small urban catchment and simulate flow dynamics in the sewer system. We found that the main contribution to the total flow variability originates from the natural climate variability. The contribution of spatial rainfall variability to the total flow variability was found to increase with return periods.
Bahareh Kianfar, Simone Fatichi, Athansios Paschalis, Max Maurer, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-536, https://doi.org/10.5194/hess-2016-536, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Raingauge observations show a large variability in extreme rainfall depths in the current climate. Climate model predictions of extreme rainfall in the future have to be compared with this natural variability. Our work shows that predictions of future extreme rainfall often lie within the range of natural variability of present-day climate, and therefore predictions of change are highly uncertain. We demonstrate this by using stochastic rainfall models and 10-min rainfall data in Switzerland.
P. Molnar, S. Fatichi, L. Gaál, J. Szolgay, and P. Burlando
Hydrol. Earth Syst. Sci., 19, 1753–1766, https://doi.org/10.5194/hess-19-1753-2015, https://doi.org/10.5194/hess-19-1753-2015, 2015
Short summary
Short summary
We present an empirical study of the rates of increase in precipitation intensity with air temperature using high-resolution 10 min precipitation records in Switzerland. We estimated the scaling rates for lightning (convective) and non-lightning event subsets and show that scaling rates are between 7 and 14%/C for convective rain and that mixing of storm types exaggerates the relations to air temperature. Doubled CC rates reported by other studies are an exception in our data set.
T. Grünewald, J. Stötter, J. W. Pomeroy, R. Dadic, I. Moreno Baños, J. Marturià, M. Spross, C. Hopkinson, P. Burlando, and M. Lehning
Hydrol. Earth Syst. Sci., 17, 3005–3021, https://doi.org/10.5194/hess-17-3005-2013, https://doi.org/10.5194/hess-17-3005-2013, 2013
S. Fatichi, S. Rimkus, P. Burlando, R. Bordoy, and P. Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-3743-2013, https://doi.org/10.5194/hessd-10-3743-2013, 2013
Revised manuscript not accepted
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Theory development
Can system dynamics explain long-term hydrological behaviors? The role of endogenous linking structure
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept
Ratio limits of water storage and outflow in a rainfall–runoff process
Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions
Bimodal hydrographs in a semi-humid forested watershed: characteristics and occurrence conditions
Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century
Power law between the apparent drainage density and the pruning area
Causal relationships between vegetation productivity, water availability, and atmospheric dryness at the catchment scale
Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values
Elasticity curves describe streamflow sensitivity to precipitation across the entire flow distribution
Seasonal and interannual dissolved organic carbon transport process dynamics in a subarctic headwater catchment revealed by high-resolution measurements
Links between seasonal suprapermafrost groundwater, the hydrothermal change of the active layer, and river runoff in alpine permafrost watersheds
Technical note: Isotopic fractionation of evaporating waters: effect of sub-daily atmospheric variations and eventual depletion of heavy isotopes
Increased nonstationarity of stormflow threshold behaviors in a forested watershed due to abrupt earthquake disturbance
HESS Opinions: Are soils overrated in hydrology?
Hydrologic implications of projected changes in rain-on-snow melt for Great Lakes Basin watersheds
A hydrological framework for persistent pools along non-perennial rivers
Evidence-based requirements for perceptualising intercatchment groundwater flow in hydrological models
Droughts can reduce the nitrogen retention capacity of catchments
Explaining changes in rainfall–runoff relationships during and after Australia's Millennium Drought: a community perspective
Three hypotheses on changing river flood hazards
A multivariate-driven approach for disentangling the reduction in near-natural Iberian water resources post-1980
Hydrology and riparian forests drive carbon and nitrogen supply and DOC : NO3− stoichiometry along a headwater Mediterranean stream
Event controls on intermittent streamflow in a temperate climate
Inclusion of flood diversion canal operation in the H08 hydrological model with a case study from the Chao Phraya River basin: model development and validation
Flood generation: process patterns from the raindrop to the ocean
Use of streamflow indices to identify the catchment drivers of hydrographs
Theoretical and empirical evidence against the Budyko catchment trajectory conjecture
Spatial distribution of groundwater recharge, based on regionalised soil moisture models in Wadi Natuf karst aquifers, Palestine
Barriers to mainstream adoption of catchment-wide natural flood management: a transdisciplinary problem-framing study of delivery practice
Low hydrological connectivity after summer drought inhibits DOC export in a forested headwater catchment
Rainbow color map distorts and misleads research in hydrology – guidance for better visualizations and science communication
Attribution of growing season evapotranspiration variability considering snowmelt and vegetation changes in the arid alpine basins
Event and seasonal hydrologic connectivity patterns in an agricultural headwater catchment
Exploring the role of hydrological pathways in modulating multi-annual climate teleconnection periodicities from UK rainfall to streamflow
Technical note: “Bit by bit”: a practical and general approach for evaluating model computational complexity vs. model performance
Hillslope and groundwater contributions to streamflow in a Rocky Mountain watershed underlain by glacial till and fractured sedimentary bedrock
A framework for seasonal variations of hydrological model parameters: impact on model results and response to dynamic catchment characteristics
Hydrology and beyond: the scientific work of August Colding revisited
The influence of a prolonged meteorological drought on catchment water storage capacity: a hydrological-model perspective
Hydrological and runoff formation processes based on isotope tracing during ablation period in the source regions of Yangtze River
Importance of snowmelt contribution to seasonal runoff and summer low flows in Czechia
Concentration–discharge relationships vary among hydrological events, reflecting differences in event characteristics
Recession analysis revisited: impacts of climate on parameter estimation
Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: the upper Lhasa River
Technical note: An improved discharge sensitivity metric for young water fractions
Hydrological signatures describing the translation of climate seasonality into streamflow seasonality
Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network
Historic hydrological droughts 1891–2015: systematic characterisation for a diverse set of catchments across the UK
A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation
Xinyao Zhou, Zhuping Sheng, Kiril Manevski, Rongtian Zhao, Qingzhou Zhang, Yanmin Yang, Shumin Han, Jinghong Liu, and Yonghui Yang
Hydrol. Earth Syst. Sci., 29, 159–177, https://doi.org/10.5194/hess-29-159-2025, https://doi.org/10.5194/hess-29-159-2025, 2025
Short summary
Short summary
Conventional hydrological models erratically replicate slow hydrological dynamics, necessitating model modification and paradigm shift in hydrological science. The system dynamics approach successfully explains patterns of slow hydrological behaviors at inter-annual and decadal scales by dividing a hydrological system into different hierarchies and building endogenous linking structure among stocks. In spite of the simplicity, it holds potential to integrate hydrological behaviors across scales.
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024, https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary
Short summary
Here, I present a new way to quantify how streamflow responds to rainfall across a range of timescales. This approach can estimate how different rainfall intensities affect streamflow. It can also quantify how runoff response to rainfall varies, depending on how wet the landscape already is before the rain falls. This may help us to understand processes and landscape properties that regulate streamflow and to assess the susceptibility of different landscapes to flooding.
Yulong Zhu, Yang Zhou, Xiaorong Xu, Changqing Meng, and Yuankun Wang
Hydrol. Earth Syst. Sci., 28, 4251–4261, https://doi.org/10.5194/hess-28-4251-2024, https://doi.org/10.5194/hess-28-4251-2024, 2024
Short summary
Short summary
A timely local flood forecast is an effective way to reduce casualties and economic losses. The current theoretical or numerical models play an important role in local flood forecasting. However, they still cannot bridge the contradiction between high calculation accuracy, high calculation efficiency, and simple operability. Therefore, this paper expects to propose a new flood forecasting model with higher computational efficiency and simpler operation.
