Articles | Volume 22, issue 8
Hydrol. Earth Syst. Sci., 22, 4513–4533, 2018
https://doi.org/10.5194/hess-22-4513-2018
Hydrol. Earth Syst. Sci., 22, 4513–4533, 2018
https://doi.org/10.5194/hess-22-4513-2018
Research article
27 Aug 2018
Research article | 27 Aug 2018

Exploring the merging of the global land evaporation WACMOS-ET products based on local tower measurements

Carlos Jiménez et al.

Related authors

Inter-calibrating SMMR brightness temperatures over continental surfaces
Samuel Favrichon, Carlos Jimenez, and Catherine Prigent
Atmos. Meas. Tech., 13, 5481–5490, https://doi.org/10.5194/amt-13-5481-2020,https://doi.org/10.5194/amt-13-5481-2020, 2020
Short summary
Detecting cloud contamination in passive microwave satellite measurements over land
Samuel Favrichon, Catherine Prigent, Carlos Jimenez, and Filipe Aires
Atmos. Meas. Tech., 12, 1531–1543, https://doi.org/10.5194/amt-12-1531-2019,https://doi.org/10.5194/amt-12-1531-2019, 2019
Short summary
The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets
D. G. Miralles, C. Jiménez, M. Jung, D. Michel, A. Ershadi, M. F. McCabe, M. Hirschi, B. Martens, A. J. Dolman, J. B. Fisher, Q. Mu, S. I. Seneviratne, E. F. Wood, and D. Fernández-Prieto
Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016,https://doi.org/10.5194/hess-20-823-2016, 2016
Short summary
The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms
D. Michel, C. Jiménez, D. G. Miralles, M. Jung, M. Hirschi, A. Ershadi, B. Martens, M. F. McCabe, J. B. Fisher, Q. Mu, S. I. Seneviratne, E. F. Wood, and D. Fernández-Prieto
Hydrol. Earth Syst. Sci., 20, 803–822, https://doi.org/10.5194/hess-20-803-2016,https://doi.org/10.5194/hess-20-803-2016, 2016
Short summary
The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data
M. F. McCabe, A. Ershadi, C. Jimenez, D. G. Miralles, D. Michel, and E. F. Wood
Geosci. Model Dev., 9, 283–305, https://doi.org/10.5194/gmd-9-283-2016,https://doi.org/10.5194/gmd-9-283-2016, 2016
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Remote Sensing and GIS
High-resolution (1 km) satellite rainfall estimation from SM2RAIN applied to Sentinel-1: Po River basin as a case study
Paolo Filippucci, Luca Brocca, Raphael Quast, Luca Ciabatta, Carla Saltalippi, Wolfgang Wagner, and Angelica Tarpanelli
Hydrol. Earth Syst. Sci., 26, 2481–2497, https://doi.org/10.5194/hess-26-2481-2022,https://doi.org/10.5194/hess-26-2481-2022, 2022
Short summary
Characterizing natural variability in complex hydrological systems using Passive Microwave based Climate Data Records: a case study for the Okavango Delta
Robin van der Schalie, Mendy van der Vliet, Clément Albergel, Wouter Dorigo, Piotr Wolski, and Richard de Jeu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-637,https://doi.org/10.5194/hess-2021-637, 2022
Revised manuscript accepted for HESS
Short summary
The accuracy of temporal upscaling of instantaneous evapotranspiration to daily values with seven upscaling methods
Zhaofei Liu
Hydrol. Earth Syst. Sci., 25, 4417–4433, https://doi.org/10.5194/hess-25-4417-2021,https://doi.org/10.5194/hess-25-4417-2021, 2021
Short summary
Remotely sensed reservoir water storage dynamics (1984–2015) and the influence of climate variability and management at global scale
Jiawei Hou, Albert van Dijk, Hylke Beck, Luigi Renzullo, and Yoshihide Wada
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-350,https://doi.org/10.5194/hess-2021-350, 2021
Revised manuscript accepted for HESS
Short summary
Global component analysis of errors in three satellite-only global precipitation estimates
Hanqing Chen, Bin Yong, Pierre-Emmanuel Kirstetter, Leyang Wang, and Yang Hong
Hydrol. Earth Syst. Sci., 25, 3087–3104, https://doi.org/10.5194/hess-25-3087-2021,https://doi.org/10.5194/hess-25-3087-2021, 2021

Cited articles

Aires, F.: Combining Datasets of Satellite-Retrieved Products. Part I: Methodology and Water Budget Closure, J. Hydrometeorol., 15, 1677–1691, 2014.
Amiro, B.: Measuring boreal forest evapotranspiration using the energy balance residual, J. Hydrol., 366, 112–118, 2009.
Amiro, B., Barr, A., Black, T., Iwashita, H., Kljun, N., Mccaughey, J., Morgenstern, K., Murayama, S., Nesic, Z., and Orchansky, A.: Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada, Agr. Forest Meteorol., 136, 237–251, 2006.
Amos, B., Arkebauer, T. J., and Doran, J. W.: Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem, Soil Sci. Soc. Am. J., 69, 387–395, https://doi.org/10.2136/sssaj2005.0387, 2005.
Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and Laitat, E.: Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes, Agr. Forest Meteorol., 108, 293–315, 2001.
Download
Short summary
Observing the amount of water evaporated in nature is not easy, and we need to combine accurate local measurements with estimates from satellites, more uncertain but covering larger areas. This is the main topic of our paper, in which local observations are compared with global land evaporation estimates, followed by a weighting of the global observations based on this comparison to attempt derive a more accurate evaporation product.