Articles | Volume 22, issue 8
https://doi.org/10.5194/hess-22-4513-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-4513-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploring the merging of the global land evaporation WACMOS-ET products based on local tower measurements
Carlos Jiménez
CORRESPONDING AUTHOR
Estellus, Paris, France
LERMA, Paris Observatory, Paris, France
Brecht Martens
Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium
Diego M. Miralles
Laboratory of Hydrology and Water Management, Ghent University, Ghent, Belgium
Joshua B. Fisher
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
Hylke E. Beck
Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, USA
Diego Fernández-Prieto
ESRIN, European Space Agency, Frascati, Italy
Related authors
Juliette Bernard, Catherine Prigent, Carlos Jimenez, Etienne Fluet-Chouinard, Bernhard Lehner, Elodie Salmon, Philippe Ciais, Zhen Zhang, Shushi Peng, and Marielle Saunois
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-466, https://doi.org/10.5194/essd-2024-466, 2024
Preprint under review for ESSD
Short summary
Short summary
Wetlands are responsible for about a third of global emissions of methane, a potent greenhouse gas. We have developed the GIEMS-MethaneCentric (GIEMS-MC) dataset to represent the dynamics of wetland extent on a global scale (0.25°x0.25° resolution, monthly time step). This updated resource combines satellite data and existing wetland databases, covering 1992 to 2020. Consistent maps of other methane-emitting surface waters (lakes, rivers, reservoirs, rice paddies) are also provided.
Samuel Favrichon, Carlos Jimenez, and Catherine Prigent
Atmos. Meas. Tech., 13, 5481–5490, https://doi.org/10.5194/amt-13-5481-2020, https://doi.org/10.5194/amt-13-5481-2020, 2020
Short summary
Short summary
Long-term monitoring of satellite-derived variables is necessary for a better understanding of the evolution of Earth parameters at global scale. However different instruments' observations used over the years need to be inter-calibrated with each other to provide meaningful information. This paper describes how a linear correction can improve the observations from the Scanning Multichannel Microwave Radiometer over continental surfaces to be more consistent with more recent radiometers.
Samuel Favrichon, Catherine Prigent, Carlos Jimenez, and Filipe Aires
Atmos. Meas. Tech., 12, 1531–1543, https://doi.org/10.5194/amt-12-1531-2019, https://doi.org/10.5194/amt-12-1531-2019, 2019
Short summary
Short summary
Land surface parameters (such as temperature) can be extracted from passive microwave satellite observations, with less cloud contamination than in the infrared. A cloud contamination index is proposed to detect cloud contamination for multiple frequency ranges (from 10 to 190 GHz), to be applicable to the successive generations of MW instruments. Even with a reduced number of low-frequency channels over land, the index reaches an accuracy of ≥ 70 % in detecting contaminated observations.
D. G. Miralles, C. Jiménez, M. Jung, D. Michel, A. Ershadi, M. F. McCabe, M. Hirschi, B. Martens, A. J. Dolman, J. B. Fisher, Q. Mu, S. I. Seneviratne, E. F. Wood, and D. Fernández-Prieto
Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016, https://doi.org/10.5194/hess-20-823-2016, 2016
Short summary
Short summary
The WACMOS-ET project aims to advance the development of land evaporation estimates on global and regional scales. Evaluation of current evaporation data sets on the global scale showed that they manifest large dissimilarities during conditions of water stress and drought and deficiencies in the way evaporation is partitioned into several components. Different models perform better under different conditions, highlighting the potential for considering biome- or climate-specific model ensembles.
D. Michel, C. Jiménez, D. G. Miralles, M. Jung, M. Hirschi, A. Ershadi, B. Martens, M. F. McCabe, J. B. Fisher, Q. Mu, S. I. Seneviratne, E. F. Wood, and D. Fernández-Prieto
Hydrol. Earth Syst. Sci., 20, 803–822, https://doi.org/10.5194/hess-20-803-2016, https://doi.org/10.5194/hess-20-803-2016, 2016
Short summary
Short summary
In this study a common reference input data set from satellite and in situ data is used to run four established evapotranspiration (ET) algorithms using sub-daily and daily input on a tower scale as a testbed for a global ET product. The PT-JPL model and GLEAM provide the best performance for satellite and in situ forcing as well as for the different temporal resolutions. PM-MOD and SEBS perform less well: the PM-MOD model generally underestimates, while SEBS generally overestimates ET.
M. F. McCabe, A. Ershadi, C. Jimenez, D. G. Miralles, D. Michel, and E. F. Wood
Geosci. Model Dev., 9, 283–305, https://doi.org/10.5194/gmd-9-283-2016, https://doi.org/10.5194/gmd-9-283-2016, 2016
Short summary
Short summary
In an effort to develop a global terrestrial evaporation product, four models were forced using both a tower and grid-based data set. Comparisons against flux-tower observations from different biome and land cover types show considerable inter-model variability and sensitivity to forcing type. Results suggest that no single model is able to capture expected flux patterns and response. It is suggested that a multi-model ensemble is likely to provide a more stable long-term flux estimate.
V. S. Galligani, C. Prigent, E. Defer, C. Jimenez, P. Eriksson, J.-P. Pinty, and J.-P. Chaboureau
Atmos. Meas. Tech., 8, 1605–1616, https://doi.org/10.5194/amt-8-1605-2015, https://doi.org/10.5194/amt-8-1605-2015, 2015
B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. G. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, https://doi.org/10.5194/hess-17-3707-2013, 2013
Juliette Bernard, Catherine Prigent, Carlos Jimenez, Etienne Fluet-Chouinard, Bernhard Lehner, Elodie Salmon, Philippe Ciais, Zhen Zhang, Shushi Peng, and Marielle Saunois
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-466, https://doi.org/10.5194/essd-2024-466, 2024
Preprint under review for ESSD
Short summary
Short summary
Wetlands are responsible for about a third of global emissions of methane, a potent greenhouse gas. We have developed the GIEMS-MethaneCentric (GIEMS-MC) dataset to represent the dynamics of wetland extent on a global scale (0.25°x0.25° resolution, monthly time step). This updated resource combines satellite data and existing wetland databases, covering 1992 to 2020. Consistent maps of other methane-emitting surface waters (lakes, rivers, reservoirs, rice paddies) are also provided.
Dapeng Feng, Hylke Beck, Jens de Bruijn, Reetik Kumar Sahu, Yusuke Satoh, Yoshihide Wada, Jiangtao Liu, Ming Pan, Kathryn Lawson, and Chaopeng Shen
Geosci. Model Dev., 17, 7181–7198, https://doi.org/10.5194/gmd-17-7181-2024, https://doi.org/10.5194/gmd-17-7181-2024, 2024
Short summary
Short summary
Accurate hydrologic modeling is vital to characterizing water cycle responses to climate change. For the first time at this scale, we use differentiable physics-informed machine learning hydrologic models to simulate rainfall–runoff processes for 3753 basins around the world and compare them with purely data-driven and traditional modeling approaches. This sets a benchmark for hydrologic estimates around the world and builds foundations for improving global hydrologic simulations.
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024, https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Short summary
CEMS_SurfaceFields_2022 dataset is a new set of high-resolution maps for land type (e.g. lake, forest), soil properties and population water needs at approximately 2 and 6 km at the Equator, covering Europe and the globe (excluding Antarctica). We describe what and how new high-resolution information can be used to create the dataset. The paper suggests that the dataset can be used as input for river, weather or other models, as well as for statistical descriptions of the region of interest.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Diego G. Miralles, Hylke E. Beck, Jonatan F. Siegmund, Camila Alvarez-Garreton, Koen Verbist, René Garreaud, Juan Pablo Boisier, and Mauricio Galleguillos
Hydrol. Earth Syst. Sci., 28, 1415–1439, https://doi.org/10.5194/hess-28-1415-2024, https://doi.org/10.5194/hess-28-1415-2024, 2024
Short summary
Short summary
Various drought indices exist, but there is no consensus on which index to use to assess streamflow droughts. This study addresses meteorological, soil moisture, and snow indices along with their temporal scales to assess streamflow drought across hydrologically diverse catchments. Using data from 100 Chilean catchments, findings suggest that there is not a single drought index that can be used for all catchments and that snow-influenced areas require drought indices with larger temporal scales.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
Earth Syst. Dynam., 15, 265–291, https://doi.org/10.5194/esd-15-265-2024, https://doi.org/10.5194/esd-15-265-2024, 2024
Short summary
Short summary
Changes in land use are crucial to achieve lower global warming. However, despite their importance, the effects of these changes on moisture fluxes are poorly understood. We analyse land cover and management scenarios in three climate models involving cropland expansion, afforestation, and irrigation. Results show largely consistent influences on moisture fluxes, with cropland expansion causing a drying and reduced local moisture recycling, while afforestation and irrigation show the opposite.
James Stegen, Amy Burgin, Michelle Busch, Joshua Fisher, Joshua Ladau, Jenna Abrahamson, Lauren Kinsman-Costello, Li Li, Xingyuan Chen, Thibault Datry, Nate McDowell, Corianne Tatariw, Anna Braswell, Jillian Deines, Julia Guimond, Peter Regier, Kenton Rod, Edward Bam, Etienne Fluet-Chouinard, Inke Forbrich, Kristin Jaeger, Teri O'Meara, Tim Scheibe, Erin Seybold, Jon Sweetman, Jianqiu Zheng, Daniel Allen, Elizabeth Herndon, Beth Middleton, Scott Painter, Kevin Roche, Julianne Scamardo, Ross Vander Vorste, Kristin Boye, Ellen Wohl, Margaret Zimmer, Kelly Hondula, Maggi Laan, Anna Marshall, and Kaizad Patel
EGUsphere, https://doi.org/10.5194/egusphere-2024-98, https://doi.org/10.5194/egusphere-2024-98, 2024
Short summary
Short summary
The loss and gain of surface water (variable inundation) is a common process across Earth. Global change shifts variable inundation dynamics, highlighting a need for unified understanding that transcends individual variably inundated ecosystems (VIEs). We review literature, highlight challenges, and emphasize opportunities to generate transferable knowledge by viewing VIEs through a common lens. We aim to inspire the emergence of a cross-VIE community based on a proposed continuum approach.
Dominik Rains, Isabel Trigo, Emanuel Dutra, Sofia Ermida, Darren Ghent, Petra Hulsman, Jose Gómez-Dans, and Diego G. Miralles
Earth Syst. Sci. Data, 16, 567–593, https://doi.org/10.5194/essd-16-567-2024, https://doi.org/10.5194/essd-16-567-2024, 2024
Short summary
Short summary
Land surface temperature and surface net radiation are vital inputs for many land surface and hydrological models. However, current remote sensing datasets of these variables come mostly at coarse resolutions, and the few high-resolution datasets available have large gaps due to cloud cover. Here, we present a continuous daily product for both variables across Europe for 2018–2019 obtained by combining observations from geostationary as well as polar-orbiting satellites.
Solomon H. Gebrechorkos, Jian Peng, Ellen Dyer, Diego G. Miralles, Sergio M. Vicente-Serrano, Chris Funk, Hylke E. Beck, Dagmawi T. Asfaw, Michael B. Singer, and Simon J. Dadson
Earth Syst. Sci. Data, 15, 5449–5466, https://doi.org/10.5194/essd-15-5449-2023, https://doi.org/10.5194/essd-15-5449-2023, 2023
Short summary
Short summary
Drought is undeniably one of the most intricate and significant natural hazards with far-reaching consequences for the environment, economy, water resources, agriculture, and societies across the globe. In response to this challenge, we have devised high-resolution drought indices. These indices serve as invaluable indicators for assessing shifts in drought patterns and their associated impacts on a global, regional, and local level facilitating the development of tailored adaptation strategies.
Dapeng Feng, Hylke Beck, Kathryn Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci., 27, 2357–2373, https://doi.org/10.5194/hess-27-2357-2023, https://doi.org/10.5194/hess-27-2357-2023, 2023
Short summary
Short summary
Powerful hybrid models (called δ or delta models) embrace the fundamental learning capability of AI and can also explain the physical processes. Here we test their performance when applied to regions not in the training data. δ models rivaled the accuracy of state-of-the-art AI models under the data-dense scenario and even surpassed them for the data-sparse one. They generalize well due to the physical structure included. δ models could be ideal candidates for global hydrologic assessment.
Steven J. De Hertog, Carmen E. Lopez-Fabara, Ruud van der Ent, Jessica Keune, Diego G. Miralles, Raphael Portmann, Sebastian Schemm, Felix Havermann, Suqi Guo, Fei Luo, Iris Manola, Quentin Lejeune, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2023-953, https://doi.org/10.5194/egusphere-2023-953, 2023
Preprint archived
Short summary
Short summary
Land cover and management changes can affect the climate and water availability. In this study we use climate model simulations of extreme global land cover changes (afforestation, deforestation) and land management changes (irrigation) to understand the effects on the global water cycle and local to continental water availability. We show that cropland expansion generally leads to higher evaporation and lower amounts of precipitation and afforestation and irrigation expansion to the opposite.
Feng Zhong, Shanhu Jiang, Albert I. J. M. van Dijk, Liliang Ren, Jaap Schellekens, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 26, 5647–5667, https://doi.org/10.5194/hess-26-5647-2022, https://doi.org/10.5194/hess-26-5647-2022, 2022
Short summary
Short summary
A synthesis of rainfall interception data from past field campaigns is performed, including 166 forests and 17 agricultural plots distributed worldwide. These site data are used to constrain and validate an interception model that considers sub-grid heterogeneity and vegetation dynamics. A global, 40-year (1980–2019) interception dataset is generated at a daily temporal and 0.1° spatial resolution. This dataset will serve as a benchmark for future investigations of the global hydrological cycle.