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024, https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary
Short summary
The evaluation of model performance is essential for hydrological modeling. Using performance criteria requires a deep understanding of their properties. We focus on a counterintuitive aspect of the Nash–Sutcliffe efficiency (NSE) and show that if we divide the data into multiple parts, the overall performance can be higher than all the evaluations of the subsets. Although this follows from the definition of the NSE, the resulting behavior can have unintended consequences in practice.
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci., 28, 3613–3632, https://doi.org/10.5194/hess-28-3613-2024, https://doi.org/10.5194/hess-28-3613-2024, 2024
Short summary
Short summary
We investigated the response characteristics and occurrence conditions of bimodal hydrographs using 10 years of hydrometric and isotope data in a semi-humid forested watershed in north China. Our findings indicate that bimodal hydrographs occur when the combined total of the event rainfall and antecedent soil moisture index exceeds 200 mm. Additionally, we determined that delayed stormflow is primarily contributed to by shallow groundwater.
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 28, 3327–3345, https://doi.org/10.5194/hess-28-3327-2024, https://doi.org/10.5194/hess-28-3327-2024, 2024
Short summary
Short summary
We focus on past high-flow events to find flood drivers in the Geul. We also explore flood drivers’ trends across various timescales and develop a new method to detect the main direction of a trend. Our results show that extreme 24 h precipitation alone is typically insufficient to cause floods. The combination of extreme rainfall and wet initial conditions determines the chance of flooding. Precipitation that leads to floods increases in winter, whereas no consistent trends are found in summer.
Soohyun Yang, Kwanghun Choi, and Kyungrock Paik
Hydrol. Earth Syst. Sci., 28, 3119–3132, https://doi.org/10.5194/hess-28-3119-2024, https://doi.org/10.5194/hess-28-3119-2024, 2024
Short summary
Short summary
In extracting a river network from a digital elevation model, an arbitrary pruning area should be specified. As this value grows, the apparent drainage density is reduced following a power function. This reflects the fractal topographic nature. We prove this relationship related to the known power law in the exceedance probability distribution of drainage area. The power-law exponent is expressed with fractal dimensions. Our findings are supported by analysis of 14 real river networks.
Guta Wakbulcho Abeshu, Hong-Yi Li, Mingjie Shi, and Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2024-1748, https://doi.org/10.5194/egusphere-2024-1748, 2024
Short summary
Short summary
This study examined how water availability, climate dryness, and plant productivity interact at the catchment scale. Using various indices and statistical methods, it found a 0–2-month lag in these interactions. Strong correlations during peak productivity months were observed, with a notable hysteresis effect in vegetation response to changes in water availability and climate dryness. The findings help better understand catchment responses to climate variability.
Matthias Sprenger, Rosemary W. H. Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 28, 1711–1723, https://doi.org/10.5194/hess-28-1711-2024, https://doi.org/10.5194/hess-28-1711-2024, 2024
Short summary
Short summary
Stable isotopes of water (described as d-excess) in mountain snowpack can be used to infer proportions of high-elevation snowmelt in stream water. In a Colorado River headwater catchment, nearly half of the water during peak streamflow is derived from melted snow at elevations greater than 3200 m. High-elevation snowpack contributions were higher for years with lower snowpack and warmer spring temperatures. Thus, we suggest that d-excess could serve to assess high-elevation snowpack changes.
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 28, 1567–1583, https://doi.org/10.5194/hess-28-1567-2024, https://doi.org/10.5194/hess-28-1567-2024, 2024
Short summary
Short summary
Elasticityrefers to how much the amount of water in a river changes with precipitation. We usually calculate this using average streamflow values; however, the amount of water within rivers is also dependent on stored water sources. Here, we look at how elasticity varies across the streamflow distribution and show that not only do low and high streamflows respond differently to precipitation change, but also these differences vary with water storage availability.
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024, https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Short summary
The transport of dissolved organic carbon (DOC) from land into streams is changing due to climate change. We used a multi-year dataset of DOC and predictors of DOC in a subarctic stream to find out how transport of DOC varied between seasons and between years. We found that the way DOC is transported varied strongly seasonally, but year-to-year differences were less apparent. We conclude that the mechanisms of transport show a higher degree of interannual consistency than previously thought.
Jia Qin, Yongjian Ding, Faxiang Shi, Junhao Cui, Yaping Chang, Tianding Han, and Qiudong Zhao
Hydrol. Earth Syst. Sci., 28, 973–987, https://doi.org/10.5194/hess-28-973-2024, https://doi.org/10.5194/hess-28-973-2024, 2024
Short summary
Short summary
The linkage between the seasonal hydrothermal change of active layer, suprapermafrost groundwater, and surface runoff, which has been regarded as a “black box” in hydrological analyses and simulations, is a bottleneck problem in permafrost hydrological studies. Based on field observations, this study identifies seasonal variations and causes of suprapermafrost groundwater. The linkages and framework of watershed hydrology responding to the freeze–thaw of the active layer also are explored.
Francesc Gallart, Sebastián González-Fuentes, and Pilar Llorens
Hydrol. Earth Syst. Sci., 28, 229–239, https://doi.org/10.5194/hess-28-229-2024, https://doi.org/10.5194/hess-28-229-2024, 2024
Short summary
Short summary
Normally, lighter oxygen and hydrogen isotopes are preferably evaporated from a water body, which becomes enriched in heavy isotopes. However, we observed that, in a water body subject to prolonged evaporation, some periods of heavy isotope depletion instead of enrichment happened. Furthermore, the usual models that describe the isotopy of evaporating waters may be in error if the atmospheric conditions of temperature and relative humidity are time-averaged instead of evaporation flux-weighted.
Guotao Zhang, Peng Cui, Carlo Gualtieri, Nazir Ahmed Bazai, Xueqin Zhang, and Zhengtao Zhang
Hydrol. Earth Syst. Sci., 27, 3005–3020, https://doi.org/10.5194/hess-27-3005-2023, https://doi.org/10.5194/hess-27-3005-2023, 2023
Short summary
Short summary
This study used identified stormflow thresholds as a diagnostic tool to characterize abrupt variations in catchment emergent patterns pre- and post-earthquake. Earthquake-induced landslides with spatial heterogeneity and temporally undulating recovery increase the hydrologic nonstationary; thus, large post-earthquake floods are more likely to occur. This study contributes to mitigation and adaptive strategies for unpredictable hydrologic regimes triggered by abrupt natural disturbances.
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023, https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary
Short summary
It is a deeply rooted perception that soil is key in hydrology. In this paper, we argue that it is the ecosystem, not the soil, that is in control of hydrology. Firstly, in nature, the dominant flow mechanism is preferential, which is not particularly related to soil properties. Secondly, the ecosystem, not the soil, determines the land–surface water balance and hydrological processes. Moving from a soil- to ecosystem-centred perspective allows more realistic and simpler hydrological models.
Daniel T. Myers, Darren L. Ficklin, and Scott M. Robeson
Hydrol. Earth Syst. Sci., 27, 1755–1770, https://doi.org/10.5194/hess-27-1755-2023, https://doi.org/10.5194/hess-27-1755-2023, 2023
Short summary
Short summary
We projected climate change impacts to rain-on-snow (ROS) melt events in the Great Lakes Basin. Decreases in snowpack limit future ROS melt. Areas with mean winter/spring air temperatures near freezing are most sensitive to ROS changes. The projected proportion of total monthly snowmelt from ROS decreases. The timing for ROS melt is projected to be 2 weeks earlier by the mid-21st century and affects spring streamflow. This could affect freshwater resources management.
