Articles | Volume 22, issue 6
https://doi.org/10.5194/hess-22-3391-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-22-3391-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of the ability of the Weather Research and Forecasting model to reproduce a sub-daily extreme rainfall event in Beijing, China using different domain configurations and spin-up times
Qi Chu
College of Water Sciences, Beijing Normal University, Beijing, 100875, China
Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City, Beijing, 100875, China
Department of Civil Engineering, University of Bristol, Bristol, BS8 1TR, UK
Zongxue Xu
CORRESPONDING AUTHOR
College of Water Sciences, Beijing Normal University, Beijing, 100875, China
Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City, Beijing, 100875, China
Yiheng Chen
Department of Civil Engineering, University of Bristol, Bristol, BS8 1TR, UK
Dawei Han
Department of Civil Engineering, University of Bristol, Bristol, BS8 1TR, UK
Related authors
No articles found.
Hao Li, Baoying Shan, Liu Liu, Lei Wang, Akash Koppa, Feng Zhong, Dongfeng Li, Xuanxuan Wang, Wenfeng Liu, Xiuping Li, and Zongxue Xu
Hydrol. Earth Syst. Sci., 26, 6399–6412, https://doi.org/10.5194/hess-26-6399-2022, https://doi.org/10.5194/hess-26-6399-2022, 2022
Short summary
Short summary
This study examines changes in water yield by determining turning points in the direction of yield changes and highlights that regime shifts in historical water yield occurred in the Upper Brahmaputra River basin, both the climate and cryosphere affect the magnitude of water yield increases, climate determined the declining trends in water yield, and meltwater has the potential to alleviate the water shortage. A repository for all source files is made available.
Xichao Gao, Zhiyong Yang, Dawei Han, Kai Gao, and Qian Zhu
Hydrol. Earth Syst. Sci., 25, 6023–6039, https://doi.org/10.5194/hess-25-6023-2021, https://doi.org/10.5194/hess-25-6023-2021, 2021
Short summary
Short summary
We proposed a theoretical framework and conducted a laboratory experiment to understand the relationship between wind and the rainfall–runoff process in urban high-rise building areas. The runoff coefficient (relating the amount of runoff to the amount of precipitation received) found in the theoretical framework was close to that found in the laboratory experiment.
Qiang Dai, Jingxuan Zhu, Shuliang Zhang, Shaonan Zhu, Dawei Han, and Guonian Lv
Hydrol. Earth Syst. Sci., 24, 5407–5422, https://doi.org/10.5194/hess-24-5407-2020, https://doi.org/10.5194/hess-24-5407-2020, 2020
Short summary
Short summary
Rainfall is a driving force that accounts for a large proportion of soil loss around the world. Most previous studies used a fixed rainfall–energy relationship to estimate rainfall energy, ignoring the spatial and temporal changes of raindrop microphysical processes. This study proposes a novel method for large-scale and long-term rainfall energy and rainfall erosivity investigations based on rainfall microphysical parameterization schemes in the Weather Research and Forecasting (WRF) model.
Xiaowan Liu, Zongxue Xu, Hong Yang, Xiuping Li, and Dingzhi Peng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-71, https://doi.org/10.5194/essd-2020-71, 2020
Revised manuscript not accepted
Short summary
Short summary
The retreat of glaciers over the QTP is intensifying. To understand changes in glaciers, the two inventories (RGI 4.0 and GIC-Ⅱ) provide potential, but glacier volumes are not convincing. The study recalculated and compared glacier volumes in RGI 4.0 and GIC-Ⅱ for the QTP. The results indicate the slope-dependent algorithm performs better than area-volume-based equations. The northern QTP has a larger degree of fragmentation. An obvious offset of glacier volumes in different aspects is observed.
Xichao Gao, Zhiyong Yang, Dawei Han, Guoru Huang, and Qian Zhu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-367, https://doi.org/10.5194/hess-2020-367, 2020
Manuscript not accepted for further review
Short summary
Short summary
Input errors and parameter errors are two main sources of uncertainties in hydrological model calibration. We developed a new Bayesian framework for automatic calibration of the Storm Water Management Model (SWMM), simultaneously considering parameter and input uncertainties and verified the framework with a case study. The results shows that calibration considering both parameter and input uncertainties captures peak flow much better that only considering parameter uncertainty.
Lu Zhuo, Qiang Dai, Binru Zhao, and Dawei Han
Hydrol. Earth Syst. Sci., 24, 2577–2591, https://doi.org/10.5194/hess-24-2577-2020, https://doi.org/10.5194/hess-24-2577-2020, 2020
Short summary
Short summary
Soil moisture plays an important role in hydrological modelling. However, most existing in situ observation networks rarely provide sufficient coverage to capture soil moisture variations. Clearly, there is a need to develop a systematic approach, so that with the minimal number of sensors the soil moisture information could be captured accurately. In this study, a simple and low-data requirement method is proposed (WRF, PCA, CA), which can provide very efficient soil moisture estimations.
Cristina Prieto, Dhruvesh Patel, and Dawei Han
Nat. Hazards Earth Syst. Sci., 20, 1045–1048, https://doi.org/10.5194/nhess-20-1045-2020, https://doi.org/10.5194/nhess-20-1045-2020, 2020
Lu Zhuo, Qiang Dai, Dawei Han, Ningsheng Chen, and Binru Zhao
Hydrol. Earth Syst. Sci., 23, 4199–4218, https://doi.org/10.5194/hess-23-4199-2019, https://doi.org/10.5194/hess-23-4199-2019, 2019
Short summary
Short summary
This study assesses the usability of WRF model-simulated soil moisture for landslide monitoring in northern Italy. In particular, three advanced land surface model schemes (Noah, Noah-MP, and CLM4) are used to provide multi-layer soil moisture data. The results have shown Noah-MP can provide the best landslide monitoring performance. It is also demonstrated that a single soil moisture sensor located in plain area has a high correlation with a significant proportion of the study area.