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022, https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
Short summary
A farm-scale hydroclimatic machine learning framework to advise farmers was developed. FarmCan uses remote sensing data and farmers' input to forecast crop water deficits. The 8 d composite variables are better than daily ones for forecasting water deficit. Evapotranspiration (ET) and potential ET are more effective than soil moisture at predicting crop water deficit. FarmCan uses a crop-specific schedule to use surface or root zone soil moisture.
Lorenzo Alfieri, Francesco Avanzi, Fabio Delogu, Simone Gabellani, Giulia Bruno, Lorenzo Campo, Andrea Libertino, Christian Massari, Angelica Tarpanelli, Dominik Rains, Diego G. Miralles, Raphael Quast, Mariette Vreugdenhil, Huan Wu, and Luca Brocca
Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022, https://doi.org/10.5194/hess-26-3921-2022, 2022
Short summary
Short summary
This work shows advances in high-resolution satellite data for hydrology. We performed hydrological simulations for the Po River basin using various satellite products, including precipitation, evaporation, soil moisture, and snow depth. Evaporation and snow depth improved a simulation based on high-quality ground observations. Interestingly, a model calibration relying on satellite data skillfully reproduces observed discharges, paving the way to satellite-driven hydrological applications.
Jiawei Hou, Albert I. J. M. van Dijk, Hylke E. Beck, Luigi J. Renzullo, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 26, 3785–3803, https://doi.org/10.5194/hess-26-3785-2022, https://doi.org/10.5194/hess-26-3785-2022, 2022
Short summary
Short summary
We used satellite imagery to measure monthly reservoir water volumes for 6695 reservoirs worldwide for 1984–2015. We investigated how changing precipitation, streamflow, evaporation, and human activity affected reservoir water storage. Almost half of the reservoirs showed significant increasing or decreasing trends over the past three decades. These changes are caused, first and foremost, by changes in precipitation rather than by changes in net evaporation or dam release patterns.
Verónica González-Gambau, Estrella Olmedo, Antonio Turiel, Cristina González-Haro, Aina García-Espriu, Justino Martínez, Pekka Alenius, Laura Tuomi, Rafael Catany, Manuel Arias, Carolina Gabarró, Nina Hoareau, Marta Umbert, Roberto Sabia, and Diego Fernández
Earth Syst. Sci. Data, 14, 2343–2368, https://doi.org/10.5194/essd-14-2343-2022, https://doi.org/10.5194/essd-14-2343-2022, 2022
Short summary
Short summary
We present the first Soil Moisture and Ocean Salinity Sea Surface Salinity (SSS) dedicated products over the Baltic Sea (ESA Baltic+ Salinity Dynamics). The Baltic+ L3 product covers 9 days in a 0.25° grid. The Baltic+ L4 is derived by merging L3 SSS with sea surface temperature information, giving a daily product in a 0.05° grid. The accuracy of L3 is 0.7–0.8 and 0.4 psu for the L4. Baltic+ products have shown to be useful, covering spatiotemporal data gaps and for validating numerical models.
Jessica Keune, Dominik L. Schumacher, and Diego G. Miralles
Geosci. Model Dev., 15, 1875–1898, https://doi.org/10.5194/gmd-15-1875-2022, https://doi.org/10.5194/gmd-15-1875-2022, 2022
Short summary
Short summary
Air transports moisture and heat, shaping the weather we experience. When and where was this air moistened and warmed by the surface? To address this question, atmospheric models trace the history of air parcels in space and time. However, their uncertainties remain unexplored, which hinders their utility and application. Here, we present a framework that sheds light on these uncertainties. Our approach sets a new standard in the assessment of atmospheric moisture and heat trajectories.
Justino Martínez, Carolina Gabarró, Antonio Turiel, Verónica González-Gambau, Marta Umbert, Nina Hoareau, Cristina González-Haro, Estrella Olmedo, Manuel Arias, Rafael Catany, Laurent Bertino, Roshin P. Raj, Jiping Xie, Roberto Sabia, and Diego Fernández
Earth Syst. Sci. Data, 14, 307–323, https://doi.org/10.5194/essd-14-307-2022, https://doi.org/10.5194/essd-14-307-2022, 2022
Short summary
Short summary
Measuring salinity from space is challenging since the sensitivity of the brightness temperature to sea surface salinity is low, but the retrieval of SSS in cold waters is even more challenging. In 2019, the ESA launched a specific initiative called Arctic+Salinity to produce an enhanced Arctic SSS product with better quality and resolution than the available products. This paper presents the methodologies used to produce the new enhanced Arctic SMOS SSS product.
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Pablo A. Mendoza, Ian McNamara, Hylke E. Beck, Joschka Thurner, Alexandra Nauditt, Lars Ribbe, and Nguyen Xuan Thinh
Hydrol. Earth Syst. Sci., 25, 5805–5837, https://doi.org/10.5194/hess-25-5805-2021, https://doi.org/10.5194/hess-25-5805-2021, 2021
Short summary
Short summary
Most rivers worldwide are ungauged, which hinders the sustainable management of water resources. Regionalisation methods use information from gauged rivers to estimate streamflow over ungauged ones. Through hydrological modelling, we assessed how the selection of precipitation products affects the performance of three regionalisation methods. We found that a precipitation product that provides the best results in hydrological modelling does not necessarily perform the best for regionalisation.
Joaquín Muñoz-Sabater, Emanuel Dutra, Anna Agustí-Panareda, Clément Albergel, Gabriele Arduini, Gianpaolo Balsamo, Souhail Boussetta, Margarita Choulga, Shaun Harrigan, Hans Hersbach, Brecht Martens, Diego G. Miralles, María Piles, Nemesio J. Rodríguez-Fernández, Ervin Zsoter, Carlo Buontempo, and Jean-Noël Thépaut
Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, https://doi.org/10.5194/essd-13-4349-2021, 2021
Short summary
Short summary
The creation of ERA5-Land responds to a growing number of applications requiring global land datasets at a resolution higher than traditionally reached. ERA5-Land provides operational, global, and hourly key variables of the water and energy cycles over land surfaces, at 9 km resolution, from 1981 until the present. This work provides evidence of an overall improvement of the water cycle compared to previous reanalyses, whereas the energy cycle variables perform as well as those of ERA5.
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021, https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary
Short summary
We present a cascade of models to compute high-resolution river flooding. This takes meteorological inputs, e.g., rainfall and temperature from observations or climate models, and takes them through a series of modeling steps. This is relevant to evaluating current day and future flood risk and impacts. The model framework uses global data sets, allowing it to be applied anywhere in the world.
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Christopher Krich, Mirco Migliavacca, Diego G. Miralles, Guido Kraemer, Tarek S. El-Madany, Markus Reichstein, Jakob Runge, and Miguel D. Mahecha
Biogeosciences, 18, 2379–2404, https://doi.org/10.5194/bg-18-2379-2021, https://doi.org/10.5194/bg-18-2379-2021, 2021
Short summary
Short summary
Ecosystems and the atmosphere interact with each other. These interactions determine e.g. the water and carbon fluxes and thus are crucial to understand climate change effects. We analysed the interactions for many ecosystems across the globe, showing that very different ecosystems can have similar interactions with the atmosphere. Meteorological conditions seem to be the strongest interaction-shaping factor. This means that common principles can be identified to describe ecosystem behaviour.
Noemi Vergopolan, Sitian Xiong, Lyndon Estes, Niko Wanders, Nathaniel W. Chaney, Eric F. Wood, Megan Konar, Kelly Caylor, Hylke E. Beck, Nicolas Gatti, Tom Evans, and Justin Sheffield
Hydrol. Earth Syst. Sci., 25, 1827–1847, https://doi.org/10.5194/hess-25-1827-2021, https://doi.org/10.5194/hess-25-1827-2021, 2021
Short summary
Short summary
Drought monitoring and yield prediction often rely on coarse-scale hydroclimate data or (infrequent) vegetation indexes that do not always indicate the conditions farmers face in the field. Consequently, decision-making based on these indices can often be disconnected from the farmer reality. Our study focuses on smallholder farming systems in data-sparse developing countries, and it shows how field-scale soil moisture can leverage and improve crop yield prediction and drought impact assessment.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Samuel Favrichon, Carlos Jimenez, and Catherine Prigent
Atmos. Meas. Tech., 13, 5481–5490, https://doi.org/10.5194/amt-13-5481-2020, https://doi.org/10.5194/amt-13-5481-2020, 2020
Short summary
Short summary
Long-term monitoring of satellite-derived variables is necessary for a better understanding of the evolution of Earth parameters at global scale. However different instruments' observations used over the years need to be inter-calibrated with each other to provide meaningful information. This paper describes how a linear correction can improve the observations from the Scanning Multichannel Microwave Radiometer over continental surfaces to be more consistent with more recent radiometers.
Brecht Martens, Dominik L. Schumacher, Hendrik Wouters, Joaquín Muñoz-Sabater, Niko E. C. Verhoest, and Diego G. Miralles
Geosci. Model Dev., 13, 4159–4181, https://doi.org/10.5194/gmd-13-4159-2020, https://doi.org/10.5194/gmd-13-4159-2020, 2020
Short summary
Short summary
Climate reanalyses are widely used in different fields and an in-depth evaluation of the different variables provided by reanalyses is a necessary means to provide feedback on the quality to their users and the operational centres producing these data sets. In this study, we show the improvements of ECMWF's latest climate reanalysis (ERA5) upon its predecessor (ERA-Interim) in partitioning the available energy at the land surface.
Christian Massari, Luca Brocca, Thierry Pellarin, Gab Abramowitz, Paolo Filippucci, Luca Ciabatta, Viviana Maggioni, Yann Kerr, and Diego Fernandez Prieto
Hydrol. Earth Syst. Sci., 24, 2687–2710, https://doi.org/10.5194/hess-24-2687-2020, https://doi.org/10.5194/hess-24-2687-2020, 2020
Short summary
Short summary
Rain gauges are unevenly spaced around the world with extremely low gauge density over places like Africa and South America. Here, water-related problems like floods, drought and famine are particularly severe and able to cause fatalities, migration and diseases. We have developed a rainfall dataset that exploits the synergies between rainfall and soil moisture to provide accurate rainfall observations which can be used to face these problems.
Jian Peng, Simon Dadson, Feyera Hirpa, Ellen Dyer, Thomas Lees, Diego G. Miralles, Sergio M. Vicente-Serrano, and Chris Funk
Earth Syst. Sci. Data, 12, 753–769, https://doi.org/10.5194/essd-12-753-2020, https://doi.org/10.5194/essd-12-753-2020, 2020
Short summary
Short summary
Africa has been severely influenced by intense drought events, which has led to crop failure, food shortages, famine, epidemics and even mass migration. The current study developed a high spatial resolution drought dataset entirely from satellite-based products. The dataset has been comprehensively inter-compared with other drought indicators and may contribute to an improved characterization of drought risk and vulnerability and minimize drought's impact on water and food security in Africa.
Christopher Krich, Jakob Runge, Diego G. Miralles, Mirco Migliavacca, Oscar Perez-Priego, Tarek El-Madany, Arnaud Carrara, and Miguel D. Mahecha
Biogeosciences, 17, 1033–1061, https://doi.org/10.5194/bg-17-1033-2020, https://doi.org/10.5194/bg-17-1033-2020, 2020
Short summary
Short summary
Causal inference promises new insight into biosphere–atmosphere interactions using time series only. To understand the behaviour of a specific method on such data, we used artificial and observation-based data. The observed structures are very interpretable and reveal certain ecosystem-specific behaviour, as only a few relevant links remain, in contrast to pure correlation techniques. Thus, causal inference allows to us gain well-constrained insights into processes and interactions.
Miguel D. Mahecha, Fabian Gans, Gunnar Brandt, Rune Christiansen, Sarah E. Cornell, Normann Fomferra, Guido Kraemer, Jonas Peters, Paul Bodesheim, Gustau Camps-Valls, Jonathan F. Donges, Wouter Dorigo, Lina M. Estupinan-Suarez, Victor H. Gutierrez-Velez, Martin Gutwin, Martin Jung, Maria C. Londoño, Diego G. Miralles, Phillip Papastefanou, and Markus Reichstein
Earth Syst. Dynam., 11, 201–234, https://doi.org/10.5194/esd-11-201-2020, https://doi.org/10.5194/esd-11-201-2020, 2020
Short summary
Short summary
The ever-growing availability of data streams on different subsystems of the Earth brings unprecedented scientific opportunities. However, researching a data-rich world brings novel challenges. We present the concept of
Earth system data cubesto study the complex dynamics of multiple climate and ecosystem variables across space and time. Using a series of example studies, we highlight the potential of effectively considering the full multivariate nature of processes in the Earth system.
Jeroen Claessen, Annalisa Molini, Brecht Martens, Matteo Detto, Matthias Demuzere, and Diego G. Miralles
Biogeosciences, 16, 4851–4874, https://doi.org/10.5194/bg-16-4851-2019, https://doi.org/10.5194/bg-16-4851-2019, 2019
Short summary
Short summary
Bidirectional interactions between vegetation and climate are unraveled over short (monthly) and long (inter-annual) temporal scales. Analyses use a novel causal inference method based on wavelet theory. The performance of climate models at representing these interactions is benchmarked against satellite data. Climate models can reproduce the overall climate controls on vegetation at all temporal scales, while their performance at representing biophysical feedbacks on climate is less adequate.