Sarah A. Bourke, Margaret Shanafield, Paul Hedley, Sarah Chapman, and Shawan Dogramaci
Hydrol. Earth Syst. Sci., 27, 809–836, https://doi.org/10.5194/hess-27-809-2023, https://doi.org/10.5194/hess-27-809-2023, 2023
Short summary
Short summary
Here we present a hydrological framework for understanding the mechanisms supporting the persistence of water in pools along non-perennial rivers. Pools may collect water after rainfall events, be supported by water stored within the river channel sediments, or receive inflows from regional groundwater. These hydraulic mechanisms can be identified using a range of diagnostic tools (critiqued herein). We then apply this framework in north-west Australia to demonstrate its value.
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023, https://doi.org/10.5194/hess-27-761-2023, 2023
Short summary
Short summary
Water can move between river catchments via the subsurface, termed intercatchment groundwater flow (IGF). We show how a perceptual model of IGF can be developed with relatively simple geological interpretation and data requirements. We find that IGF dynamics vary in space, correlated to the dominant underlying geology. We recommend that IGF
loss functionsmay be used in conceptual rainfall–runoff models but should be supported by perceptualisation of IGF processes and connectivities.
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 27, 303–318, https://doi.org/10.5194/hess-27-303-2023, https://doi.org/10.5194/hess-27-303-2023, 2023
Short summary
Short summary
The increasing frequency of severe and prolonged droughts threatens our freshwater resources. While we understand drought impacts on water quantity, its effects on water quality remain largely unknown. Here, we studied the impact of the unprecedented 2018–2019 drought in Central Europe on nitrate export in a heterogeneous mesoscale catchment in Germany. We show that severe drought can reduce a catchment's capacity to retain nitrogen, intensifying the internal pollution and export of nitrate.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 5015–5033, https://doi.org/10.5194/hess-26-5015-2022, https://doi.org/10.5194/hess-26-5015-2022, 2022
Short summary
Short summary
There is serious concern that river floods are increasing. Starting from explanations discussed in public, the article addresses three hypotheses: land-use change, hydraulic structures, and climate change increase floods. This review finds that all three changes have the potential to not only increase floods, but also to reduce them. It is crucial to consider all three factors of change in flood risk management and communicate them to the general public in a nuanced way.
Amar Halifa-Marín, Miguel A. Torres-Vázquez, Enrique Pravia-Sarabia, Marc Lemus-Canovas, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Hydrol. Earth Syst. Sci., 26, 4251–4263, https://doi.org/10.5194/hess-26-4251-2022, https://doi.org/10.5194/hess-26-4251-2022, 2022
Short summary
Short summary
Near-natural Iberian water resources have suddenly decreased since the 1980s. These declines have been promoted by the weakening (enhancement) of wintertime precipitation (the NAOi) in the most humid areas, whereas afforestation and drought intensification have played a crucial role in semi-arid areas. Future water management would benefit from greater knowledge of North Atlantic climate variability and reforestation/afforestation processes in semi-arid catchments.
José L. J. Ledesma, Anna Lupon, Eugènia Martí, and Susana Bernal
Hydrol. Earth Syst. Sci., 26, 4209–4232, https://doi.org/10.5194/hess-26-4209-2022, https://doi.org/10.5194/hess-26-4209-2022, 2022
Short summary
Short summary
We studied a small stream located in a Mediterranean forest. Our goal was to understand how stream flow and the presence of riparian forests, which grow in flat banks near the stream, influence the availability of food for aquatic microorganisms. High flows were associated with higher amounts of food because rainfall episodes transfer it from the surrounding sources, particularly riparian forests, to the stream. Understanding how ecosystems work is essential to better manage natural resources.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022, https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Short summary
This study is analyses how characteristics of precipitation events and soil moisture and temperature dynamics during these events can be used to model the associated streamflow responses in intermittent streams. The models are used to identify differences between the dominant controls of streamflow intermittency in three distinct geologies of the Attert catchment, Luxembourg. Overall, soil moisture was found to be the most important control of intermittent streamflow in all geologies.
Saritha Padiyedath Gopalan, Adisorn Champathong, Thada Sukhapunnaphan, Shinichiro Nakamura, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 26, 2541–2560, https://doi.org/10.5194/hess-26-2541-2022, https://doi.org/10.5194/hess-26-2541-2022, 2022
Short summary
Short summary
The modelling of diversion canals using hydrological models is important because they play crucial roles in water management. Therefore, we developed a simplified canal diversion scheme and implemented it into the H08 global hydrological model. The developed diversion scheme was validated in the Chao Phraya River basin, Thailand. Region-specific validation results revealed that the H08 model with the diversion scheme could effectively simulate the observed flood diversion pattern in the basin.
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 2469–2480, https://doi.org/10.5194/hess-26-2469-2022, https://doi.org/10.5194/hess-26-2469-2022, 2022
Short summary
Short summary
Sound understanding of how floods come about allows for the development of more reliable flood management tools that assist in mitigating their negative impacts. This article reviews river flood generation processes and flow paths across space scales, starting from water movement in the soil pores and moving up to hillslopes, catchments, regions and entire continents. To assist model development, there is a need to learn from observed patterns of flood generation processes at all spatial scales.
Jeenu Mathai and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 26, 2019–2033, https://doi.org/10.5194/hess-26-2019-2022, https://doi.org/10.5194/hess-26-2019-2022, 2022
Short summary
Short summary
With availability of large samples of data in catchments, it is necessary to develop indices that describe the streamflow processes. This paper describes new indices applicable for the rising and falling limbs of streamflow hydrographs. The indices provide insights into the drivers of the hydrographs. The novelty of the work is on differentiating hydrographs by their time irreversibility property and offering an alternative way to recognize primary drivers of streamflow hydrographs.
Nathan G. F. Reaver, David A. Kaplan, Harald Klammler, and James W. Jawitz
Hydrol. Earth Syst. Sci., 26, 1507–1525, https://doi.org/10.5194/hess-26-1507-2022, https://doi.org/10.5194/hess-26-1507-2022, 2022
Short summary
Short summary
The Budyko curve emerges globally from the behavior of multiple catchments. Single-parameter Budyko equations extrapolate the curve concept to individual catchments, interpreting curves and parameters as representing climatic and biophysical impacts on water availability, respectively. We tested these two key components theoretically and empirically, finding that catchments are not required to follow Budyko curves and usually do not, implying the parametric framework lacks predictive ability.
Clemens Messerschmid and Amjad Aliewi
Hydrol. Earth Syst. Sci., 26, 1043–1061, https://doi.org/10.5194/hess-26-1043-2022, https://doi.org/10.5194/hess-26-1043-2022, 2022
Short summary
Short summary
Temporal distribution of groundwater recharge has been widely studied; yet, much less attention has been paid to its spatial distribution. Based on a previous study of field-measured and modelled formation-specific recharge in the Mediterranean, this paper differentiates annual recharge coefficients in a novel approach and basin classification framework for physical features such as lithology, soil and LU/LC characteristics, applicable also in other previously ungauged basins around the world.
Thea Wingfield, Neil Macdonald, Kimberley Peters, and Jack Spees
Hydrol. Earth Syst. Sci., 25, 6239–6259, https://doi.org/10.5194/hess-25-6239-2021, https://doi.org/10.5194/hess-25-6239-2021, 2021
Short summary
Short summary
Human activities are causing greater and more frequent floods. Natural flood management (NFM) uses processes of the water cycle to slow the flow of rainwater, bringing together land and water management. Despite NFM's environmental and social benefits, it is yet to be widely adopted. Two environmental practitioner groups collaborated to produce a picture of the barriers to delivery, showing that there is a perceived lack of support from government and the public for NFM.
