Articles | Volume 22, issue 10
https://doi.org/10.5194/hess-22-5341-2018
https://doi.org/10.5194/hess-22-5341-2018
Research article
 | 
17 Oct 2018
Research article |  | 17 Oct 2018

Global downscaling of remotely sensed soil moisture using neural networks

Seyed Hamed Alemohammad, Jana Kolassa, Catherine Prigent, Filipe Aires, and Pierre Gentine

Related authors

Land–atmosphere interactions in the tropics – a review
Pierre Gentine, Adam Massmann, Benjamin R. Lintner, Sayed Hamed Alemohammad, Rong Fu, Julia K. Green, Daniel Kennedy, and Jordi Vilà-Guerau de Arellano
Hydrol. Earth Syst. Sci., 23, 4171–4197, https://doi.org/10.5194/hess-23-4171-2019,https://doi.org/10.5194/hess-23-4171-2019, 2019
Short summary
A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks
Yao Zhang, Joanna Joiner, Seyed Hamed Alemohammad, Sha Zhou, and Pierre Gentine
Biogeosciences, 15, 5779–5800, https://doi.org/10.5194/bg-15-5779-2018,https://doi.org/10.5194/bg-15-5779-2018, 2018
Short summary
Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence
Seyed Hamed Alemohammad, Bin Fang, Alexandra G. Konings, Filipe Aires, Julia K. Green, Jana Kolassa, Diego Miralles, Catherine Prigent, and Pierre Gentine
Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017,https://doi.org/10.5194/bg-14-4101-2017, 2017
Short summary
ASSESSING URBAN DROUGHTS IN A SMART CITY FRAMEWORK
R. Obringer, X. Zhang, K. Mallick, S. H. Alemohammad, and D. Niyogi
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B2, 747–751, https://doi.org/10.5194/isprs-archives-XLI-B2-747-2016,https://doi.org/10.5194/isprs-archives-XLI-B2-747-2016, 2016
Characterization of precipitation product errors across the United States using multiplicative triple collocation
S. H. Alemohammad, K. A. McColl, A. G. Konings, D. Entekhabi, and A. Stoffelen
Hydrol. Earth Syst. Sci., 19, 3489–3503, https://doi.org/10.5194/hess-19-3489-2015,https://doi.org/10.5194/hess-19-3489-2015, 2015
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Remote Sensing and GIS
Interannual variations of terrestrial water storage in the East African Rift region
Eva Boergens, Andreas Güntner, Mike Sips, Christian Schwatke, and Henryk Dobslaw
Hydrol. Earth Syst. Sci., 28, 4733–4754, https://doi.org/10.5194/hess-28-4733-2024,https://doi.org/10.5194/hess-28-4733-2024, 2024
Short summary
Technical note: Surface fields for global environmental modelling
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024,https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Benchmarking multimodel terrestrial water storage seasonal cycle against Gravity Recovery and Climate Experiment (GRACE) observations over major global river basins
Sadia Bibi, Tingju Zhu, Ashraf Rateb, Bridget R. Scanlon, Muhammad Aqeel Kamran, Abdelrazek Elnashar, Ali Bennour, and Ci Li
Hydrol. Earth Syst. Sci., 28, 1725–1750, https://doi.org/10.5194/hess-28-1725-2024,https://doi.org/10.5194/hess-28-1725-2024, 2024
Short summary
Increasing seasonal variation in the extent of rivers and lakes from 1984 to 2022
Björn Nyberg, Roger Sayre, and Elco Luijendijk
Hydrol. Earth Syst. Sci., 28, 1653–1663, https://doi.org/10.5194/hess-28-1653-2024,https://doi.org/10.5194/hess-28-1653-2024, 2024
Short summary
Investigating sources of variability in closing the terrestrial water balance with remote sensing
Claire I. Michailovsky, Bert Coerver, Marloes Mul, and Graham Jewitt
Hydrol. Earth Syst. Sci., 27, 4335–4354, https://doi.org/10.5194/hess-27-4335-2023,https://doi.org/10.5194/hess-27-4335-2023, 2023
Short summary

Cited articles

Aires, F., Aznay, O., Prigent, C., Paul, M., and Bernardo, F.: Synergistic multi-wavelength remote sensing versus a posteriori combination of retrieved products: Application for the retrieval of atmospheric profiles using MetOp-A, J. Geophys. Res., 117, D18304, https://doi.org/10.1029/2011JD017188, 2012. 
Aires, F., Miolane, L., Prigent, C., Pham, B., Fluet-Chouinard, E., Lehner, B., and Papa, F.: A Global Dynamic Long-Term Inundation Extent Dataset at High Spatial Resolution Derived through Downscaling of Satellite Observations, J. Hydrometeorol., 18, 1305–1325, https://doi.org/10.1175/JHM-D-16-0155.1, 2017. 
Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.: From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations, Hydrol. Earth Syst. Sci., 12, 1323–1337, https://doi.org/10.5194/hess-12-1323-2008, 2008. 
Alemohammad, S. H., Kolassa, J., Prigent, C., Aires, F., and Gentine, P.: Statistical retrieval of surface and root zone soil moisture using synergy of multi-frequency remotely-sensed observations, in: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017, IEEE, 4943–4946, https://doi.org/10.1109/IGARSS.2017.8128113, 2017a. 
Alemohammad, S. H., Fang, B., Konings, A. G., Aires, F., Green, J. K., Kolassa, J., Miralles, D., Prigent, C., and Gentine, P.: Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence, Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, 2017b. 
Download
Short summary
A new machine learning algorithm is developed to downscale satellite-based soil moisture estimates from their native spatial scale of 9 km to 2.25 km.