Paul C. Stoy, Tarek S. El-Madany, Joshua B. Fisher, Pierre Gentine, Tobias Gerken, Stephen P. Good, Anne Klosterhalfen, Shuguang Liu, Diego G. Miralles, Oscar Perez-Priego, Angela J. Rigden, Todd H. Skaggs, Georg Wohlfahrt, Ray G. Anderson, A. Miriam J. Coenders-Gerrits, Martin Jung, Wouter H. Maes, Ivan Mammarella, Matthias Mauder, Mirco Migliavacca, Jacob A. Nelson, Rafael Poyatos, Markus Reichstein, Russell L. Scott, and Sebastian Wolf
Biogeosciences, 16, 3747–3775, https://doi.org/10.5194/bg-16-3747-2019, https://doi.org/10.5194/bg-16-3747-2019, 2019
Short summary
Short summary
Key findings are the nearly optimal response of T to atmospheric water vapor pressure deficits across methods and scales. Additionally, the notion that T / ET intermittently approaches 1, which is a basis for many partitioning methods, does not hold for certain methods and ecosystems. To better constrain estimates of E and T from combined ET measurements, we propose a combination of independent measurement techniques to better constrain E and T at the ecosystem scale.
Hendrik Wouters, Irina Y. Petrova, Chiel C. van Heerwaarden, Jordi Vilà-Guerau de Arellano, Adriaan J. Teuling, Vicky Meulenberg, Joseph A. Santanello, and Diego G. Miralles
Geosci. Model Dev., 12, 2139–2153, https://doi.org/10.5194/gmd-12-2139-2019, https://doi.org/10.5194/gmd-12-2139-2019, 2019
Short summary
Short summary
The free software CLASS4GL (http://class4gl.eu) is designed to investigate the dynamic atmospheric boundary layer (ABL) with weather balloons. It mines observational data from global radio soundings, satellite and reanalysis data from the last 40 years to constrain and initialize an ABL model and automizes multiple experiments in parallel. CLASS4GL aims at fostering a better understanding of land–atmosphere feedbacks and the drivers of extreme weather.
Robert R. Bogue, Florian M. Schwandner, Joshua B. Fisher, Ryan Pavlick, Troy S. Magney, Caroline A. Famiglietti, Kerry Cawse-Nicholson, Vineet Yadav, Justin P. Linick, Gretchen B. North, and Eliecer Duarte
Biogeosciences, 16, 1343–1360, https://doi.org/10.5194/bg-16-1343-2019, https://doi.org/10.5194/bg-16-1343-2019, 2019
Short summary
Short summary
This study examined rainforest responses to elevated CO2 coming from volcanoes in Costa Rica. Comparing tree species, we found that leaf function responded when exposed to increasing CO2 levels. The chemical signature of volcanic CO2 is different than background CO2. Trees exposed to volcanic CO2 also had chemical signatures which showed the influence of volcanic CO2: trees not only
breathe inand are made of volcanic CO2 but also retain that exposure history for decades.
Samuel Favrichon, Catherine Prigent, Carlos Jimenez, and Filipe Aires
Atmos. Meas. Tech., 12, 1531–1543, https://doi.org/10.5194/amt-12-1531-2019, https://doi.org/10.5194/amt-12-1531-2019, 2019
Short summary
Short summary
Land surface parameters (such as temperature) can be extracted from passive microwave satellite observations, with less cloud contamination than in the infrared. A cloud contamination index is proposed to detect cloud contamination for multiple frequency ranges (from 10 to 190 GHz), to be applicable to the successive generations of MW instruments. Even with a reduced number of low-frequency channels over land, the index reaches an accuracy of ≥ 70 % in detecting contaminated observations.
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 23, 925–948, https://doi.org/10.5194/hess-23-925-2019, https://doi.org/10.5194/hess-23-925-2019, 2019
Short summary
Short summary
Potential evaporation (Ep) is the amount of water an ecosystem would consume if it were not limited by water availability or other stress factors. In this study, we compared several methods to estimate Ep using a global dataset of 107 FLUXNET sites. A simple radiation-driven method calibrated per biome consistently outperformed more complex approaches and makes a suitable tool to investigate the impact of water use and demand, drought severity and biome productivity.
Sanaa Hobeichi, Gab Abramowitz, Jason Evans, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 23, 851–870, https://doi.org/10.5194/hess-23-851-2019, https://doi.org/10.5194/hess-23-851-2019, 2019
Victor Pellet, Filipe Aires, Simon Munier, Diego Fernández Prieto, Gabriel Jordá, Wouter Arnoud Dorigo, Jan Polcher, and Luca Brocca
Hydrol. Earth Syst. Sci., 23, 465–491, https://doi.org/10.5194/hess-23-465-2019, https://doi.org/10.5194/hess-23-465-2019, 2019
Short summary
Short summary
This study is an effort for a better understanding and quantification of the water cycle and related processes in the Mediterranean region, by dealing with satellite products and their uncertainties. The aims of the paper are 3-fold: (1) developing methods with hydrological constraints to integrate all the datasets, (2) giving the full picture of the Mediterranean WC, and (3) building a model-independent database that can evaluate the numerous regional climate models (RCMs) for this region.
Mingjie Shi, Joshua B. Fisher, Richard P. Phillips, and Edward R. Brzostek
Biogeosciences, 16, 457–465, https://doi.org/10.5194/bg-16-457-2019, https://doi.org/10.5194/bg-16-457-2019, 2019
Short summary
Short summary
The ability of plants to slow climate change by taking up carbon hinges in part on there being ample soil nitrogen. We used a model that accounts for the carbon cost to plants of supporting nitrogen-acquiring microbes to explore how nitrogen limitation affects climate. Our model predicted that nitrogen limitation will enhance temperature and decrease precipitation; thus, our results suggest that carbon spent to support nitrogen-acquiring microbes is a critical component of the Earth's climate.
Hylke E. Beck, Ming Pan, Tirthankar Roy, Graham P. Weedon, Florian Pappenberger, Albert I. J. M. van Dijk, George J. Huffman, Robert F. Adler, and Eric F. Wood
Hydrol. Earth Syst. Sci., 23, 207–224, https://doi.org/10.5194/hess-23-207-2019, https://doi.org/10.5194/hess-23-207-2019, 2019
Short summary
Short summary
We conducted a comprehensive evaluation of 26 precipitation datasets for the US using the Stage-IV gauge-radar dataset as a reference. The best overall performance was obtained by MSWEP V2.2, underscoring the importance of applying daily gauge corrections and accounting for reporting times. Our findings can be used as a guide to choose the most suitable precipitation dataset for a particular application.
Kerry Cawse-Nicholson, Joshua B. Fisher, Caroline A. Famiglietti, Amy Braverman, Florian M. Schwandner, Jennifer L. Lewicki, Philip A. Townsend, David S. Schimel, Ryan Pavlick, Kathryn J. Bormann, Antonio Ferraz, Emily L. Kang, Pulong Ma, Robert R. Bogue, Thomas Youmans, and David C. Pieri
Biogeosciences, 15, 7403–7418, https://doi.org/10.5194/bg-15-7403-2018, https://doi.org/10.5194/bg-15-7403-2018, 2018
Short summary
Short summary
Carbon dioxide levels are rising globally, and it is important to understand how this rise will affect plants over long time periods. Volcanoes such as Mammoth Mountain, California, have been releasing CO2 from their flanks for decades, and this provides a test environment in order to study the way plants respond to long-term CO2 exposure. We combined several airborne measurements to show that plants may have fewer, more productive leaves in areas with increasing CO2.
Christina Papagiannopoulou, Diego G. Miralles, Matthias Demuzere, Niko E. C. Verhoest, and Willem Waegeman
Geosci. Model Dev., 11, 4139–4153, https://doi.org/10.5194/gmd-11-4139-2018, https://doi.org/10.5194/gmd-11-4139-2018, 2018
Short summary
Short summary
Common global land cover and climate classifications are based on vegetation–climatic characteristics derived from observational data, ignoring the interaction between the local climate and biome. Here, we model the interplay between vegetation and local climate by discovering spatial relationships among different locations. The resulting global
hydro-climatic biomescorrespond to regions of coherent climate–vegetation interactions that agree well with traditional global land cover maps.
Albert I. J. M. van Dijk, Jaap Schellekens, Marta Yebra, Hylke E. Beck, Luigi J. Renzullo, Albrecht Weerts, and Gennadii Donchyts
Hydrol. Earth Syst. Sci., 22, 4959–4980, https://doi.org/10.5194/hess-22-4959-2018, https://doi.org/10.5194/hess-22-4959-2018, 2018
Short summary
Short summary
Evaporation from wetlands, lakes and irrigation areas needs to be measured to understand water scarcity. So far, this has only been possible for small regions. Here, we develop a solution that can be applied at a very high resolution globally by making use of satellite observations. Our results show that 16% of global water resources evaporate before reaching the ocean, mostly from surface water. Irrigation water use is less than 1% globally but is a very large water user in several dry basins.
Ronny Meier, Edouard L. Davin, Quentin Lejeune, Mathias Hauser, Yan Li, Brecht Martens, Natalie M. Schultz, Shannon Sterling, and Wim Thiery
Biogeosciences, 15, 4731–4757, https://doi.org/10.5194/bg-15-4731-2018, https://doi.org/10.5194/bg-15-4731-2018, 2018
Short summary
Short summary
Deforestation not only releases carbon dioxide to the atmosphere but also affects local climatic conditions by altering energy fluxes at the land surface and thereby the local temperature. Here, we evaluate the local impact of deforestation in a widely used land surface model. We find that the model reproduces the daytime warming effect of deforestation well. On the other hand, the warmer temperatures observed during night in forests are not present in this model.
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-682, https://doi.org/10.5194/hess-2017-682, 2018
Revised manuscript not accepted
Short summary
Short summary
Potential evaporation is a key parameter in numerous models used for assessing water use and drought severity. Yet, multiple incompatible methods have been proposed, thus estimates of potential evaporation remain uncertain. Based on the largest available dataset of FLUXNET data, we identify the best method to calculate potential evaporation globally. A simple radiation-driven method calibrated per biome consistently performed best; more complex models did not perform as good.
Yu Zhang, Ming Pan, Justin Sheffield, Amanda L. Siemann, Colby K. Fisher, Miaoling Liang, Hylke E. Beck, Niko Wanders, Rosalyn F. MacCracken, Paul R. Houser, Tian Zhou, Dennis P. Lettenmaier, Rachel T. Pinker, Janice Bytheway, Christian D. Kummerow, and Eric F. Wood
Hydrol. Earth Syst. Sci., 22, 241–263, https://doi.org/10.5194/hess-22-241-2018, https://doi.org/10.5194/hess-22-241-2018, 2018
Short summary
Short summary
A global data record for all four terrestrial water budget variables (precipitation, evapotranspiration, runoff, and total water storage change) at 0.5° resolution and monthly scale for the period of 1984–2010 is developed by optimally merging a series of remote sensing products, in situ measurements, land surface model outputs, and atmospheric reanalysis estimates and enforcing the mass balance of water. Initial validations show the data record is reliable for climate related analysis.
Hylke E. Beck, Noemi Vergopolan, Ming Pan, Vincenzo Levizzani, Albert I. J. M. van Dijk, Graham P. Weedon, Luca Brocca, Florian Pappenberger, George J. Huffman, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, https://doi.org/10.5194/hess-21-6201-2017, 2017
Short summary
Short summary
This study represents the most comprehensive global-scale precipitation dataset evaluation to date. We evaluated 13 uncorrected precipitation datasets using precipitation observations from 76 086 gauges, and 9 gauge-corrected ones using hydrological modeling for 9053 catchments. Our results highlight large differences in estimation accuracy, and hence, the importance of precipitation dataset selection in both research and operational applications.
Seyed Hamed Alemohammad, Bin Fang, Alexandra G. Konings, Filipe Aires, Julia K. Green, Jana Kolassa, Diego Miralles, Catherine Prigent, and Pierre Gentine
Biogeosciences, 14, 4101–4124, https://doi.org/10.5194/bg-14-4101-2017, https://doi.org/10.5194/bg-14-4101-2017, 2017
Short summary
Short summary
Water, Energy, and Carbon with Artificial Neural Networks (WECANN) is a statistically based estimate of global surface latent and sensible heat fluxes and gross primary productivity. The retrieval uses six remotely sensed observations as input, including the solar-induced fluorescence. WECANN provides estimates on a 1° × 1° geographic grid and on a monthly time scale and outperforms other global products in capturing the seasonality of the fluxes when compared to eddy covariance tower data.
Matthew F. McCabe, Matthew Rodell, Douglas E. Alsdorf, Diego G. Miralles, Remko Uijlenhoet, Wolfgang Wagner, Arko Lucieer, Rasmus Houborg, Niko E. C. Verhoest, Trenton E. Franz, Jiancheng Shi, Huilin Gao, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 3879–3914, https://doi.org/10.5194/hess-21-3879-2017, https://doi.org/10.5194/hess-21-3879-2017, 2017
Short summary
Short summary
We examine the opportunities and challenges that technological advances in Earth observation will present to the hydrological community. From advanced space-based sensors to unmanned aerial vehicles and ground-based distributed networks, these emergent systems are set to revolutionize our understanding and interpretation of hydrological and related processes.
Jaap Schellekens, Emanuel Dutra, Alberto Martínez-de la Torre, Gianpaolo Balsamo, Albert van Dijk, Frederiek Sperna Weiland, Marie Minvielle, Jean-Christophe Calvet, Bertrand Decharme, Stephanie Eisner, Gabriel Fink, Martina Flörke, Stefanie Peßenteiner, Rens van Beek, Jan Polcher, Hylke Beck, René Orth, Ben Calton, Sophia Burke, Wouter Dorigo, and Graham P. Weedon
Earth Syst. Sci. Data, 9, 389–413, https://doi.org/10.5194/essd-9-389-2017, https://doi.org/10.5194/essd-9-389-2017, 2017
Short summary
Short summary
The dataset combines the results of 10 global models that describe the global continental water cycle. The data can be used as input for water resources studies, flood frequency studies etc. at different scales from continental to medium-scale catchments. We compared the results with earth observation data and conclude that most uncertainties are found in snow-dominated regions and tropical rainforest and monsoon regions.