Katharina Blaurock, Burkhard Beudert, Benjamin S. Gilfedder, Jan H. Fleckenstein, Stefan Peiffer, and Luisa Hopp
Hydrol. Earth Syst. Sci., 25, 5133–5151, https://doi.org/10.5194/hess-25-5133-2021, https://doi.org/10.5194/hess-25-5133-2021, 2021
Short summary
Short summary
Dissolved organic carbon (DOC) is an important part of the global carbon cycle with regards to carbon storage, greenhouse gas emissions and drinking water treatment. In this study, we compared DOC export of a small, forested catchment during precipitation events after dry and wet preconditions. We found that the DOC export from areas that are usually important for DOC export was inhibited after long drought periods.
Michael Stoelzle and Lina Stein
Hydrol. Earth Syst. Sci., 25, 4549–4565, https://doi.org/10.5194/hess-25-4549-2021, https://doi.org/10.5194/hess-25-4549-2021, 2021
Short summary
Short summary
We found with a scientific paper survey (~ 1000 papers) that 45 % of the papers used rainbow color maps or red–green visualizations. Those rainbow visualizations, although attracting the media's attention, will not be accessible for up to 10 % of people due to color vision deficiency. The rainbow color map distorts and misleads scientific communication. The study gives guidance on how to avoid, improve and trust color and how the flaws of the rainbow color map should be communicated in science.
Tingting Ning, Zhi Li, Qi Feng, Zongxing Li, and Yanyan Qin
Hydrol. Earth Syst. Sci., 25, 3455–3469, https://doi.org/10.5194/hess-25-3455-2021, https://doi.org/10.5194/hess-25-3455-2021, 2021
Short summary
Short summary
Previous studies decomposed ET variance in precipitation, potential ET, and total water storage changes based on Budyko equations. However, the effects of snowmelt and vegetation changes have not been incorporated in snow-dependent basins. We thus extended this method in arid alpine basins of northwest China and found that ET variance is primarily controlled by rainfall, followed by coupled rainfall and vegetation. The out-of-phase seasonality between rainfall and snowmelt weaken ET variance.
Lovrenc Pavlin, Borbála Széles, Peter Strauss, Alfred Paul Blaschke, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 2327–2352, https://doi.org/10.5194/hess-25-2327-2021, https://doi.org/10.5194/hess-25-2327-2021, 2021
Short summary
Short summary
We compared the dynamics of streamflow, groundwater and soil moisture to investigate how different parts of an agricultural catchment in Lower Austria are connected. Groundwater is best connected around the stream and worse uphill, where groundwater is deeper. Soil moisture connectivity increases with increasing catchment wetness but is not influenced by spatial position in the catchment. Groundwater is more connected to the stream on the seasonal scale compared to the event scale.
William Rust, Mark Cuthbert, John Bloomfield, Ron Corstanje, Nicholas Howden, and Ian Holman
Hydrol. Earth Syst. Sci., 25, 2223–2237, https://doi.org/10.5194/hess-25-2223-2021, https://doi.org/10.5194/hess-25-2223-2021, 2021
Short summary
Short summary
In this paper, we find evidence for the cyclical behaviour (on a 7-year basis) in UK streamflow records that match the main cycle of the North Atlantic Oscillation. Furthermore, we find that the strength of these 7-year cycles in streamflow is dependent on proportional contributions from groundwater and the response times of the underlying groundwater systems. This may allow for improvements to water management practices through better understanding of long-term streamflow behaviour.
Elnaz Azmi, Uwe Ehret, Steven V. Weijs, Benjamin L. Ruddell, and Rui A. P. Perdigão
Hydrol. Earth Syst. Sci., 25, 1103–1115, https://doi.org/10.5194/hess-25-1103-2021, https://doi.org/10.5194/hess-25-1103-2021, 2021
Short summary
Short summary
Computer models should be as simple as possible but not simpler. Simplicity refers to the length of the model and the effort it takes the model to generate its output. Here we present a practical technique for measuring the latter by the number of memory visits during model execution by
Strace, a troubleshooting and monitoring program. The advantage of this approach is that it can be applied to any computer-based model, which facilitates model intercomparison.
Sheena A. Spencer, Axel E. Anderson, Uldis Silins, and Adrian L. Collins
Hydrol. Earth Syst. Sci., 25, 237–255, https://doi.org/10.5194/hess-25-237-2021, https://doi.org/10.5194/hess-25-237-2021, 2021
Short summary
Short summary
We used unique chemical signatures of precipitation, hillslope soil water, and groundwater sources of streamflow to explore seasonal variation in runoff generation in a snow-dominated mountain watershed underlain by glacial till and permeable bedrock. Reacted hillslope water reached the stream first at the onset of snowmelt, followed by a dilution effect by snowmelt from May to June. Groundwater and riparian water were important sources later in the summer. Till created complex subsurface flow.
Tian Lan, Kairong Lin, Chong-Yu Xu, Zhiyong Liu, and Huayang Cai
Hydrol. Earth Syst. Sci., 24, 5859–5874, https://doi.org/10.5194/hess-24-5859-2020, https://doi.org/10.5194/hess-24-5859-2020, 2020
Dan Rosbjerg
Hydrol. Earth Syst. Sci., 24, 4575–4585, https://doi.org/10.5194/hess-24-4575-2020, https://doi.org/10.5194/hess-24-4575-2020, 2020
Short summary
Short summary
August Colding contributed the first law of thermodynamics, evaporation from water and grass, steady free surfaces in conduits, the cross-sectional velocity distribution in conduits, a complete theory for the Gulf Stream, air speed in cyclones, the piezometric surface in confined aquifers, the unconfined elliptic water table in soil between drain pipes, and the wind-induced set-up in the sea during storms.
Zhengke Pan, Pan Liu, Chong-Yu Xu, Lei Cheng, Jing Tian, Shujie Cheng, and Kang Xie
Hydrol. Earth Syst. Sci., 24, 4369–4387, https://doi.org/10.5194/hess-24-4369-2020, https://doi.org/10.5194/hess-24-4369-2020, 2020
Short summary
Short summary
This study aims to identify the response of catchment water storage capacity (CWSC) to meteorological drought by examining the changes of hydrological-model parameters after drought events. This study improves our understanding of possible changes in the CWSC induced by a prolonged meteorological drought, which will help improve our ability to simulate the hydrological system under climate change.
Zong-Jie Li, Zong-Xing Li, Ling-Ling Song, Juan Gui, Jian Xue, Bai Juan Zhang, and Wen De Gao
Hydrol. Earth Syst. Sci., 24, 4169–4187, https://doi.org/10.5194/hess-24-4169-2020, https://doi.org/10.5194/hess-24-4169-2020, 2020
Short summary
Short summary
This study mainly explores the hydraulic relations, recharge–drainage relations and their transformation paths, and the processes of each water body. It determines the composition of runoff, quantifies the contribution of each runoff component to different types of tributaries, and analyzes the hydrological effects of the temporal and spatial variation in runoff components. More importantly, we discuss the hydrological significance of permafrost and hydrological processes.
Michal Jenicek and Ondrej Ledvinka
Hydrol. Earth Syst. Sci., 24, 3475–3491, https://doi.org/10.5194/hess-24-3475-2020, https://doi.org/10.5194/hess-24-3475-2020, 2020
Short summary
Short summary
Changes in snow affect the runoff seasonality, including summer low flows. Here we analyse this effect in 59 mountain catchments in Czechia. We show that snow is more effective in generating runoff compared to rain. Snow-poor years generated lower groundwater recharge than snow-rich years, which resulted in higher deficit volumes in summer. The lower recharge and runoff in the case of a snowfall-to-rain transition due to air temperature increase might be critical for water supply in the future.
