Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
HESS | Articles | Volume 22, issue 10
Hydrol. Earth Syst. Sci., 22, 5509–5525, 2018
https://doi.org/10.5194/hess-22-5509-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Modelling lakes in the climate system (GMD/HESS inter-journal...

Hydrol. Earth Syst. Sci., 22, 5509–5525, 2018
https://doi.org/10.5194/hess-22-5509-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 25 Oct 2018

Research article | 25 Oct 2018

Modelling the water balance of Lake Victoria (East Africa) – Part 1: Observational analysis

Inne Vanderkelen et al.

Related authors

A new approach for assessing climate change impacts in ecotron experiments
Inne Vanderkelen, Jakob Zschleischler, Lukas Gudmundsson, Klaus Keuler, Francois Rineau, Natalie Beenaerts, Jaco Vangronsveld, and Wim Thiery
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-267,https://doi.org/10.5194/bg-2019-267, 2019
Manuscript not accepted for further review
Modelling the water balance of Lake Victoria (East Africa) – Part 2: Future projections
Inne Vanderkelen, Nicole P. M. van Lipzig, and Wim Thiery
Hydrol. Earth Syst. Sci., 22, 5527–5549, https://doi.org/10.5194/hess-22-5527-2018,https://doi.org/10.5194/hess-22-5527-2018, 2018
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
A new form of the Saint-Venant equations for variable topography
Cheng-Wei Yu, Ben R. Hodges, and Frank Liu
Hydrol. Earth Syst. Sci., 24, 4001–4024, https://doi.org/10.5194/hess-24-4001-2020,https://doi.org/10.5194/hess-24-4001-2020, 2020
Short summary
Simulations of future changes in thermal structure of Lake Erken: proof of concept for ISIMIP2b lake sector local simulation strategy
Ana I. Ayala, Simone Moras, and Donald C. Pierson
Hydrol. Earth Syst. Sci., 24, 3311–3330, https://doi.org/10.5194/hess-24-3311-2020,https://doi.org/10.5194/hess-24-3311-2020, 2020
Short summary
Assessment of the geomorphic effectiveness of controlled floods in a braided river using a reduced-complexity numerical model
Luca Ziliani, Nicola Surian, Gianluca Botter, and Luca Mao
Hydrol. Earth Syst. Sci., 24, 3229–3250, https://doi.org/10.5194/hess-24-3229-2020,https://doi.org/10.5194/hess-24-3229-2020, 2020
Short summary
Worldwide lake level trends and responses to background climate variation
Benjamin M. Kraemer, Anton Seimon, Rita Adrian, and Peter B. McIntyre
Hydrol. Earth Syst. Sci., 24, 2593–2608, https://doi.org/10.5194/hess-24-2593-2020,https://doi.org/10.5194/hess-24-2593-2020, 2020
Short summary
Modeling inorganic carbon dynamics in the Seine River continuum in France
Audrey Marescaux, Vincent Thieu, Nathalie Gypens, Marie Silvestre, and Josette Garnier
Hydrol. Earth Syst. Sci., 24, 2379–2398, https://doi.org/10.5194/hess-24-2379-2020,https://doi.org/10.5194/hess-24-2379-2020, 2020
Short summary

Cited articles

Akbari, A., Samah, A. A., and Daryabor, F.: Raster-based derivation of a flood runoff susceptibility map using the revised runoff curve number (CN) for the Kuantan watershed, Malaysia, Environ. Earth Sci., 75, 1379, https://doi.org/10.1007/s12665-016-6186-0, 2016. a
Akurut, M., Willems, P., and Niwagaba, C.: Potential Impacts of Climate Change on Precipitation over Lake Victoria, East Africa, in the 21st Century, Water, 6, 2634–2659, https://doi.org/10.3390/w6092634, 2014. a
Ashouri, H., Hsu, K. L., Sorooshian, S., Braithwaite, D. K., Knapp, K. R., Cecil, L. D., Nelson, B. R., and Prat, O. P.: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies, B. Am. Meteorol. Soc., 96, 69–83, https://doi.org/10.1175/BAMS-D-13-00068.1, 2015. a
Awange, J. L., Ogalo, L., Bae, K. H., Were, P., Omondi, P., Omute, P., and Omullo, M.: Falling Lake Victoria water levels: Is climate a contributing factor?, Climatic Change, 89, 281–297, https://doi.org/10.1007/s10584-008-9409-x, 2007a. a, b, c, d, e
Awange, J. L., Sharifi, M. A., Ogonda, G., Wickert, J., Grafarend, E. W., and Omulo, M. A.: The falling lake Victoria water level: GRACE, TRIMM and CHAMP satellite analysis of the lake basin, Water Resour. Manage., 22, 775–796, https://doi.org/10.1007/s11269-007-9191-y, 2007b. a, b
Publications Copernicus
Short summary
Lake Victoria is the largest lake in Africa and one of the two major sources of the Nile river. The water level of Lake Victoria is determined by its water balance, consisting of lake precipitation and evaporation, inflow from rivers and lake outflow, controlled by two hydropower dams. Here, we present a water balance model for Lake Victoria, which closely represents the observed lake levels. The model results highlight the sensitivity of the lake level to human operations at the dam.
Lake Victoria is the largest lake in Africa and one of the two major sources of the Nile river....
Citation