Hylke E. Beck, Albert I. J. M. van Dijk, Ad de Roo, Emanuel Dutra, Gabriel Fink, Rene Orth, and Jaap Schellekens
Hydrol. Earth Syst. Sci., 21, 2881–2903, https://doi.org/10.5194/hess-21-2881-2017, https://doi.org/10.5194/hess-21-2881-2017, 2017
Short summary
Short summary
Runoff measurements for 966 catchments around the globe were used to assess the quality of the daily runoff estimates of 10 hydrological models run as part of tier-1 of the eartH2Observe project. We found pronounced inter-model performance differences, underscoring the importance of hydrological model uncertainty.
Brecht Martens, Diego G. Miralles, Hans Lievens, Robin van der Schalie, Richard A. M. de Jeu, Diego Fernández-Prieto, Hylke E. Beck, Wouter A. Dorigo, and Niko E. C. Verhoest
Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, https://doi.org/10.5194/gmd-10-1903-2017, 2017
Short summary
Short summary
Terrestrial evaporation is a key component of the hydrological cycle and reliable data sets of this variable are of major importance. The Global Land Evaporation Amsterdam Model (GLEAM, www.GLEAM.eu) is a set of algorithms which estimates evaporation based on satellite observations. The third version of GLEAM, presented in this study, includes an improved parameterization of different model components. As a result, the accuracy of the GLEAM data sets has been improved upon previous versions.
Christina Papagiannopoulou, Diego G. Miralles, Stijn Decubber, Matthias Demuzere, Niko E. C. Verhoest, Wouter A. Dorigo, and Willem Waegeman
Geosci. Model Dev., 10, 1945–1960, https://doi.org/10.5194/gmd-10-1945-2017, https://doi.org/10.5194/gmd-10-1945-2017, 2017
Short summary
Short summary
Global satellite observations provide a means to unravel the influence of climate on vegetation. Common statistical methods used to study the relationships between climate and vegetation are often too simplistic to capture the complexity of these relationships. Here, we present a novel causality framework that includes data fusion from various databases, time series decomposition, and machine learning techniques. Results highlight the highly non-linear nature of climate–vegetation interactions.
Hylke E. Beck, Albert I. J. M. van Dijk, Vincenzo Levizzani, Jaap Schellekens, Diego G. Miralles, Brecht Martens, and Ad de Roo
Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, https://doi.org/10.5194/hess-21-589-2017, 2017
Short summary
Short summary
MSWEP (Multi-Source Weighted-Ensemble Precipitation) is a new global terrestrial precipitation dataset with a high 3-hourly temporal and 0.25° spatial resolution. The dataset is unique in that it takes advantage of a wide range of data sources, including gauge, satellite, and reanalysis data, to obtain the best possible precipitation estimates at global scale. The dataset outperforms existing gauge-adjusted precipitation datasets.
Joshua B. Fisher, Munish Sikka, Deborah N. Huntzinger, Christopher Schwalm, and Junjie Liu
Biogeosciences, 13, 4271–4277, https://doi.org/10.5194/bg-13-4271-2016, https://doi.org/10.5194/bg-13-4271-2016, 2016
Short summary
Short summary
Atmospheric models of CO2 require estimates of land CO2 fluxes at relatively high temporal resolutions because of the high rate of atmospheric mixing and wind heterogeneity. However, land CO2 fluxes are often provided at monthly time steps. Here, we describe a new dataset created from 15 global land models and 4 combined products in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP), which we have converted from monthly to 3-hourly output.
Cristina M. Surdu, Claude R. Duguay, and Diego Fernández Prieto
The Cryosphere, 10, 941–960, https://doi.org/10.5194/tc-10-941-2016, https://doi.org/10.5194/tc-10-941-2016, 2016
D. G. Miralles, C. Jiménez, M. Jung, D. Michel, A. Ershadi, M. F. McCabe, M. Hirschi, B. Martens, A. J. Dolman, J. B. Fisher, Q. Mu, S. I. Seneviratne, E. F. Wood, and D. Fernández-Prieto
Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016, https://doi.org/10.5194/hess-20-823-2016, 2016
Short summary
Short summary
The WACMOS-ET project aims to advance the development of land evaporation estimates on global and regional scales. Evaluation of current evaporation data sets on the global scale showed that they manifest large dissimilarities during conditions of water stress and drought and deficiencies in the way evaporation is partitioned into several components. Different models perform better under different conditions, highlighting the potential for considering biome- or climate-specific model ensembles.
D. Michel, C. Jiménez, D. G. Miralles, M. Jung, M. Hirschi, A. Ershadi, B. Martens, M. F. McCabe, J. B. Fisher, Q. Mu, S. I. Seneviratne, E. F. Wood, and D. Fernández-Prieto
Hydrol. Earth Syst. Sci., 20, 803–822, https://doi.org/10.5194/hess-20-803-2016, https://doi.org/10.5194/hess-20-803-2016, 2016
Short summary
Short summary
In this study a common reference input data set from satellite and in situ data is used to run four established evapotranspiration (ET) algorithms using sub-daily and daily input on a tower scale as a testbed for a global ET product. The PT-JPL model and GLEAM provide the best performance for satellite and in situ forcing as well as for the different temporal resolutions. PM-MOD and SEBS perform less well: the PM-MOD model generally underestimates, while SEBS generally overestimates ET.
M. F. McCabe, A. Ershadi, C. Jimenez, D. G. Miralles, D. Michel, and E. F. Wood
Geosci. Model Dev., 9, 283–305, https://doi.org/10.5194/gmd-9-283-2016, https://doi.org/10.5194/gmd-9-283-2016, 2016
Short summary
Short summary
In an effort to develop a global terrestrial evaporation product, four models were forced using both a tower and grid-based data set. Comparisons against flux-tower observations from different biome and land cover types show considerable inter-model variability and sensitivity to forcing type. Results suggest that no single model is able to capture expected flux patterns and response. It is suggested that a multi-model ensemble is likely to provide a more stable long-term flux estimate.
A. I. Stegehuis, R. Vautard, P. Ciais, A. J. Teuling, D. G. Miralles, and M. Wild
Geosci. Model Dev., 8, 2285–2298, https://doi.org/10.5194/gmd-8-2285-2015, https://doi.org/10.5194/gmd-8-2285-2015, 2015
Short summary
Short summary
Many climate models have difficulties in properly reproducing climate extremes such as heat wave conditions. We use a regional climate model with different atmospheric physics schemes to simulate the heat wave events of 2003 in western Europe and 2010 in Russia. The five best-performing and diverse physics scheme combinations may be used in the future to perform heat wave analysis and to investigate the impact of climate change in summer in Europe.
V. S. Galligani, C. Prigent, E. Defer, C. Jimenez, P. Eriksson, J.-P. Pinty, and J.-P. Chaboureau
Atmos. Meas. Tech., 8, 1605–1616, https://doi.org/10.5194/amt-8-1605-2015, https://doi.org/10.5194/amt-8-1605-2015, 2015
M. G. De Kauwe, J. Kala, Y.-S. Lin, A. J. Pitman, B. E. Medlyn, R. A. Duursma, G. Abramowitz, Y.-P. Wang, and D. G. Miralles
Geosci. Model Dev., 8, 431–452, https://doi.org/10.5194/gmd-8-431-2015, https://doi.org/10.5194/gmd-8-431-2015, 2015
Short summary
Short summary
Stomatal conductance affects the fluxes of carbon, energy and water between the vegetated land surface and the atmosphere. We test an implementation of an optimal stomatal conductance model within the CABLE land surface model (LSM). The new implementation resulted in a large reduction in the annual fluxes of transpiration across evergreen needleleaf, tundra and C4 grass regions. We conclude that optimisation theory can yield a tractable approach to predicting stomatal conductance in LSMs.
K. E. Clark, M. A. Torres, A. J. West, R. G. Hilton, M. New, A. B. Horwath, J. B. Fisher, J. M. Rapp, A. Robles Caceres, and Y. Malhi
Hydrol. Earth Syst. Sci., 18, 5377–5397, https://doi.org/10.5194/hess-18-5377-2014, https://doi.org/10.5194/hess-18-5377-2014, 2014
Short summary
Short summary
This paper presents measurements of the balance of water inputs and outputs over 1 year for a river basin in the Andes of Peru. Our results show that the annual water budget is balanced within a few percent uncertainty; that is to say, the amount of water entering the basin was the same as the amount leaving, providing important information for understanding the water cycle. We also show that seasonal storage of water is important in sustaining the flow of water during the dry season.
B. P. Guillod, B. Orlowsky, D. Miralles, A. J. Teuling, P. D. Blanken, N. Buchmann, P. Ciais, M. Ek, K. L. Findell, P. Gentine, B. R. Lintner, R. L. Scott, B. Van den Hurk, and S. I. Seneviratne
Atmos. Chem. Phys., 14, 8343–8367, https://doi.org/10.5194/acp-14-8343-2014, https://doi.org/10.5194/acp-14-8343-2014, 2014
C. M. Surdu, C. R. Duguay, L. C. Brown, and D. Fernández Prieto
The Cryosphere, 8, 167–180, https://doi.org/10.5194/tc-8-167-2014, https://doi.org/10.5194/tc-8-167-2014, 2014
B. Mueller, M. Hirschi, C. Jimenez, P. Ciais, P. A. Dirmeyer, A. J. Dolman, J. B. Fisher, M. Jung, F. Ludwig, F. Maignan, D. G. Miralles, M. F. McCabe, M. Reichstein, J. Sheffield, K. Wang, E. F. Wood, Y. Zhang, and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, https://doi.org/10.5194/hess-17-3707-2013, 2013
Related subject area
Subject: Global hydrology | Techniques and Approaches: Remote Sensing and GIS
Interannual variations of terrestrial water storage in the East African Rift region
Technical note: Surface fields for global environmental modelling
Benchmarking multimodel terrestrial water storage seasonal cycle against Gravity Recovery and Climate Experiment (GRACE) observations over major global river basins
Increasing seasonal variation in the extent of rivers and lakes from 1984 to 2022
Investigating sources of variability in closing the terrestrial water balance with remote sensing
Dynamic rainfall erosivity estimates derived from IMERG data
A global analysis of water storage variations from remotely sensed soil moisture and daily satellite gravimetry
Soil moisture estimates at 1 km resolution making a synergistic use of Sentinel data
Global evaluation of the “dry gets drier, and wet gets wetter” paradigm from a terrestrial water storage change perspective
Global assessment of subnational drought impact based on the Geocoded Disasters dataset and land reanalysis
Scaling methods of leakage correction in GRACE mass change estimates revisited for the complex hydro-climatic setting of the Indus Basin
Remotely sensed reservoir water storage dynamics (1984–2015) and the influence of climate variability and management at a global scale
Characterizing natural variability in complex hydrological systems using passive microwave-based climate data records: a case study for the Okavango Delta
High-resolution (1 km) satellite rainfall estimation from SM2RAIN applied to Sentinel-1: Po River basin as a case study
The accuracy of temporal upscaling of instantaneous evapotranspiration to daily values with seven upscaling methods
Global component analysis of errors in three satellite-only global precipitation estimates
Estimation of hydrological drought recovery based on precipitation and Gravity Recovery and Climate Experiment (GRACE) water storage deficit
Intercomparison of freshwater fluxes over ocean and investigations into water budget closure
Widespread decline in terrestrial water storage and its link to teleconnections across Asia and eastern Europe
Assimilation of vegetation optical depth retrievals from passive microwave radiometry
Long-term total water storage change from a Satellite Water Cycle reconstruction over large southern Asian basins
Global partitioning of runoff generation mechanisms using remote sensing data
Land–atmosphere interactions in the tropics – a review
Global-scale human pressure evolution imprints on sustainability of river systems
Using GRACE in a streamflow recession to determine drainable water storage in the Mississippi River basin
A new dense 18-year time series of surface water fraction estimates from MODIS for the Mediterranean region
Global joint assimilation of GRACE and SMOS for improved estimation of root-zone soil moisture and vegetation response
Using modelled discharge to develop satellite-based river gauging: a case study for the Amazon Basin
Global downscaling of remotely sensed soil moisture using neural networks
Global 5 km resolution estimates of secondary evaporation including irrigation through satellite data assimilation
Estimating time-dependent vegetation biases in the SMAP soil moisture product
Daily GRACE gravity field solutions track major flood events in the Ganges–Brahmaputra Delta
Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model
Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data
Microwave implementation of two-source energy balance approach for estimating evapotranspiration
A global approach to estimate irrigated areas – a comparison between different data and statistics
The future of Earth observation in hydrology
Validation of terrestrial water storage variations as simulated by different global numerical models with GRACE satellite observations
MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data
Evaluating the hydrological consistency of evaporation products using satellite-based gravity and rainfall data
Evaluating the strength of the land–atmosphere moisture feedback in Earth system models using satellite observations
Cloud tolerance of remote-sensing technologies to measure land surface temperature
Dynamic changes in terrestrial net primary production and their effects on evapotranspiration
Assessing changes in urban flood vulnerability through mapping land use from historical information
SACRA – a method for the estimation of global high-resolution crop calendars from a satellite-sensed NDVI
A global data set of the extent of irrigated land from 1900 to 2005
Evaluation of the satellite-based Global Flood Detection System for measuring river discharge: influence of local factors
Spatial patterns in timing of the diurnal temperature cycle
Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies
Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins
Eva Boergens, Andreas Güntner, Mike Sips, Christian Schwatke, and Henryk Dobslaw
Hydrol. Earth Syst. Sci., 28, 4733–4754, https://doi.org/10.5194/hess-28-4733-2024, https://doi.org/10.5194/hess-28-4733-2024, 2024
Short summary
Short summary
The satellites GRACE and GRACE-FO observe continental terrestrial water storage (TWS) changes. With over 20 years of data, we can look into long-term variations in the East Africa Rift region. We focus on analysing the interannual TWS variations compared to meteorological data and observations of the water storage compartments. We found strong influences of natural precipitation variability and human actions over Lake Victoria's water level.