Julia L. A. Knapp, Jana von Freyberg, Bjørn Studer, Leonie Kiewiet, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 2561–2576, https://doi.org/10.5194/hess-24-2561-2020, https://doi.org/10.5194/hess-24-2561-2020, 2020
Short summary
Short summary
Changes of stream water chemistry in response to discharge changes provide important insights into the storage and release of water from the catchment. Here we investigate the variability in concentration–discharge relationships among different solutes and hydrologic events and relate it to catchment conditions and dominant water sources.
Elizabeth R. Jachens, David E. Rupp, Clément Roques, and John S. Selker
Hydrol. Earth Syst. Sci., 24, 1159–1170, https://doi.org/10.5194/hess-24-1159-2020, https://doi.org/10.5194/hess-24-1159-2020, 2020
Short summary
Short summary
Recession analysis uses the receding streamflow following precipitation events to estimate watershed-average properties. Two methods for recession analysis use recession events individually or all events collectively. Using synthetic case studies, this paper shows that analyzing recessions collectively produces flawed interpretations. Moving forward, recession analysis using individual recessions should be used to describe the average and variability of watershed behavior.
Lu Lin, Man Gao, Jintao Liu, Jiarong Wang, Shuhong Wang, Xi Chen, and Hu Liu
Hydrol. Earth Syst. Sci., 24, 1145–1157, https://doi.org/10.5194/hess-24-1145-2020, https://doi.org/10.5194/hess-24-1145-2020, 2020
Short summary
Short summary
In this paper, recession flow analysis – assuming nonlinearized outflow from aquifers into streams – was used to quantify active groundwater storage in a headwater catchment with high glacierization and large-scale frozen ground on the Tibetan Plateau. Hence, this work provides a perspective to clarify the impact of glacial retreat and frozen ground degradation due to climate change on hydrological processes.
Francesc Gallart, Jana von Freyberg, María Valiente, James W. Kirchner, Pilar Llorens, and Jérôme Latron
Hydrol. Earth Syst. Sci., 24, 1101–1107, https://doi.org/10.5194/hess-24-1101-2020, https://doi.org/10.5194/hess-24-1101-2020, 2020
Short summary
Short summary
How catchments store and release rain or melting water is still not well known. Now, it is broadly accepted that most of the water in streams is older than several months, and a relevant part may be many years old. But the age of water depends on the stream regime, being usually younger during high flows. This paper tries to provide tools for better analysing how the age of waters varies with flow in a catchment and for comparing the behaviour of catchments diverging in climate, size and regime.
Sebastian J. Gnann, Nicholas J. K. Howden, and Ross A. Woods
Hydrol. Earth Syst. Sci., 24, 561–580, https://doi.org/10.5194/hess-24-561-2020, https://doi.org/10.5194/hess-24-561-2020, 2020
Short summary
Short summary
In many places, seasonal variability in precipitation and evapotranspiration (climate) leads to seasonal variability in river flow (streamflow). In this work, we explore how climate seasonality is transformed into streamflow seasonality and what controls this transformation (e.g. climate aridity and geology). The results might be used in grouping catchments, predicting the seasonal streamflow regime in ungauged catchments, and building hydrological simulation models.
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019, https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Short summary
The movement of water and solutes between streams and their shallow, connected subsurface is important to many ecosystem functions. These exchanges are widely expected to vary with stream flow across space and time, but these assumptions are seldom tested across basin scales. We completed more than 60 experiments across a 5th-order river basin to document these changes, finding patterns in space but not time. We conclude space-for-time and time-for-space substitutions are not good assumptions.
Lucy J. Barker, Jamie Hannaford, Simon Parry, Katie A. Smith, Maliko Tanguy, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 4583–4602, https://doi.org/10.5194/hess-23-4583-2019, https://doi.org/10.5194/hess-23-4583-2019, 2019
Short summary
Short summary
It is important to understand historic droughts in order to plan and prepare for possible future events. In this study we use the standardised streamflow index for 1891–2015 to systematically identify, characterise and rank hydrological drought events for 108 near-natural UK catchments. Results show when and where the most severe events occurred and describe events of the early 20th century, providing catchment-scale detail important for both science and planning applications of the future.
Ralf Loritz, Axel Kleidon, Conrad Jackisch, Martijn Westhoff, Uwe Ehret, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, https://doi.org/10.5194/hess-23-3807-2019, 2019
Short summary
Short summary
In this study, we develop a topographic index explaining hydrological similarity within a energy-centered framework, with the observation that the majority of potential energy is dissipated when rainfall becomes runoff.
Cited articles
Abbott, B. W., Baranov, V., Mendoza-Lera, C., Nikolakopoulou, M., Harjung, A.,
Kolbe, T., Balasubramanian, M. N., Vaessen, T. N., Ciocca, F., Campeau, A.,
Wallin, M. B., Romeijn, P., Antonelli, M., Gonçalves, J., Datry, T.,
Laverman, A. M., de Dreuzy, J. R., Hannah, D. M., Krause, S., Oldham, C., and
Pinay, G.: Using multi-tracer inference to move beyond single-catchment
ecohydrology, Earth-Sci. Rev., 160, 19–42, https://doi.org/10.1016/j.earscirev.2016.06.014, 2016.
Addiscott, T. M.: Nitrate, Agriculture and the Environment, CAB International, Wallingford, 2005.
Aguilera, R. and Melack, J. M.: Concentration-discharge responses to storm
events in coastal California watershed, Water Resour. Res., 54, 407–424,
https://doi.org/10.1002/2017WR021578, 2018.
Baronas, J., Torres, M., Clark, K., and West, A.: Mixing as a driver of temporal
variations in river hydrochemistry: 2. Major and trace element concentration
dynamics in the Andes–Amazon, Water Resour. Res., 53, 3120–3145, https://doi.org/10.1002/2016WR019737, 2017.
Basu, N. B., Destouni, G., Jawitz, J. W., Thompson, S. E., Loukinova, N. V.,
Darracq, A., Zanardo, S., Yaeger, M., Sivapalan, M., Rinaldo, A., and Rao, P.
S. C.: Nutrient loads exported from managed catchments reveal emergent
biogeochemical stationarity, Geophys. Res. Lett., 37, L23404, https://doi.org/10.1029/2010GL045168, 2010.
Basu, N. B., Rao, P. S. C., and Thompson, S. E.: Hydrologic and biogeochemical
functioning of intensively managed catchments: A synthesis of top-down analyses,
Water Resour. Res., 47, W00J15, https://doi.org/10.1029/2011WR010800, 2011.
Beisecker, J. E. and Leifeste, D. K.: Water quality of hydrologic bench marks:
An indicator of water quality in the natural environment, USGS Circular 460-E,
US Geological Survey, Reston, Virginia, 1975.
Birsan, M. V., Molnar, P., Burlando, P., and Pfaundler, M.: Streamflow trends
in Switzerland, J. Hydrol., 314, 312–329, https://doi.org/10.1016/j.jhydrol.2005.06.008, 2005.
Bothe, H.: Biology of the Nitrogen Cycle, 1st Edn., Elservier, Amsterdam, the Netherlands, 2007.
Boyer, E. W., Hornberger, G. M., Bencala, K. E., and McKnight, D.: Overview of
a simple model describing variation of dissolved organic carbon in an upland
catchment, Ecol. Model., 86, 183–188, 1996.
Boyer, E. W., Hornberger, G. M., Bencala, K. E., and McKnight, D.: Response
characteristics of DOC flushing in an alpine catchment, Hydrol. Process.,
11, 1635–1647, 1997.
Brown, G. H., Sharp, M., and Tranter, M.: Subglacial chemical erosion: seasonal
variations in solute provenance, Haute Glacier d'Arolla, Valais, Switzerland,
Ann. Glaciol., 22, 25–31, https://doi.org/10.3189/1996AoG22-1-25-31, 1996.
