Articles | Volume 22, issue 2
Hydrol. Earth Syst. Sci., 22, 943–956, 2018
https://doi.org/10.5194/hess-22-943-2018
Hydrol. Earth Syst. Sci., 22, 943–956, 2018
https://doi.org/10.5194/hess-22-943-2018

Research article 02 Feb 2018

Research article | 02 Feb 2018

A dimensionless approach for the runoff peak assessment: effects of the rainfall event structure

Ilaria Gnecco et al.

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Hillslope and groundwater contributions to streamflow in a Rocky Mountain watershed underlain by glacial till and fractured sedimentary bedrock
Sheena A. Spencer, Axel E. Anderson, Uldis Silins, and Adrian L. Collins
Hydrol. Earth Syst. Sci., 25, 237–255, https://doi.org/10.5194/hess-25-237-2021,https://doi.org/10.5194/hess-25-237-2021, 2021
Short summary
A framework for seasonal variations of hydrological model parameters: impact on model results and response to dynamic catchment characteristics
Tian Lan, Kairong Lin, Chong-Yu Xu, Zhiyong Liu, and Huayang Cai
Hydrol. Earth Syst. Sci., 24, 5859–5874, https://doi.org/10.5194/hess-24-5859-2020,https://doi.org/10.5194/hess-24-5859-2020, 2020
Hydrology and beyond: the scientific work of August Colding revisited
Dan Rosbjerg
Hydrol. Earth Syst. Sci., 24, 4575–4585, https://doi.org/10.5194/hess-24-4575-2020,https://doi.org/10.5194/hess-24-4575-2020, 2020
Short summary
The influence of a prolonged meteorological drought on catchment water storage capacity: a hydrological-model perspective
Zhengke Pan, Pan Liu, Chong-Yu Xu, Lei Cheng, Jing Tian, Shujie Cheng, and Kang Xie
Hydrol. Earth Syst. Sci., 24, 4369–4387, https://doi.org/10.5194/hess-24-4369-2020,https://doi.org/10.5194/hess-24-4369-2020, 2020
Short summary
Hydrological and runoff formation processes based on isotope tracing during ablation period in the source regions of Yangtze River
Zong-Jie Li, Zong-Xing Li, Ling-Ling Song, Juan Gui, Jian Xue, Bai Juan Zhang, and Wen De Gao
Hydrol. Earth Syst. Sci., 24, 4169–4187, https://doi.org/10.5194/hess-24-4169-2020,https://doi.org/10.5194/hess-24-4169-2020, 2020
Short summary

Cited articles

Alfieri, L., Laio, F., and Claps, P.: A simulation experiment for optimal design hyetograph selection, Hydrol. Process., 22, 813–820, https://doi.org/10.1002/hyp.6646, 2008. 
Baiamonte, G. and Singh, V. P.: Modelling the probability distribution of peak discharge for infiltrating hillslopes, Water Resour. Res., 53, 6018–6032, https://doi.org/10.1002/2016WR020109, 2017. 
Beven, K.: Rainfall-Runoff Modelling: The Primer: Second Edition, Wiley-Blackwell, Chichester UK, 2012. 
Bocchiola, D. and Rosso, R.: Use of a derived distribution approach for flood prediction in poorly gauged basins: A case study in Italy, Adv. Water Resour., 32, 1284–1296, https://doi.org/10.1016/j.advwatres.2009.05.005, 2009. 
Boni, G., Ferraris, L., Giannoni, F., Roth, G., and Rudari, R.: Flood probability analysis for un-gauged watersheds by means of a simple distributed hydrologic model, Adv. Water Resour., 30, 2135–2144, https://doi.org/10.1016/j.advwatres.2006.08.009, 2007. 
Download
Short summary
The paper proposes a dimensionless framework to investigate the impact of the rainfall event structure on the runoff peak. A set of analytical expressions are derived from a constant hyetograph to assess the maximum runoff peak for a given event structure irrespective of the specific catchment. A catchment application is discussed to point out the dimensionless procedure implications and to provide some numerical examples of the rainfall structures with respect to observed rainfall events.