Margarita Choulga, Francesca Moschini, Cinzia Mazzetti, Stefania Grimaldi, Juliana Disperati, Hylke Beck, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 28, 2991–3036, https://doi.org/10.5194/hess-28-2991-2024, https://doi.org/10.5194/hess-28-2991-2024, 2024
Short summary
Short summary
CEMS_SurfaceFields_2022 dataset is a new set of high-resolution maps for land type (e.g. lake, forest), soil properties and population water needs at approximately 2 and 6 km at the Equator, covering Europe and the globe (excluding Antarctica). We describe what and how new high-resolution information can be used to create the dataset. The paper suggests that the dataset can be used as input for river, weather or other models, as well as for statistical descriptions of the region of interest.
Sadia Bibi, Tingju Zhu, Ashraf Rateb, Bridget R. Scanlon, Muhammad Aqeel Kamran, Abdelrazek Elnashar, Ali Bennour, and Ci Li
Hydrol. Earth Syst. Sci., 28, 1725–1750, https://doi.org/10.5194/hess-28-1725-2024, https://doi.org/10.5194/hess-28-1725-2024, 2024
Short summary
Short summary
We assessed 13 global models using GRACE satellite data over 29 river basins. Simulated seasonal water storage cycles showed discrepancies compared to GRACE. The models overestimated seasonal amplitude in boreal basins and showed underestimation in tropical, arid, and temperate zones, with phase differences of 2–3 months compared to GRACE in cold basins and of 1 month in temperate, arid, and semi-arid basins. Seasonal amplitude and phase differences provide insights for model improvement.
Björn Nyberg, Roger Sayre, and Elco Luijendijk
Hydrol. Earth Syst. Sci., 28, 1653–1663, https://doi.org/10.5194/hess-28-1653-2024, https://doi.org/10.5194/hess-28-1653-2024, 2024
Short summary
Short summary
Understanding the spatial and temporal distribution of surface water is crucial for effective water resource management, maintaining ecosystem health and assessing flood risks. This study examined permanent and seasonal rivers and lakes globally over 38 years, uncovering a statistically significant expansion in seasonal extent captured in the new SARL database. The findings offer valuable resources for assessing the impact of changing river and lake extents on ecosystems and human livelihoods.
Claire I. Michailovsky, Bert Coerver, Marloes Mul, and Graham Jewitt
Hydrol. Earth Syst. Sci., 27, 4335–4354, https://doi.org/10.5194/hess-27-4335-2023, https://doi.org/10.5194/hess-27-4335-2023, 2023
Short summary
Short summary
Many remote sensing products for precipitation, evapotranspiration, and water storage variations exist. However, when these are used with in situ runoff data in water balance closure studies, no single combination of products consistently outperforms others. We analyzed the water balance closure using different products in catchments worldwide and related the results to catchment characteristics. Our results can help identify the dataset combinations best suited for use in different catchments.
Robert A. Emberson
Hydrol. Earth Syst. Sci., 27, 3547–3563, https://doi.org/10.5194/hess-27-3547-2023, https://doi.org/10.5194/hess-27-3547-2023, 2023
Short summary
Short summary
Soil can be eroded by rainfall, and this is a major threat to agricultural sustainability. Estimating the erosivity of rainfall is essential as a first step to determine how much soil might be lost. Until recently, satellite data have not been used to estimate rainfall erosivity, but the data quality is now sufficient to do so. In this study, I test several methods to calculate rainfall erosivity using satellite rainfall data and contrast this with ground-based estimates.
Daniel Blank, Annette Eicker, Laura Jensen, and Andreas Güntner
Hydrol. Earth Syst. Sci., 27, 2413–2435, https://doi.org/10.5194/hess-27-2413-2023, https://doi.org/10.5194/hess-27-2413-2023, 2023
Short summary
Short summary
Soil moisture (SM), a key variable of the global water cycle, is analyzed using two types of satellite observations; microwave sensors measure the top few centimeters and satellite gravimetry (GRACE) the full vertical water column. As SM can change very fast, non-standard daily GRACE data are applied for the first time for this analysis. Jointly analyzing these data gives insight into the SM dynamics at different soil depths, and time shifts indicate the infiltration time into deeper layers.
Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 27, 1221–1242, https://doi.org/10.5194/hess-27-1221-2023, https://doi.org/10.5194/hess-27-1221-2023, 2023
Short summary
Short summary
We present an approach to estimate soil moisture (SM) at 1 km resolution using Sentinel-1 and Sentinel-3 satellites. The estimates were compared to other high-resolution (HR) datasets over Europe, northern Africa, Australia, and North America, showing good agreement. However, the discrepancies between the different HR datasets and their lower performances compared with in situ measurements and coarse-resolution datasets show the remaining challenges for large-scale HR SM mapping.
Jinghua Xiong, Shenglian Guo, Abhishek, Jie Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 26, 6457–6476, https://doi.org/10.5194/hess-26-6457-2022, https://doi.org/10.5194/hess-26-6457-2022, 2022
Short summary
Short summary
Although the "dry gets drier, and wet gets wetter (DDWW)" paradigm is prevalent in summarizing wetting and drying trends, we show that only 11.01 %–40.84 % of the global land confirms and 10.21 %–35.43 % contradicts the paradigm during 1985–2014 from a terrestrial water storage change perspective. Similar proportions that intensify with the increasing emission scenarios persist until the end of the 21st century. Findings benefit understanding of global hydrological responses to climate change.
Yuya Kageyama and Yohei Sawada
Hydrol. Earth Syst. Sci., 26, 4707–4720, https://doi.org/10.5194/hess-26-4707-2022, https://doi.org/10.5194/hess-26-4707-2022, 2022
Short summary
Short summary
This study explores the link between hydrometeorological droughts and their socioeconomic impact at a subnational scale based on the newly developed disaster dataset with subnational location information. Hydrometeorological drought-prone areas were generally consistent with socioeconomic drought-prone areas in the disaster dataset. Our analysis clarifies the importance of the use of subnational disaster information.
Vasaw Tripathi, Andreas Groh, Martin Horwath, and Raaj Ramsankaran
Hydrol. Earth Syst. Sci., 26, 4515–4535, https://doi.org/10.5194/hess-26-4515-2022, https://doi.org/10.5194/hess-26-4515-2022, 2022
Short summary
Short summary
GRACE/GRACE-FO provided global observations of water storage change since 2002. Scaling is a common approach to compensate for the spatial filtering inherent to the results. However, for complex hydrological basins, the compatibility of scaling with the characteristics of regional hydrology has been rarely assessed. We assess traditional scaling approaches and a new scaling approach for the Indus Basin. Our results will help users with regional focus understand implications of scaling choices.
Jiawei Hou, Albert I. J. M. van Dijk, Hylke E. Beck, Luigi J. Renzullo, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 26, 3785–3803, https://doi.org/10.5194/hess-26-3785-2022, https://doi.org/10.5194/hess-26-3785-2022, 2022
Short summary
Short summary
We used satellite imagery to measure monthly reservoir water volumes for 6695 reservoirs worldwide for 1984–2015. We investigated how changing precipitation, streamflow, evaporation, and human activity affected reservoir water storage. Almost half of the reservoirs showed significant increasing or decreasing trends over the past three decades. These changes are caused, first and foremost, by changes in precipitation rather than by changes in net evaporation or dam release patterns.
Robin van der Schalie, Mendy van der Vliet, Clément Albergel, Wouter Dorigo, Piotr Wolski, and Richard de Jeu
Hydrol. Earth Syst. Sci., 26, 3611–3627, https://doi.org/10.5194/hess-26-3611-2022, https://doi.org/10.5194/hess-26-3611-2022, 2022
Short summary
Short summary
Climate data records of surface soil moisture, vegetation optical depth, and land surface temperature can be derived from passive microwave observations. The ability of these datasets to properly detect anomalies and extremes is very valuable in climate research and can especially help to improve our insight in complex regions where the current climate reanalysis datasets reach their limitations. Here, we present a case study over the Okavango Delta, where we focus on inter-annual variability.
Paolo Filippucci, Luca Brocca, Raphael Quast, Luca Ciabatta, Carla Saltalippi, Wolfgang Wagner, and Angelica Tarpanelli
Hydrol. Earth Syst. Sci., 26, 2481–2497, https://doi.org/10.5194/hess-26-2481-2022, https://doi.org/10.5194/hess-26-2481-2022, 2022
Short summary
Short summary
A high-resolution (1 km) rainfall product with 10–30 d temporal resolution was obtained starting from SM data from Sentinel-1. Good performances are achieved using observed data (gauge and radar) over the Po River Valley, Italy, as a benchmark. The comparison with a product characterized by lower spatial resolution (25 km) highlights areas where the high spatial resolution of Sentinel-1 has great benefits. Possible applications include water management, agriculture and index-based insurances.
Zhaofei Liu
Hydrol. Earth Syst. Sci., 25, 4417–4433, https://doi.org/10.5194/hess-25-4417-2021, https://doi.org/10.5194/hess-25-4417-2021, 2021
Short summary
Short summary
Instantaneous evapotranspiration (ET), which is detected by the remote sensing technique, needs to be upscaled to daily values in order to practical applications. The accuracy of seven upscaling methods is evaluated by using global observations. The sine function and the evaporative fraction method using extraterrestrial solar irradiance are recommended. Although every upscaling scheme has high accuracy at most sites, it is less accurate at tropical rainforest and tropical monsoon sites.
Hanqing Chen, Bin Yong, Pierre-Emmanuel Kirstetter, Leyang Wang, and Yang Hong
Hydrol. Earth Syst. Sci., 25, 3087–3104, https://doi.org/10.5194/hess-25-3087-2021, https://doi.org/10.5194/hess-25-3087-2021, 2021
Alka Singh, John Thomas Reager, and Ali Behrangi
Hydrol. Earth Syst. Sci., 25, 511–526, https://doi.org/10.5194/hess-25-511-2021, https://doi.org/10.5194/hess-25-511-2021, 2021
Short summary
Short summary
The study demonstrates the utility of Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies (TWSAs) for obtaining statistics of hydrological droughts, i.e., recovery periods and required precipitation in different precipitation scenarios. The findings of this study are that the GRACE-based drought index is valid for estimating the required precipitation for drought recovery, and the period of drought recovery depends on the intensity of the precipitation.
Marloes Gutenstein, Karsten Fennig, Marc Schröder, Tim Trent, Stephan Bakan, J. Brent Roberts, and Franklin R. Robertson
Hydrol. Earth Syst. Sci., 25, 121–146, https://doi.org/10.5194/hess-25-121-2021, https://doi.org/10.5194/hess-25-121-2021, 2021
Short summary
Short summary
The net exchange of water between the surface and atmosphere is mainly determined by the freshwater flux: the difference between evaporation (E) and precipitation (P), or E−P. Although there is consensus among modelers that with a warming climate E−P will increase, evidence from satellite data is still not conclusive, mainly due to sensor calibration issues. We here investigate the degree of correspondence among six recent
satellite-based climate data records and ERA5 reanalysis E−P data.
Xianfeng Liu, Xiaoming Feng, Philippe Ciais, and Bojie Fu
Hydrol. Earth Syst. Sci., 24, 3663–3676, https://doi.org/10.5194/hess-24-3663-2020, https://doi.org/10.5194/hess-24-3663-2020, 2020
Short summary
Short summary
Freshwater availability is crucial for sustainable development across the Asian and eastern European regions. Our results indicate widespread decline in terrestrial water storage (TWS) over the region during 2002–2017, primarily due to the intensive over-extraction of groundwater and warmth-induced surface water loss. The findings provide insights into changes in TWS and its components over the Asian and eastern European regions, where there is growing demand for food grains and water supplies.
Sujay V. Kumar, Thomas R. Holmes, Rajat Bindlish, Richard de Jeu, and Christa Peters-Lidard
Hydrol. Earth Syst. Sci., 24, 3431–3450, https://doi.org/10.5194/hess-24-3431-2020, https://doi.org/10.5194/hess-24-3431-2020, 2020
Short summary
Short summary
Vegetation optical depth (VOD) is a byproduct of the soil moisture retrieval from passive microwave instruments. This study demonstrates that VOD information can be utilized for improving land surface water budget and carbon conditions through data assimilation.
Victor Pellet, Filipe Aires, Fabrice Papa, Simon Munier, and Bertrand Decharme
Hydrol. Earth Syst. Sci., 24, 3033–3055, https://doi.org/10.5194/hess-24-3033-2020, https://doi.org/10.5194/hess-24-3033-2020, 2020
Short summary
Short summary
The water mass variation at and below the land surface is a major component of the water cycle that was first estimated using GRACE observations (2002–2017). Our analysis shows the advantages of the use of satellite observation for precipitation and evapotranspiration along with river discharge measurement to perform an indirect and coherent reconstruction of this water component estimate over longer time periods.