Brunet, F., Potot, C., Probst, A., and Probst, J. L.: Stable carbon isotope
evidence for nitrogenous fertilizer impact on carbonate weathering in a small
agricultural watershed, Rapid Commun. Mass Spectrom., 25, 2682–2690,
https://doi.org/10.1002/rcm.5050, 2011.
Butturini, A., Alvarez, M., Bernal, S., and Vazquez, E.: Diversity and temporal
sequences of forms of DOC and NO3-discharge responses in an
intermittent stream: Predictable or random succession?, J. Geophys. Res., 113,
G03016, https://doi.org/10.1029/2008JG000721, 2008.
Calmels, D., Galy, A., Hovius, N., Bickle, M., West, A. J., Chen, M. C., and
Chapman, H.: Contribution of deep groundwater to the weathering budget in a
rapidly eroding mountain belt, Taiwan, Earth Planet. Sc. Lett., 303, 48–58,
https://doi.org/10.1016/j.epsl.2010.12.032, 2011.
Chorover, J., Derry, L. A., and McDowell, W. H.: Concentration-discharge
relations in the critical zone: Implications for resolving critical zone
structure, function, and evolution, Water Resour. Res., 53, https://doi.org/10.1002/2017WR021111, 2017.
Diamond, J. S. and Cohen, M J.: Complex patterns of catchment solute-discharge
relationships for coastal plain rivers, Hydrol. Process., 32, 388–401, 2017.
Duncan, J. M., Band, L. E., and Groffman, P. M.: Variable nitrate
Concentration–Discharge Relationships in a Forested Watershed, Hydrol. Process.,
31, 1817–1824, https://doi.org/10.1002/hyp.11136, 2017a.
Duncan, J. M., Welty, C., Kemper, J. T., Groffman, P. M., and Band, L. E.:
Dynamics of nitrate concentration-discharge patterns in a urban watershed,
Water Resour. Res., 53, 7349–7365, https://doi.org/10.1002/2017WR020500, 2017b.
EAWAG: Häufig gestellte Fragen zur Strassensalzung, EAWAG, Dübendorf, 2011.
EAWAG: NADUF – National long-term surveillance of Swiss rivers,
available at: https://www.eawag.ch/en/department/wut/main-focus/chemistry-of-water-resources/naduf/,
last access: 28 October 2016.
Evans, C. and Davies, T. D.: Causes of concentration/discharge hysteresis and
its potential as a tool for analysis of episode hydrochemistry, Water Resour.
Res., 34, 129–137, 1998.
Evans, C. D., Monteith, D. T., and Cooper, D. M.: Long-term increases in surface
water dissolved organic carbon: Observations, possible causes and environmental
impacts, Environ. Pollut., 137, 55–71, https://doi.org/10.1016/j.envpol.2004.12.031, 2005.
Fairchild, I. J., Killawee, J. A., Hubbard, B., and Dreybrodt, W.:
Interactions of calcareous suspended sediment with glacial meltwater: field
test of dissolution behaviour, Chemical Geology, 155(3-4), 243-263, 1999.
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W.,
Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A.,
Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., and Vörösmarty,
C. J.: Nitrogen cycles: past, present, and future, Biogeochemistry, 70, 153–226, 2004.
Gianini, M. F. D., Gehrig, R., Fischer, A., Ulrich, A., Wichser, A., and Hueglin,
C.: Chemical composition of PM10 in Switzerland: an analysis for 2008/2009 and
changes since 1998/1999, Atmos. Environ., 54, 97–106, https://doi.org/10.1016/j.atmosenv.2012.02.037, 2012.
Godsey, S. E., Kirchner, J. W., and Clow, D. W.: Concentration–discharge
relationships reflect chemostatic characteristics of US catchments, Hydrol.
Process., 23, 1844–1864, 2009.
Gwenzi, W., Chinyama, S. R., and Togarepi, S.: Concentration-discharge patterns
in a small urban headwater stream in a seasonally dry water-limited tropical
environment, J. Hydrol., 550, 12–25, https://doi.org/10.1016/j.jhydrol.2017.04.029, 2017.
Haggard, B. E. and Sharpley, A. N.: Phosphorus transport in streams: processes
and modelling considerations, in Modelling phosphorus in the environment, edited
by: Radcliff, D. E. and Cabrera, M. L., CRC Press, Boca Raton, 105–130, 2007.
Hall, F. R.: Dissolved solids-discharge relationships 1. Mixing models, Water
Resour. Res., 6, 845–850, 1970.
Hall, F. R.: Dissolved solids-discharge relationships 2. Applications to field
data, Water Resour. Res., 7, 591–601, 1971.
Hamed, K. H. and Rao, A. R.: A modified Mann-Kendall trend test for autocorrelated
data, J. Hydrol., 204, 182–196, https://doi.org/10.1016/S0022-1694(97)00125-X, 1998.
Hamilton, S. K.: Biogeochemical time lags that may delay responses of streams
to ecological restoration, Freshwater Biol., 57, 43–57, https://doi.org/10.1111/j.1365-2427.2011.02685.x, 2011.
Hamilton, S. K., Kurzman, A. L., Arango, C., Jin, L., and Robertson, G. P.:
Evidence for carbon sequestration by agricultural liming, Global Biogeochem.
Cy., 21, GB2021, https://doi.org/10.1029/2006GB002738, 2007.
Hari, R. and Zobrist, J.: Trendanalyse der NADUF – Messresultate 1974 bis 1998,
Schriftenreihe der Eawag No. 17, available at: http://www.naduf.ch (last
access: January 2017), 2003.
Herndon, E. M., Dere, A. L., Sullivan, P. L., Norris, D., Reynolds, B., and
Brantley, S. L.: Landscape heterogeneity drives contrasting concentration–discharge
relationships in shale headwater catchments, Hydrol. Earth Syst. Sci., 19,
3333–3347, https://doi.org/10.5194/hess-19-3333-2015, 2015.
Hoagland, B., Russo, T. A., Gu, X., Hill, L., Kaye, J., Forsythe, B., and
Brantley, S. L.: Hyporheic zone influences on concentration–discharge
relationships in a headwater sandstone stream, Water Resour. Res., 53,
4643–4667, https://doi.org/10.1002/2016WR019717, 2017.
Hornberger, G. M., Bencala, K. E., and McKnight, D. M.: Hydrological controls
on dissolved organic carbon during snowmelt in the Snake River near Montezuma,
Colorado, Biogeochemistry, 25, 147–165, 1994.
Hunsaker, C. T. and Johnson, D. W.: Concentration-discharge relationships in
headwater streams of the Sierra Nevada, California, Water Resour. Res., 53,
7869–7884, https://doi.org/10.1002/2016WR019693, 2017.
Jakob, A., Binderheim-Bankay, E., and Davis, J. S.: National long-term
surveillance of Swiss rivers, Verhandlungen der Internationalen Vereinigung
für Theoretische und Angewandte Limnologie, 28, 1101–1106, 2002.
Johnson, N. M., Likens, G. E., Bormannn, F. H., Fisher, D. W., and Pierce, R.
S.: A working model for the variation in stream water chemistry at the Hubbard
Brook experimental forest, New Empshire, Water Resour. Res., 5, 1353–1363, 1969.
Kendall, M. G.: Rank correlation methods, 2nd Edn., Oxford, England, 1955.
Kilchmann, S., Waber, H. N., Parriaux, A., and Bensimon, M.: Natural tracers
in recent groundwaters from different Alpine aquifers, Hydrogeol. J., 12, 643–661, 2004.