Joseph T. D. Lucey, John T. Reager, and Sonya R. Lopez
Hydrol. Earth Syst. Sci., 24, 1415–1427, https://doi.org/10.5194/hess-24-1415-2020, https://doi.org/10.5194/hess-24-1415-2020, 2020
Short summary
Short summary
This work relates total water storage (TWS) and rainfall to surface water inundation (SWI) using NASA satellite data. We determine whether TWS and/or rainfall control global SWI developments. Regression methods and cross-correlations were used to relate the measurements and correct for time differences among peaks. Results show TWS and rainfall control most global SWI developments. To our knowledge, this is the first global study on SWI controls and validates previous findings.
Pierre Gentine, Adam Massmann, Benjamin R. Lintner, Sayed Hamed Alemohammad, Rong Fu, Julia K. Green, Daniel Kennedy, and Jordi Vilà-Guerau de Arellano
Hydrol. Earth Syst. Sci., 23, 4171–4197, https://doi.org/10.5194/hess-23-4171-2019, https://doi.org/10.5194/hess-23-4171-2019, 2019
Short summary
Short summary
Land–atmosphere interactions are key for the exchange of water, energy, and carbon dioxide, especially in the tropics. We here review some of the recent findings on land–atmosphere interactions in the tropics and where we see potential challenges and paths forward.
Serena Ceola, Francesco Laio, and Alberto Montanari
Hydrol. Earth Syst. Sci., 23, 3933–3944, https://doi.org/10.5194/hess-23-3933-2019, https://doi.org/10.5194/hess-23-3933-2019, 2019
Short summary
Short summary
A simple and effective index for the quantitative estimation of the evolution of human pressure on rivers at global scale is proposed. This index, based on nightlights and river discharge data, shows a significant increase from 1992 to 2013 worldwide. The most notable changes are found in river basins across Africa and Asia, where human pressure on rivers is growing markedly. This index identifies priority areas that can be targeted for the implementation of mitigation strategies and plans.
Heloisa Ehalt Macedo, Ralph Edward Beighley, Cédric H. David, and John T. Reager
Hydrol. Earth Syst. Sci., 23, 3269–3277, https://doi.org/10.5194/hess-23-3269-2019, https://doi.org/10.5194/hess-23-3269-2019, 2019
Short summary
Short summary
The water stored under the surface is very important for defining the amount of water available for human and environmental applications; however, it is still a challenge to obtain such measurements. NASA's GRACE satellites provide information on total terrestrial water storage based on observations of gravity changes. Here, we relate GRACE data to streamflow measurements, providing estimations of the fraction of baseflow and total drainable storage for the Mississippi River basin.
Linlin Li, Andrew Skidmore, Anton Vrieling, and Tiejun Wang
Hydrol. Earth Syst. Sci., 23, 3037–3056, https://doi.org/10.5194/hess-23-3037-2019, https://doi.org/10.5194/hess-23-3037-2019, 2019
Short summary
Short summary
We derived an 8 d, 500 m resolution surface water fraction product over the Mediterranean region for 2000–2017 based on MODIS data. This dataset complements existing surface water/wetland datasets by adding more temporal detail. It allows for the seasonal, inter-annual, and long-term dynamics of the surface water extent to be monitored, inclusive of small-sized and highly dynamic water bodies; it can also contribute to biodiversity and climate change assessment.
Siyuan Tian, Luigi J. Renzullo, Albert I. J. M. van Dijk, Paul Tregoning, and Jeffrey P. Walker
Hydrol. Earth Syst. Sci., 23, 1067–1081, https://doi.org/10.5194/hess-23-1067-2019, https://doi.org/10.5194/hess-23-1067-2019, 2019
Jiawei Hou, Albert I. J. M. van Dijk, Luigi J. Renzullo, and Robert A. Vertessy
Hydrol. Earth Syst. Sci., 22, 6435–6448, https://doi.org/10.5194/hess-22-6435-2018, https://doi.org/10.5194/hess-22-6435-2018, 2018
Short summary
Short summary
Satellite-based river gauging can be constructed based on remote-sensing-derived surface water extent and modelled discharge, and used to estimate river discharges with satellite observations only. This provides opportunities for monitoring river discharge in the absence of a real-time hydrological model or gauging stations.
Seyed Hamed Alemohammad, Jana Kolassa, Catherine Prigent, Filipe Aires, and Pierre Gentine
Hydrol. Earth Syst. Sci., 22, 5341–5356, https://doi.org/10.5194/hess-22-5341-2018, https://doi.org/10.5194/hess-22-5341-2018, 2018
Short summary
Short summary
A new machine learning algorithm is developed to downscale satellite-based soil moisture estimates from their native spatial scale of 9 km to 2.25 km.
Albert I. J. M. van Dijk, Jaap Schellekens, Marta Yebra, Hylke E. Beck, Luigi J. Renzullo, Albrecht Weerts, and Gennadii Donchyts
Hydrol. Earth Syst. Sci., 22, 4959–4980, https://doi.org/10.5194/hess-22-4959-2018, https://doi.org/10.5194/hess-22-4959-2018, 2018
Short summary
Short summary
Evaporation from wetlands, lakes and irrigation areas needs to be measured to understand water scarcity. So far, this has only been possible for small regions. Here, we develop a solution that can be applied at a very high resolution globally by making use of satellite observations. Our results show that 16% of global water resources evaporate before reaching the ocean, mostly from surface water. Irrigation water use is less than 1% globally but is a very large water user in several dry basins.
Simon Zwieback, Andreas Colliander, Michael H. Cosh, José Martínez-Fernández, Heather McNairn, Patrick J. Starks, Marc Thibeault, and Aaron Berg
Hydrol. Earth Syst. Sci., 22, 4473–4489, https://doi.org/10.5194/hess-22-4473-2018, https://doi.org/10.5194/hess-22-4473-2018, 2018
Short summary
Short summary
Satellite soil moisture products can provide critical information on incipient droughts and the interplay between vegetation and water availability. However, time-variant systematic errors in the soil moisture products may impede their usefulness. Using a novel statistical approach, we detect such errors (associated with changing vegetation) in the SMAP soil moisture product. The vegetation-associated biases impede drought detection and the quantification of vegetation–water interactions.
Ben T. Gouweleeuw, Andreas Kvas, Christian Gruber, Animesh K. Gain, Thorsten Mayer-Gürr, Frank Flechtner, and Andreas Güntner
Hydrol. Earth Syst. Sci., 22, 2867–2880, https://doi.org/10.5194/hess-22-2867-2018, https://doi.org/10.5194/hess-22-2867-2018, 2018
Short summary
Short summary
Daily GRACE gravity field solutions have been evaluated against daily river runoff data for major flood events in the Ganges–Brahmaputra Delta in 2004 and 2007. Compared to the monthly gravity field solutions, the trends over periods of a few days in the daily gravity field solutions are able to reflect temporal variations in river runoff during major flood events. This implies that daily gravity field solutions released in near-real time may support flood monitoring for large events.
Peter J. Shellito, Eric E. Small, and Ben Livneh
Hydrol. Earth Syst. Sci., 22, 1649–1663, https://doi.org/10.5194/hess-22-1649-2018, https://doi.org/10.5194/hess-22-1649-2018, 2018
Short summary
Short summary
After soil gets wet, much of the surface moisture evaporates directly back into the air. Recent satellite data show that this process is enhanced when there is more water in the soil, less humidity in the air, and less vegetation covering the ground. A widely used model shows similar effects of soil water and humidity, but it largely misses the role of vegetation and assigns outsized importance to soil type. These results are encouraging evidence that the satellite can be used to improve models.
Cassandra Normandin, Frédéric Frappart, Bertrand Lubac, Simon Bélanger, Vincent Marieu, Fabien Blarel, Arthur Robinet, and Léa Guiastrennec-Faugas
Hydrol. Earth Syst. Sci., 22, 1543–1561, https://doi.org/10.5194/hess-22-1543-2018, https://doi.org/10.5194/hess-22-1543-2018, 2018
Thomas R. H. Holmes, Christopher R. Hain, Wade T. Crow, Martha C. Anderson, and William P. Kustas
Hydrol. Earth Syst. Sci., 22, 1351–1369, https://doi.org/10.5194/hess-22-1351-2018, https://doi.org/10.5194/hess-22-1351-2018, 2018
Short summary
Short summary
In an effort to apply cloud-tolerant microwave data to satellite-based monitoring of evapotranspiration (ET), this study reports on an experiment where microwave-based land surface temperature is used as the key diagnostic input to a two-source energy balance method for the estimation of ET. Comparisons of this microwave ET with the conventional thermal infrared estimates show widespread agreement in spatial and temporal patterns from seasonal to inter-annual timescales over Africa and Europe.
Jonas Meier, Florian Zabel, and Wolfram Mauser
Hydrol. Earth Syst. Sci., 22, 1119–1133, https://doi.org/10.5194/hess-22-1119-2018, https://doi.org/10.5194/hess-22-1119-2018, 2018
Short summary
Short summary
The following study extends existing irrigation maps based on official reports. The main idea was to extend the reported irrigated areas using agricultural suitability data and compare them with remote sensing information about plant conditions. The analysis indicates an increase in irrigated land by 18 % compared to the reported statistics. The additional areas are mainly identified within already known irrigated regions where irrigation is more dense than previously estimated.
Matthew F. McCabe, Matthew Rodell, Douglas E. Alsdorf, Diego G. Miralles, Remko Uijlenhoet, Wolfgang Wagner, Arko Lucieer, Rasmus Houborg, Niko E. C. Verhoest, Trenton E. Franz, Jiancheng Shi, Huilin Gao, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 3879–3914, https://doi.org/10.5194/hess-21-3879-2017, https://doi.org/10.5194/hess-21-3879-2017, 2017
Short summary
Short summary
We examine the opportunities and challenges that technological advances in Earth observation will present to the hydrological community. From advanced space-based sensors to unmanned aerial vehicles and ground-based distributed networks, these emergent systems are set to revolutionize our understanding and interpretation of hydrological and related processes.
Liangjing Zhang, Henryk Dobslaw, Tobias Stacke, Andreas Güntner, Robert Dill, and Maik Thomas
Hydrol. Earth Syst. Sci., 21, 821–837, https://doi.org/10.5194/hess-21-821-2017, https://doi.org/10.5194/hess-21-821-2017, 2017
Short summary
Short summary
Global numerical models perform differently, as has been found in some model intercomparison studies, which mainly focused on components like evapotranspiration, soil moisture or runoff. We have applied terrestrial water storage that is estimated from a GRACE-based state-of-art post-processing method to validate four global numerical models and try to identify the advantages and deficiencies of a certain model. GRACE-based TWS demonstrates its additional benefits to improve the models in future.
Hylke E. Beck, Albert I. J. M. van Dijk, Vincenzo Levizzani, Jaap Schellekens, Diego G. Miralles, Brecht Martens, and Ad de Roo
Hydrol. Earth Syst. Sci., 21, 589–615, https://doi.org/10.5194/hess-21-589-2017, https://doi.org/10.5194/hess-21-589-2017, 2017
Short summary
Short summary
MSWEP (Multi-Source Weighted-Ensemble Precipitation) is a new global terrestrial precipitation dataset with a high 3-hourly temporal and 0.25° spatial resolution. The dataset is unique in that it takes advantage of a wide range of data sources, including gauge, satellite, and reanalysis data, to obtain the best possible precipitation estimates at global scale. The dataset outperforms existing gauge-adjusted precipitation datasets.
Oliver López, Rasmus Houborg, and Matthew Francis McCabe
Hydrol. Earth Syst. Sci., 21, 323–343, https://doi.org/10.5194/hess-21-323-2017, https://doi.org/10.5194/hess-21-323-2017, 2017
Short summary
Short summary
The study evaluated the spatial and temporal consistency of satellite-based hydrological products based on the water budget equation, including three global evaporation products. The products were spatially matched using spherical harmonics analysis. The results highlighted the difficulty in obtaining agreement between independent satellite products, even over regions with simple water budgets. However, imposing a time lag on water storage data improved results considerably.
Paul A. Levine, James T. Randerson, Sean C. Swenson, and David M. Lawrence
Hydrol. Earth Syst. Sci., 20, 4837–4856, https://doi.org/10.5194/hess-20-4837-2016, https://doi.org/10.5194/hess-20-4837-2016, 2016
Short summary
Short summary
We demonstrate a new approach to assess the strength of feedbacks resulting from land–atmosphere coupling on decadal timescales. Our approach was tailored to enable evaluation of Earth system models (ESMs) using data from Earth observation satellites that measure terrestrial water storage anomalies and relevant atmospheric variables. Our results are consistent with previous work demonstrating that ESMs may be overestimating the strength of land surface feedbacks compared with observations.
Thomas R. H. Holmes, Christopher R. Hain, Martha C. Anderson, and Wade T. Crow
Hydrol. Earth Syst. Sci., 20, 3263–3275, https://doi.org/10.5194/hess-20-3263-2016, https://doi.org/10.5194/hess-20-3263-2016, 2016
Short summary
Short summary
We test the cloud tolerance of two technologies to estimate land surface temperature (LST) from space: microwave (MW) and thermal infrared (TIR). Although TIR has slightly lower errors than MW with ground data under clear-sky conditions, it suffers increasing negative bias as cloud cover increases. In contrast, we find no direct impact of clouds on the accuracy and bias of MW-LST. MW-LST can therefore be used to improve TIR cloud screening and increase sampling in clouded regions.
Zhi Li, Yaning Chen, Yang Wang, and Gonghuan Fang
Hydrol. Earth Syst. Sci., 20, 2169–2178, https://doi.org/10.5194/hess-20-2169-2016, https://doi.org/10.5194/hess-20-2169-2016, 2016
Short summary
Short summary
Global net primary production (NPP) slightly increased in 2000–2014. More than 64 % of vegetated land in the Northern Hemisphere (NH) showed increased NPP, while 60.3 % in Southern Hemisphere (SH) showed a decreasing trend. Vegetation greening and climate change promote rises of global evapotranspiration (ET). The increased rate of ET in the NH is faster than that in the SH. Meanwhile, global warming and vegetation greening accelerate evaporation in soil moisture. Continuation of these trends will likely exacerbate the risk of ecological drought.