Kim, H., Dietrich, W. E., Thurnhoffer, B. M., Bishop, J. K. B., and Fung, I. Y.:
Controls on solute concentration-discharge relationships revealed by simultaneous
hydrochemistry observations of hillslope runoff and stream flow: the importance
of critical zone structure, Water Resour. Res., 53, 1424–1443, https://doi.org/10.1002/2016WR019722, 2017.
Kirchner, J. W. and Neal, C.: Universal fractal scaling in stream chemistry
and its applications for solute transport and water quality trend detection,
P. Natl. Acad. Sci. USA, 110, 12213–12218, https://doi.org/10.1073/pnas.1304328110, 2013.
Kirchner, J. W., Feng, X., and Neal, C.: Fractal stream chemistry and its
implications for contaminant transport in catchments, Nature, 403, 524–527, 2000.
Kober, B., Schwalb, A., Schettler, G., and Wessels, M.: Constraints on paleowater
dissolved loads and in catchment weathering over the past 16 ka from
87Sr∕86Sr ratios and chemistry of freshwater
ostracode tests in sediments of Lake Constance, Central Europe, Chem. Geol.,
240, 361–376, https://doi.org/10.1016/j.chemgeo.2007.03.005, 2007.
Langbein, W. B. and Dawdy, D. R.: Occurrence of dissolved solids in surface
waters, US Geological Survey Professional Papers 501-D, US Geological Survey,
D115–D117, 1964.
Leopold, L. B.: A National Network of Hydrologic Bench Marks, Geological Survey
Circular 460-B, United States Department of the Interior, Geological Survey,
Washington, D.C., 1962.
Maher, K.: The dependence of chemical weathering rates on fluid residence time,
Earth Planet. Sc. Lett., 294, 101–110, 2010.
Maher, K: The role of fluid residence time and topographic scales in determining
chemical fluxes from landscapes, Earth Planet. Sc. Lett., 312, 48–58, 2011.
Mann, H.: Nonparametric tests against trend, Econometrica, 13, 245–259,
https://doi.org/10.2307/1907187, 1945.
McGillen, M. R. and Fairchild, I. J.: An experimental study of incongruent
dissolution of CaCO3 under analogue glacial conditions, J. Glaciol.,
51, 383–390, https://doi.org/10.3189/172756505781829223, 2005.
McGlynn, B. L. and McDonnell, J. J.: Role of discrete landscape units in
controlling catchment dissolved organic carbon dynamics, Water Resour. Res.,
39, 1090, https://doi.org/10.1029/2002WR001525, 2003.
McIntosh, J. C., Schaumberg, C., Perdrial, J., Harpold, A., Vázquez-Ortega,
A., Rasmussen, C., Vinson, D., Zapata-Rios, X., Brooks, P. D., Meixner, T.,
Pelletier, J., Derry, L., and Chorover, J.: Geochemical evolution of the
Critical Zone across variable time scales informs concentration–discharge
relationships: Jemez River Basin Critical Zone Observatory, Water Resour. Res.,
53, 4169–4196, https://doi.org/10.1002/2016WR019712, 2017.
Meybeck, M.: Global chemical weathering of surficial rocks estimated from river
dissolved loads, Am. J. Sci., 287, 401–428, 1987.
Moatar, F., Abbott, B. W., Minaudo, C., Curie, F., and Pinay, G.: Elemental
properties, hydrology, and biology interact to shape concentration-discharge
curves for carbon, nutrients, sediment, and major ions, Water Resour. Res., 53,
1270–1287, https://doi.org/10.1002/2016WR019635, 2017.
Moquet, J. S., Guyot, J. L., Crave, A., Viers, J., Filizola, N., Martinez, J.
M., Oliveira, T. C., Sánchez, L. S. H., Lagane, C., Casimiro, W. S. L.,
Noriega, L., and Pombosa, R.: Amazon River dissolved load: temporal dynamics
and annual budget from the Andes to the ocean, Environ. Sci. Poll. Res., 23,
11405–11429, https://doi.org/10.1007/s11356-015-5503-6, 2015.
Mora, A., Mahlknecht, J., Baquero, J. C., Laraque, A., Alfonso, J. A., Pisapia,
D., and Balza, L.: Dynamics of dissolved major (Na, K, Ca, Mg, and Si) and trace
(Al, Fe, Mn, Zn, Cu, and Cr) elements along the lower Orinoco River, Hydrol.
Process., 31, 597–611, https://doi.org/10.1002/hyp.11051, 2016.
Müller, B. and Gächter, R.: Increasing chloride concentrations in Lake
Constance: characterization of sources and estimation of loads, Aquat. Sci.,
74, 101–112, 2012.
Musolff, A., Schmidt, C., Selle, B., and Fleckenstein, J. H.: Catchment controls
on solute export, Adv. Water Resour., 86, 133–146, 2015.
Musolff, A., Fleckenstein, J. H., Rao, P. S. C., and Jawitz, J. W.: Emergent
archetype patterns of coupled hydrologic and biogeochemical responses in
catchments, Geophys. Res. Lett., 44, 4143–4151, 2017.
Neal, C., Reynolds, B., Rowland, P., Norris, D., Kirchner, J. W., Neal, M.,
Sleep, D., Lawlor, A., Woods, C., Thacker, S., Guyatt, H., Vincent, C.,
Hockenhull, K., Wickham, H., Harman, S., and Armstrong, L.: High-frequency
water quality time series in precipitation and streamflow: From fragmentary
signals to scientific challenge, Sci. Total Environ., 434, 3–12,
https://doi.org/10.1016/j.scitotenv.2011.10.072, 2012.
Neal, C., Reynolds, D., Kirchner, Rowland, P., Norris, D., Sleep, D., Lawlor,
A., Woods, C., Thacker, S., Guyatt, H., Vincent, Lehto, K., Grant, S., Williams,
J., Neal, M., Wickham, H., Harman, S., and Armstrong, L.: High-frequency
precipitation and stream water quality time series from Plynlimon, Wales: an
openly accessible data resource spanning the periodic table, Hydrol. Process.,
27, 2531–2539, https://doi.org/10.1002/hyp.9814, 2013.
Novotny, E. V., Murphy, D., and Stefan, H. G.: Increase of urban lake salinity
by road deicing salt, Sci. Total Environ., 406, 131–144, https://doi.org/10.1016/j.scitotenv.2008.07.037, 2008.
Pedrial, J. N., McIntosh, J., Harpold, A., Brooks, P. D., Zapata-Rios, X., Ray,
J., Meixner, T., Kanduc, T., Litvak, M., Troch, P. A., and Chorover, J.: Stream
water carbon controls in seasonally snow-covered mountain catchments: impact of
inter-annual variability of water fluxes, catchment aspect and seasonal processes,
Biogeochemistry, 118, 273–290, https://doi.org/10.1007/s10533-013-9929-y, 2014.
Powers, S. M., Bruulsema, T. W., Burt, T. P., Chan, N. I., Elser, J. J.,
Haygarth, P. M., Howden, N. J. K., Jarvie, H. P., Lyu, Y., Peterson, H. M.,
Sharpley, A. N., Shen, J., Worrall, F., and Zhang, F.: Long-term accumulation
and transport of anthropogenic phosphorus in three river basins, Nat. Geosci.,
9, 353–356, https://doi.org/10.1038/NGEO2693, 2016.
Prasuhn, V. and Sieber, U.: Changes in diffuse phosphorus and nitrogen inputs
into surface waters in the Rhine watershed in Switzerland, Aquat. Sci.,
67, 363–371, 2005.
Rodríguez-Murillo, J., Zobrist, J., and Filella, M.: Temporal trends in
organic carbon content in the main Swiss rivers, 1974–2010, Sci. Total Environ.,
502, 206–217, 2014.
Rue, G. P., Rock, N. D., Gabor, R. S., Pitlick, J., Tfaily, M., and McNight,
D. M.: Concentration-discharge relationsips during an extreme event: contrasting
behavior of solutes and changes to chemical quality of dissolved organic material
in the Boulder Creek Watershed during the September 2013 flood, Water Resour.
Res., 53, 5278–5297, https://doi.org/10.1002/2016WR019708, 2017.
Schlesinger, W. H. and Melack, J. M.: Transport of organic carbon in the
world's rivers, Tellus, 33, 172–187, https://doi.org/10.3402/tellusa.v33i2.10706, 1981.
Sharpley, A., Jarvie, H. P., Buda, A., May, L., Spears, B., and Kleinman, P.:
Phosphorus legacy: Overcoming the effects of past management practices to
mitigate future water quality impairment, J. Environ. Qual., 42, 1308–1326,
https://doi.org/10.2134/jeq2013.03.0098, 2013.
Thompson, S. E., Basu, N. B., Lascurain, J. J., Aubeneau, A., and Rao, P. S. C.:
Relative dominance of hydrology versus biogeochemical factors on solute export
across impact gradients, Water Resour. Res., 47, W00J05, https://doi.org/10.1029/2010WR009605, 2011.
Tipper, E. T., Lemarchand, E., Hindshaw, R. S., Reynolds, B. C., and Bourdon,
B.: Seasonal sensitivity of weathering processes: Hints from magnesium isotopes
in a glacial stream, Chem. Geol., 312, 80–92, 2012.
Torres, M. A., Baronas, J. J., Clark, K. E., Feakins, S. J., and West, A. J.:
Mixing as a driver of temporal variations in river hydrochemistry: 1. Insights
from conservative tracers in the Andes-Amazon transition, Water Resour. Res.,
53, 3102–3119, https://doi.org/10.1002/2016WR019733, 2017.
Tubaña, B. S. and Heckman, J. R.: Silicon in soils and plants, in: Silicon
and plant diseases, edited by: Rodrigues, F. A. and Datnoff, L. E., Springer,
Switzerland, https://doi.org/10.1007/978-3-319-22930-0_2, 2015.
Tunaley, C., Tetzlaff, D., Lessels, J., and Soulsby, C.: Linking high-frequency
DOC dynamics to the age of connected water sources, Water Resour. Res.,
52, 5232–5247, 2016.
Turner, R. E. and Rabalais N. N.: Changes in Mississippi River Water Quality
This Century, BioScience, 41, 140–147, https://doi.org/10.2307/1311453, 1991.
Van Meter, K. J. and Basu N. B.: Catchment legacies and time lags: a parsimonious
watershed model to predict the effects of legacy stores on nitrogen export,
PLoS ONE, 10, e0125971, https://doi.org/10.1371/journal.pone.0125971, 2015.
Van Meter, K. J., Basu, N. B., Veenstra, J. J., and Burras, C. L.: The nitrogen
legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes,
Environ. Res. Lett., 11, 035014, https://doi.org/10.1088/1748-9326/11/3/035014, 2016a.
Van Meter, K. J., Basu, N. B., and Van Cappellen, P.: Two centuries of nitrogen
dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River
Basins, Global Biogeochem. Cy., 31, 2–23, https://doi.org/10.1002/2016GB005498, 2016b.
von Freyberg, J., Studer, B., and Kirchner, J. W.: A lab in the field:
high-frequency analysis of water quality and isotopes in stream water and
precipitation, Hydrol. Earth Syst. Sci., 21, 1721–1739, https://doi.org/10.5194/hess-21-1721-2017, 2017.
von Freyberg, J., Allen, S. T., Seeger, S., Weiler, M., and Kirchner, J. W.:
Sensitivity of young water fractions to hydro-climatic forcing and landscape
properties across 22 Swiss catchments, Hydrol. Earth Syst. Sci., 22, 3841–3861,
https://doi.org/10.5194/hess-22-3841-2018, 2018.
von Strandmann, P. A. E. P., Burton, K. W:, James, R. H., van Calsteren, P.,
Gislason, S. R., and Sigfusson, B.: The influence of weathering processes on
riverine magnesium isotopes in basaltic terrain, Earth Planet. Sci. Lett.,
276, 187–197, 2008.
Ward, J. V., Malard, F., Tockner, K., and Uehlinger, U.: Influence of ground
water on surface water conditions in a glacial flood plain of the Swiss Alps,
Hydrol. Process., 13, 277–293, 1999.
Weingartner, R. and Aschwanden, H.: Abflussregimes als Grundlage zur Abschätzung
von Mittelwerten des Abflusses, in: Gruppe für Hydrologie, Universität
Bern: Hydrologischer Atlas der Schweiz, plate 5.2, Landeshydrologie, Bundesamt
für Wasser und Geologie, Berne, 1992.
White, A. F. and Blum A. E.: Effects of climate on chemical weathering in
watersheds, Geochim. Cosmochimi. Ac., 59, 1729–1747, 1995.
Wimpenny, J., James, R. H., Burton, K. W., Gannoun, A., Mokadem, F., and
Gislason, S. R.: Glacial effects on weathering processes: new insights from
the elemental lithium isotopic composition of West Greenland rivers, Earth
Planet. Sc. Lett., 290, 427–437, 2010a.
Wimpenny, J., Burton, K. W., James, R. H., Gannoun, A., Mokadem, F., and
Gislason, S. R.: The behaviour of magnesium and its isotopes during glacial
weathering in an ancient shield terrain in West Greenland, Earth Planet. Sc.
Lett., 304, 260–269, 2010b.
Winnick, M. J., Carroll, R. W. H., Williams, K. H., Maxwell, R. M., Dong, W.,
and Maher, K.: Snowmelt controls on concentration–discharge relationships and
the balance of oxidative and acid-base weathering fluxes in an alpine catchment,
East River, Colorado, Water Resour. Res., 53, 2507–2523, https://doi.org/10.1002/2016WR019724, 2017.
Wymore, A. S., Brereton R. L., Ibarra, D. E., Maher, K., and McDowell, W. H.:
Critical zone structure controls concentration-discharge relationships and
solute generation in forested tropical montane watersheds, Water Resour. Res.,
53, 6279–6295, 2017.
Zhang, X.: Biogeochemistry: a plan for efficient use of nitrogen fertilizers,
Nature, 543, 322–323, https://doi.org/10.1038/543322a, 2017.
Zimmer, M. A. and McGlynn, B. L.: Lateral, vertical, and longitudinal source
area connectivity drive runoff and carbon export across watershed scales, Water
Resour. Res., 54, 1576–1598, 2018.
Zobrist, J.: Water chemistry of Swiss Alpine rivers, in: Alpine Waters, edited
by: Bundi, U., Springer, Berlin, Heidelberg, 95–118, 2010.
Zobrist, J. and Reichert, P.: Bayesian estimation of export coefficients from
Diffuse and Point Sources of Swiss Watersheds, J. Hydrol., 329, 207–223, 2006.
Zobrist, J., Schoenenberger, U., Figura, S., and Hug, S. J.: Long-term trends
in Swiss rivers sampled continuously over 39 years reflect changes in
geochemical processes and pollution, Environ. Sci. Poll. Res., 25, 16788–16809, 2018.
Short summary
The study focuses on the solute export from rivers with the purpose of discerning the impacts of anthropic activities and catchment characteristics on water quality. The results revealed a more detectable impact of the anthropic activities than of the catchment characteristics. The solute export follows different dynamics depending on catchment characteristics and mainly on solute-specific properties. The export modality is consistent across different catchments only for a minority of solutes.
The study focuses on the solute export from rivers with the purpose of discerning the impacts of...