M. Boudou, B. Danière, and M. Lang
Hydrol. Earth Syst. Sci., 20, 161–173, https://doi.org/10.5194/hess-20-161-2016, https://doi.org/10.5194/hess-20-161-2016, 2016
Short summary
Short summary
This paper presents an appraisal of flood vulnerability of two French cities, Besançon and Moissac, which have been largely impacted by two ancient major floods (resp. in January 1910 and March 1930). An analysis of historical sources allows the mapping of land use and occupation within the flood extent of the two historical floods, both in past and present contexts. It gives an insight into the complexity of flood risk evolution, at a local scale.
S. Kotsuki and K. Tanaka
Hydrol. Earth Syst. Sci., 19, 4441–4461, https://doi.org/10.5194/hess-19-4441-2015, https://doi.org/10.5194/hess-19-4441-2015, 2015
Short summary
Short summary
This study aims to develop a new global data set of a satellite-derived crop calendar (SACRA) and to reveal its advantages and disadvantages compared to other global products. The cultivation period of SACRA is identified from the time series of NDVI; therefore, SACRA considers current effects of human decisions and natural disasters. The difference between the estimated sowing dates and other existing products is less than 2 months (< 62 days) in most areas.
S. Siebert, M. Kummu, M. Porkka, P. Döll, N. Ramankutty, and B. R. Scanlon
Hydrol. Earth Syst. Sci., 19, 1521–1545, https://doi.org/10.5194/hess-19-1521-2015, https://doi.org/10.5194/hess-19-1521-2015, 2015
Short summary
Short summary
We developed the historical irrigation data set (HID) depicting the spatio-temporal development of the area equipped for irrigation (AEI) between 1900 and 2005 at 5arcmin resolution.
The HID reflects very well the spatial patterns of irrigated land as shown on two historical maps for 1910 and 1960.
Global AEI increased from 63 million ha (Mha) in 1900 to 111 Mha in 1950 and 306 Mha in 2005. Mean aridity on irrigated land increased and mean natural river discharge decreased from 1900 to 1950.
B. Revilla-Romero, J. Thielen, P. Salamon, T. De Groeve, and G. R. Brakenridge
Hydrol. Earth Syst. Sci., 18, 4467–4484, https://doi.org/10.5194/hess-18-4467-2014, https://doi.org/10.5194/hess-18-4467-2014, 2014
Short summary
Short summary
One of the main challenges in global hydrological modelling is the limited availability of observational data for calibration and model verification. The aim of this study is to test the potentials and constraints of the remote sensing signal of the Global Flood Detection System (GFDS) for converting the flood detection signal into river discharge values. This work also provides a first analysis of the local factors influencing the accuracy of discharge measurement as provided by this system.
T. R. H. Holmes, W. T. Crow, and C. Hain
Hydrol. Earth Syst. Sci., 17, 3695–3706, https://doi.org/10.5194/hess-17-3695-2013, https://doi.org/10.5194/hess-17-3695-2013, 2013
A. Loew, T. Stacke, W. Dorigo, R. de Jeu, and S. Hagemann
Hydrol. Earth Syst. Sci., 17, 3523–3542, https://doi.org/10.5194/hess-17-3523-2013, https://doi.org/10.5194/hess-17-3523-2013, 2013
G. G. Laruelle, H. H. Dürr, R. Lauerwald, J. Hartmann, C. P. Slomp, N. Goossens, and P. A. G. Regnier
Hydrol. Earth Syst. Sci., 17, 2029–2051, https://doi.org/10.5194/hess-17-2029-2013, https://doi.org/10.5194/hess-17-2029-2013, 2013
Cited articles
Aires, F.: Combining Datasets of Satellite-Retrieved Products. Part I: Methodology and Water Budget Closure, J. Hydrometeorol., 15, 1677–1691, 2014.
Amiro, B.: Measuring boreal forest evapotranspiration using the energy balance residual, J. Hydrol., 366, 112–118, 2009.
Amiro, B., Barr, A., Black, T., Iwashita, H., Kljun, N., Mccaughey, J., Morgenstern, K., Murayama, S., Nesic, Z., and Orchansky, A.: Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada, Agr. Forest Meteorol., 136, 237–251, 2006.
Amos, B., Arkebauer, T. J., and Doran, J. W.: Soil surface fluxes of greenhouse gases in an irrigated maize-based agroecosystem, Soil Sci. Soc. Am. J., 69, 387–395, https://doi.org/10.2136/sssaj2005.0387, 2005.
Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and Laitat, E.: Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes, Agr. Forest Meteorol., 108, 293–315, 2001.
Badgley, G., Fisher, J. B., Jiménez, C., Tu, K. P., and Vinukollu, R. K.: On uncertainty in global terrestrial evapotranspiration estimates from choice of input forcing datasets, J. Hydrometeorol., 16, 1449–1455, 2015.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., MALHI, Y., Meyers, T., Munger, W., Oechel, W., Paw, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities., B. Am. Meteorol. Soc., 82, 2415–2434, 2001.
Bazot, S., Barthes, L., Blanot, D., and Fresneau, C.: Distribution of non-structural nitrogen and carbohydrate compounds in mature oak trees in a temperate forest at four key phenological stages, Trees, 27, 1023–1034, 2013.
Beck, H. E., De Roo, A., and van Dijk, A. I. J. M.: Global maps of streamflow characteristics based on observations from several thousand catchments, J. Hydrometeorol., 16, 1878–1501, 2015.
Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., Brocca, L., Pappenberger, F., Huffman, G. J., and Wood, E. F.: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling, Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017, 2017.
Bergeron, O., Margolis, H. A., Black, T. A., Coursolle, C., Dunn, A. L., Barr, A. G., and Wofsy, S. C.: Comparison of carbon dioxide fluxes over three boreal black spruce forests in Canada, Global Change Biol., 13, 89–107, https://doi.org/10.1111/j.1365-2486.2006.01281.x, 2007.
Betts, A. K.: Land-surface-atmosphere coupling in observations and models, J. Adv. Model. Earth Syst., 2, 4–18, 2009.
Bishop, M.: Neural networks for pattern recognition, chap. Learning and Generalization, 332–384, Oxford University Press, Inc., New York, 1995a.
Bishop, M.: Neural networks for pattern recognition, chap. Error functions, 194–252, Oxford University Press, Inc., New York, 1995b.
Bond-Lamberty, B., Wang, C., and Gower, S. T.: Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence, Global Change Biol., 10, 473–487, https://doi.org/10.1111/j.1529-8817.2003.0742.x, 2004a.
Bond-Lamberty, B., Wang, C. K., and Gower, S. T.: Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence, Global Change Biol., 10, 473–487, https://doi.org/10.1111/j.1529-8817.2003.0742.x, 2004b.
Campbell, J. L. and Law, B. E.: Forest soil respiration across three climatically distinct chronosequences in Oregon, Biogeochem., 73, 109–125, 2005.
Chen, Q., Gong, P., Baldocchi, D., and Tian, Y. Q.: Estimating basal area and stem volume for individual trees from lidar data, Photogr. Eng. Remote Sens., 73, 1355–1365, https://doi.org/10.14358/PERS.73.12.1355, 2007.
Cook, B. D., Davis, K. J., Wang, W. G., Desai, A., Berger, B. W., Teclaw, R. M., Martin, J. G., Bolstad, P. V., Bakwin, P. S., Yi, C. X., and Heilman, W.: Carbon exchange and venting anomalies in an upland deciduous forest in northern Wisconsin, USA, Agr. Forest Meteorol., 126, 271–295, https://doi.org/10.1016/j.agrformet.2004.06.008, 2004.
Corradi, C., Kolle, O., Walter, K., Zimov, S. A., and Schulze, E.-D.: Carbon dioxide and methane exchange of a north-east Siberian tussock tundra, Global Change Biol., 11, 1910–1925, https://doi.org/10.1111/j.1365-2486.2005.01023.x, 2005.
Coursolle, C., Margolis, H. A., Giasson, M.-A., Bernier, P.-Y., Amiro, B., Arain, M. A., Barr, A., Black, T. A., GOULDEN, M. L., McCaughey, J., Chen, J., Dunn, A., Grant, R. F., and Lafleur, P.: Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests, Agr. Forest Meteorol., 165, 136–148, https://doi.org/10.1016/j.agrformet.2012.06.011, 2012.
Dee, D., Uppala, M., S., Simmons, J., A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, A., M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, M., A. C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, J., A., Haimberger, L., Healy, B., S., Hersbach, H., Hólm, V., E., Isaksen, L., Kallberg, P., Khaler, M., Matricardi, M., McNally, P., A., Monge-Sanz, M., B., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thapaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
De Lannoy, G. and Reichle, R. H.: Global assimilation of multiangle and multipolarization SMOS brightness temperature observations into the GEOS-5 catchment land surface model for soil moisture, J. Hydrometeorol., 17, 669–691, 2016.
Dunn, A. L., Barford, C. C., Wofsy, S. C., Goulden, M. L., and Daube, B. C.: A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends, Global Change Biol., 13, 577–590, https://doi.org/10.1111/j.1365-2486.2006.01221.x, 2007.
Dunn, S. M. and Mackay, R.: Spatial variation in evapotranspiration and the influence of land use on catchment hydrology, J. Hydrol., 171, 49–73, 1995.
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas, Int. J. Climatol., 37, 4302–4315, 2017.
Fischer, M. L., Billesbach, D. P., Berry, J. A., Riley, W. J., and Torn, M. S.: Spatiotemporal variations in growing season exchanges of CO2, H2O, and sensible heat in agricultural fields of the Southern Great Plains, Earth Int., 11, 1–21, 2007.
Fisher, J. B., Tu, K. P., and Baldocchi, D. D.: Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sens. Environ., 112, 901–919, 2008.
Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M. F., Hook, S., Baldocchi, D., Townsend, P. A., Kilic, A., Tu, K., Miralles, D. D., Perret, J., Lagouarde, J.-P., Waliser, D., Purdy, A. J., French, A., Schimel, D., Famiglietti, J. S., Stephens, G., and Wood, E. F.: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, Water Resour. Res., 53, 2618–2626, 2017.
Foken, T.: The energy balance closure problem: an overview, Ecol. Appl., 18, 1351–1367, 2008.
Gash, J. H.: An analytical model of rainfall interception by forests, Q. J. Roy. Meteorol. Soc., 105, 43–55, 1979.
Goldstein, A. H., Hultman, N. E., Fracheboud, J. M., Bauer, M. R., Panek, J. A., Xu, M., Qi, Y., Guenther, A. B., and Baugh, W.: Effects of climate variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine plantation in the Sierra Nevada (CA), Agr. Forest Meteorol., 101, 113–129, https://doi.org/10.1016/S0168-1923(99)00168-9, 2000.
Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C., and Wofsy, S. C.: Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy, Global Change Biol., 2, 169–182, https://doi.org/10.1111/j.1365-2486.1996.tb00070.x, 1996.
Gowda, P. H., Chavez, J. L., Colaizzi, P. D., Evett, S. R., Howell, T. A., and Tolk, J. A.: ET mapping for agricultural water management: present status and challenges, Irrig. Sci., 26, 223–236, https://doi.org/10.1007/s00271-007-0088-6, 2008.
Gruber, A., Dorigo, W. A., Crow, W., and Wagner, W.: Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals, IEEE T. Geosci. Remote Sens., 55, 6780–6792, 2017.
Hagan, M. T. and Menhaj, M.: Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Netw., 5, 989–993, 1994.
Hirschi, M., Michel, D., Lehner, I., and Seneviratne, S. I.: A site-level comparison of lysimeter and eddy covariance flux measurements of evapotranspiration, Hydrol. Earth Syst. Sci., 21, 1809–1825, https://doi.org/10.5194/hess-21-1809-2017, 2017.
Hobeichi, S., Abramowitz, G., Evans, J., and Ukkola, A.: Derived Optimal Linear Combination Evapotranspiration (DOLCE): a global gridded synthesis ET estimate, Hydrol. Earth Syst. Sci., 22, 1317–1336, https://doi.org/10.5194/hess-22-1317-2018, 2018.
Jimenez, C., Prigent, C., Mueller, B., Seneviratne, S. I., McCabe, M. F., Wood, E. F., Rossow, W. B., Balsamo, G., Betts, A. K., Dirmeyer, P. A., Fisher, J. B., Jung, M., Kanamitsu, M., Reichle, R. H., Reichstein, M., Rodell, M., Sheffield, J., Tu, K., and Wang, K.: Global intercomparison of 12 land surface heat flux estimates, J. Geophys. Res., 116, 102–127, 2011.
Jones, C. S., Finn, J. M., and Hengartner, N.: Regression with strongly correlated data, J. Multi. Anal., 99, 2136–2153, https://doi.org/10.1016/j.jmva.2008.02.008, 2008.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth, A., Bernhofer, C., BONAL, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M., Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations, J. Geophys. Res., 116, G00J07, https://doi.org/10.1029/2010JG001566, 2011.
Kato, T., Tang, Y., Gu, S., Hirota, M., Du, M., Li, Y., and Zhao, X.: Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau, Global Change Biol., 12, 1285–1298, https://doi.org/10.1111/j.1365-2486.2006.01153.x, 2006.
Kelly, R., Chang, A., Tsang, L., and Foster, J.: A prototype AMSR-E global snow area and snow depth algorithm, IEEE T. Geosci. Remote Sens., 41, 230–242, 2003.
Khan, M. S., Liaqat, U. W., Baik, J., and Choi, M.: Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach, Agr. Forest Meteorol., 252, 256–268, 2018.
Knohl, A., Schulza, E. D., Kolle, O., and Buchmann, N.: Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany, Agr. Forest Meteorol., 118, 151–167, https://doi.org/10.1016/S0168-1923(03)00115-1, 2003.
Le Maitre, D. C. and Versfeld, D. B.: Forest evaporation models: relationships between stand growth and evaporation, J. Hydrol., 193, 240–257, 1997.
Lievens, H., Martens, B., Verhoest, N. E. C., Hahn, S., Reichle, R. H., and Miralles, D. G.: Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates, Remote Sens. Environ., 189, 194–210, 2017.
Liu, Y. Y., de Jeu, R. A. M., McCabe, M. F., Evans, J. P., and van Dijk, A. I. J. M.: Global long-term passive microwave satellite-based retrievals of vegetation optical depth, Geophys. Res. Lett., 38, L18402, https://doi.org/10.1029/2011GL048684, 2011a.
Liu, Y. Y., Parinussa, R. M., Dorigo, W. A., De Jeu, R. A. M., Wagner, W., van Dijk, A. I. J. M., McCabe, M. F., and Evans, J. P.: Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals, Hydrol. Earth Syst. Sci., 15, 425–436, https://doi.org/10.5194/hess-15-425-2011, 2011b.
Loew, A., Peng, J., and Borsche, M.: High-resolution land surface fluxes from satellite and reanalysis data (HOLAPS v1.0): evaluation and uncertainty assessment, Geosci. Model Dev., 9, 2499–2532, https://doi.org/10.5194/gmd-9-2499-2016, 2016.
Ma, S., Baldocchi, D. D., Xu, L., and Hehn, T.: Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California, Agr. Forest Meteorol., 147, 157–171, https://doi.org/10.1016/j.agrformet.2007.07.008, 2007.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017.
McCabe, M. F., Ershadi, A., Jimenez, C., Miralles, D. G., Michel, D., and Wood, E. F.: The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data, Geosci. Model Dev., 9, 283–305, https://doi.org/10.5194/gmd-9-283-2016, 2016.
McCaughey, J. H., Pejam, M. R., Arain, M. A., and Cameron, D. A.: Carbon dioxide and energy fluxes from a boreal mixedwood forest ecosystem in Ontario, Canada, Agr. Forest Meteorol., 140, 79–96, https://doi.org/10.1016/j.agrformet.2006.08.010, 2006.
McEwing, K. R., Fisher, J. P., and Zona, D.: Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic, Plant. Soil, 388, 37–52, 2015.
Michel, D., Jiménez, C., Miralles, D. G., Jung, M., Hirschi, M., Ershadi, A., Martens, B., McCabe, M. F., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F., and Fernández-Prieto, D.: The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms, Hydrol. Earth Syst. Sci., 20, 803–822, https://doi.org/10.5194/hess-20-803-2016, 2016.
Milyukova, I. M., Kolle, O., Varlagin, A. V., Vygodskaya, N. N., Schulze, E. D., and Lloyd, J.: Carbon balance of a southern taiga spruce stand in European Russia, Tellus B, 54, 429–442, https://doi.org/10.1034/j.1600-0889.2002.01387.x, 2002.
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011.
Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M. F., Hirschi, M., Martens, B., Dolman, A. J., Fisher, J. B., Mu, Q., Seneviratne, S. I., Wood, E. F., and Fernández-Prieto, D.: The WACMOS-ET project – Part 2: Evaluation of global terrestrial evaporation data sets, Hydrol. Earth Syst. Sci., 20, 823–842, https://doi.org/10.5194/hess-20-823-2016, 2016.
Moncrieff, J., Malhi, Y., and Leuning, R.: The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water, Global Change Biol., 2, 231–240, https://doi.org/10.1111/j.1365-2486.1996.tb00075.x, 1996.
Monteith, J.: Evaporation and environment, Symp. Soc. Exp. Biol, 19, 205–234, 1965.
Moureaux, C., Debacq, A., Bodson, B., Heinesch, B., and Aubinet, M.: Annual net ecosystem carbon exchange by a sugar beet crop, Agr. Forest Meteorol., 139, 25–39, 2006.
Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial evapotranspiration algorithm, Remote Sens. Environ., 115, 1781–1800, 2011.
Mueller, B., Seneviratne, S. I., Jimenez, C., Corti, T., Hirschi, M., Balsamo, G., Ciais, P., Dirmeyer, P., Fisher, J. B., Guo, Z., Jung, M., Maignan, F., McCabe, M. F., Reichle, R., Reichstein, M., Rodell, M., Sheffield, J., Teuling, A. J., Wang, K., Wood, E. F., and Zhang, Y.: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations, Geophys. Res. Lett., 38, L06402, https://doi.org/10.1029/2010GL046230, 2011.
Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I.: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis, Hydrol. Earth Syst. Sci., 17, 3707–3720, https://doi.org/10.5194/hess-17-3707-2013, 2013.
Munier, S., Aires, F., Schlaffer, S., Prigent, C., Papa, F., Maisongrande, P., and Pan, M.: Combining data sets of satellite-retrieved products for basin-scale water balance study: 2. Evaluation on the Mississippi Basin and closure correction model, J. Geophys. Res.-Atmos., 119, 12100–12116, https://doi.org/10.1002/2014JD021953, 2014.
Nguyen, D. and Widrow, B.: Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptative weights, in: Proceedings of the 1990 International Joint Conference on Neural Networks, 21–26, 1990.
Noormets, A., McNulty, S. G., DeForest, J. L., Sun, G., Li, Q., and Chen, J.: Drought during canopy development has lasting effect on annual carbon balance in a deciduous temperate forest, New Phytol., 179, 818–828, https://doi.org/10.1111/j.1469-8137.2008.02501.x, 2008.
Nordbo, A., Järvi, L., and Vesala, T.: Revised eddy covariance flux calculation methodologies – effect on urban energy balance, Tellus B, 64, https://doi.org/10.3402/tellusb.v64i0.18184, 2012.
Pauwels, V. R. N., Timmermans, W., and Loew, A.: Comparison of the estimated water and energy budgets of a large winter wheat field during AgriSAR 2006 by multiple sensors and models, J. Hydrol., 349, 425–440, 2008.
Penman, H. L.: Natural Evaporation From Open Water, Bare Soil and Grass, Proc. Roy. Soc. A, 193, 120–145, 1948.
Pinty, B., Lavergne, T., Vossbeck, M., Kaminski, T., Aussedat, O., Giering, R., Gobron, N., Taberner, M., Verstraete, M. M., and Widlowski, J.-L.: Retrieving surface parameters for climate models from Moderate Resolution Imaging Spectroradiometer (MODIS)-Multiangle Imaging Spectroradiometer (MISR) albedo products, J. Geophys. Res.-Atmos., 112, D10116, https://doi.org/10.1029/2006JD008105, 2007.
Pinty, B., Jung, M., Kaminski, T., Lavergne, T., Mund, M., Plummer, S., Thomas, E., and Widlowski, J.: Evaluation of the JRC-TIP 0.01° products over a mid-latitude deciduous forest site, Remote Sens. Environ., 115, 3567–3581, 2011a.
Pinty, B., Taberner, M., Haemmerle, V., Paradise, S., Vermote, E., Verstraete, M., Gobron, N., and Widlowski, J.-L.: Global-Scale Comparison of MISR and MODIS Land Surface Albedos, J. Climate, 24, 732–749, 2011b.
Post, H., Hendricks Franssen, H. J., Graf, A., Schmidt, M., and Vereecken, H.: Uncertainty analysis of eddy covariance CO2 flux measurements for different EC tower distances using an extended two-tower approach, Biogeosciences, 12, 1205–1221, https://doi.org/10.5194/bg-12-1205-2015, 2015.
Priestley, C. and Taylor, R.: On the assessment of surface heat flux and evaporation using large-scale parameters, Mon. Weather Rev., 100, 81–92, 1972.
Rambal, S., Joffre, R., Ourcival, J. M., Cavender-Bares, J., and Rocheteau, A.: The growth respiration component in eddy CO2 flux from a Quercus ilex mediterranean forest, Global Change Biol., 10, 1460–1469, 2004.
Richardson, A. D., Hollinger, D. Y., Burba, G. G., Davis, K. J., Flanagan, L. B., Katul, G. G., Munger, J. W., Ricciuto, D. M., Stoy, P. C., and Suyker, A. E.: A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes, Agr. Forest Meteorol., 136, 1–18, 2006.
Rodgers, C. D.: Inverse methods for atmospheric sounding: Theory and practise. Series on Atmospheric, Oceanic and Planetary Physics, Vol. 2, World Scientific Publishing, 1 Edn., 2000.
Schmid, H. P., Grimmond, C. S. B., Cropley, F., Offerle, B., and Su, H. B.: Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States, Agr. Forest Meteorol., 103, 357–374, https://doi.org/10.1016/S0168-1923(00)00140-4, 2000.
Scott, R. L., Jenerette, G. D., Potts, D. L., and Huxman, T. E.: Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland, J. Geophys. Res.-Biogeosci., 114, G04004, https://doi.org/10.1029/2008JG000900, 2009.
Simbahan, G. C., Dobermann, A., Goovaerts, P., Ping, J. L., and Haddix, M. L.: Fine-resolution mapping of soil organic carbon based on multivariate secondary data, Geoderma, 132, 471–489, https://doi.org/10.1016/j.geoderma.2005.07.001, 2006.
Sorooshian, S., Lawford, R., and Try, P.: Water and energy cycles: Investigating the links, WMO Bulletin, 54, 58–64, 2005.
Stackhouse, P., Gupta, S., Cox, S., Mikovitz, J., Zhang, T., and Chiacchio, M.: 12-year surface radiation budget data set, GEWEX News, 14, 10–12, 2004.
Steininger, M. K.: Net carbon fluxes from forest clearance and regrowth in the Amazon, Ecol. Appl., 14, 313–322, https://doi.org/10.1890/02-6007, 2004.
Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Kärnä, J.-P., Koskinen, J., and Bojkov, B.: Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements, Remote Sens. Environ., 115, 3517–3529, 2011.
Talsma, C. J., Good, S. P., Jimenez, C., Martens, B., Fisher, J. B., Miralles, D. G., McCabe, M. F., and Purdy, A. J.: Partitioning of evapotranspiration in remote sensing-based models, Agr. Forest Meteorol., 260-261, 131–143, 2018.
Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., Prueger, J. H., Starks, P. J., and Wesely, M. L.: Correcting eddy-covariance flux underestimates over a grassland, Agr. Forest Meteorol., 103, 279–300, 2000.
Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T., Knops, J. M., Arkebauer, T. J., Suyker, A. E., Burba, G. G., Amos, B., Yang, H., Ginting, D., Hubbard, K. G., Gitelson, A. A., and Walter-Shea, E. A.: Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems, Agr. Forest Meteorol., 131, 77–96, 2005a.
Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T., Knops, J. M., Arkebauer, T. J., Suyker, A. E., Burba, G. G., Amos, B., Yang, H. S., Ginting, D., Hubbard, K. G., Gitelson, A. A., and Walter-Shea, E. A.: Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems, Agr. Forest Meteorol., 131, 77–96, https://doi.org/10.1016/j.agrformet.2005.05.003, 2005b.
Vinukollu, R. K., Meynadier, R., Sheffield, J., and Wood, E. F.: Multi-model, multi-sensor estimates of global evapotranspiration: climatology, uncertainties and trends, Hydrol. Process., 25, 3993–4010, 2011.
Wang, J., Zhuang, J., Wang, W., Liu, S., and Xu, Z.: Assessment of Uncertainties in Eddy Covariance Flux Measurement Based on Intensive Flux Matrix of HiWATER-MUSOEXE, IEEE Geosci. Remote Sens. Lett., 12, 259–263, 2015.
Wang, K. and Dickinson, R. E.: A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability, Rev. Geophys., 50, RG2005–54, 2012.
Willmott, C. J.: Some comments on the evaluation of model performance, B. Am. Meteorol. Soc., 63, 1309–1313, 1982.
Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B. E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R., and Verma, S.: Energy balance closure at FLUXNET sites, Agr. Forest Meteor., 113, 223–243, 2002.
Yao, Y., Liang, S., Li, X., Chen, J., Liu, S., Jia, K., Zhang, X., Xiao, Z., Fisher, J. B., Mu, Q., Pan, M., Liu, M., Cheng, J., Jiang, B., Xie, X., Gr nwald, T., Bernhofer, C., and Roupsard, O.: Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms, Agr. Forest Meteorol., 242, 55–74, 2017.
Yilmaz, M. T., Crow, W. T., Anderson, M. C., and Hain, C.: An objective methodology for merging satellite- and model-based soil moisture products, Water Resour. Res., 48, W11502, https://doi.org/10.1029/2011WR011682, 2012.
Zeeman, M. J., Hiller, R., Gilgen, A. K., Michna, P., Plüss, P., Buchmann, N., and Eugster, W.: Management, not climate, controls net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland, Agr. Forest Meteorol., 50, 519–530, 2010.
Zhang, K., Kimball, J. S., and Running, S. W.: A review of remote sensing based actual evapotranspiration estimation, Wiley Interdisciplinary Reviews: Water, 3, 834–853, 2016.
Short summary
Observing the amount of water evaporated in nature is not easy, and we need to combine accurate local measurements with estimates from satellites, more uncertain but covering larger areas. This is the main topic of our paper, in which local observations are compared with global land evaporation estimates, followed by a weighting of the global observations based on this comparison to attempt derive a more accurate evaporation product.
Observing the amount of water evaporated in nature is not easy, and we need to combine accurate...