Xuehong Zhu, Qiang Dai, Dawei Han, Lu Zhuo, Shaonan Zhu, and Shuliang Zhang
Hydrol. Earth Syst. Sci., 23, 3353–3372, https://doi.org/10.5194/hess-23-3353-2019, https://doi.org/10.5194/hess-23-3353-2019, 2019
Short summary
Short summary
Urban flooding exposure is generally investigated with the assumption of stationary disasters and disaster-hit bodies during an event, and thus it cannot satisfy the increasingly elaborate modeling and management of urban floods. In this study, a comprehensive method was proposed to simulate dynamic exposure to urban flooding considering human mobility. Several scenarios, including diverse flooding types and various responses of residents to flooding, were considered.
Binru Zhao, Qiang Dai, Dawei Han, Huichao Dai, Jingqiao Mao, and Lu Zhuo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-150, https://doi.org/10.5194/hess-2019-150, 2019
Revised manuscript not accepted
Xiaoxi Gao, Depeng Zuo, Zongxue Xu, Siyang Cai, and Han Xianming
Proc. IAHS, 379, 159–167, https://doi.org/10.5194/piahs-379-159-2018, https://doi.org/10.5194/piahs-379-159-2018, 2018
Short summary
Short summary
The blue and green water resources in the upper Yellow River basin (UYRB) were evaluated by the SWAT model in this study. The results show that the average annual total amount of water resources in the UYRB was 140.5 billion m3, in which the blue water resources is 37.8 billion m3, and green water resources is 107.7 billion m3. The intra-annual variability, inter-annual variabilityand spatial distribution of the blue water and green water is relatively similar.
Xianming Han, Depeng Zuo, Zongxue Xu, Siyang Cai, and Xiaoxi Gao
Proc. IAHS, 379, 105–112, https://doi.org/10.5194/piahs-379-105-2018, https://doi.org/10.5194/piahs-379-105-2018, 2018
Short summary
Short summary
To further protect the ecology of the study area, remote sensing image technology is used to analyze the temporal and spatial distribution characteristics of vegetation in the Yarlung Zangbo River Basin by splicing the remote sensing image of a time series (from February 2000 to December 2016). It can be found that vegetation coverage is better in low elevation areas,vegetation change shows a weak sustainability and the vegetation growth is more affected by the temperature than the precipitation.
Siyang Cai, Depeng Zuo, Zongxue Xu, Xianming Han, and Xiaoxi Gao
Proc. IAHS, 379, 73–82, https://doi.org/10.5194/piahs-379-73-2018, https://doi.org/10.5194/piahs-379-73-2018, 2018
Short summary
Short summary
Drought is a natural and recurring feature of climate; occurring in virtually all climatic regimes. Wei River is of great importance in social and economic in China. The temporal and spatial variations of drought in the Wei River basin were investigated by calculating the drought indexes. Through analysis of the historical precipitation and temperature data, it was found that precipitation had a greater contribution to creating agricultural drought conditions than temperature.
Zongxue Xu, Dingzhi Peng, Wenchao Sun, Bo Pang, Depeng Zuo, Andreas Schumann, and Yangbo Chen
Proc. IAHS, 379, 463–464, https://doi.org/10.5194/piahs-379-463-2018, https://doi.org/10.5194/piahs-379-463-2018, 2018
Dong-Ik Kim, Hyun-Han Kwon, and Dawei Han
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-36, https://doi.org/10.5194/hess-2018-36, 2018
Manuscript not accepted for further review
Short summary
Short summary
This study introduces a new QM approach based on a composite distribution of a generalized Pareto distribution for the upper tail and a gamma distribution for the interior part of the distribution. The proposed composite distributions provide a significant reduction of the biases compared with that of the conventional method for the extremes. The proposed approach can provide a useful alternative for the bias correction of a regional-scale modeled data with a limited network of rain gauges.
Binru Zhao, Huichao Dai, Dawei Han, and Guiwen Rong
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-396, https://doi.org/10.5194/hess-2017-396, 2017
Revised manuscript not accepted
Short summary
Short summary
This study compared the hydrological model performance of different sub-annual calibration schemes, which take into account intra-annual variations of climate. Two methods recognizing climatic patterns were applied to partition sub-periods with hydroclimatic similarities. The effect of time scales on sub-annual calibration schemes was also studied. Results indicate when using sub-annual calibration schemes, the selection of partitioning method and time scale is important to model performances.
Lu Zhuo and Dawei Han
Hydrol. Earth Syst. Sci., 21, 3267–3285, https://doi.org/10.5194/hess-21-3267-2017, https://doi.org/10.5194/hess-21-3267-2017, 2017
Short summary
Short summary
Reliable estimation of hydrological soil moisture state is of critical importance in operational hydrology to improve the flood prediction and hydrological cycle description. This paper attempts for the first time to build a soil moisture product directly applicable to hydrology using multiple data sources retrieved from remote sensing and land surface modelling. The result shows a significant improvement of the soil moisture state accuracy; the method can be easily applied in other catchments.
Jun Zhang, Dawei Han, Yang Song, and Qiang Dai
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-289, https://doi.org/10.5194/hess-2017-289, 2017
Preprint retracted
Short summary
Short summary
We explore unit hydrograph (UH) affected by geomorphology that could be used in ungauged catchments. Virtual catchments approach (VCA) is used instead of gauged catchments in runoff modelling. Catchment shape is newly introduced and the agreement of the results with the hydrological principles verifies the reliability of VCA. With the robust VCA, a large amount of catchments can be created with desirable features to explore a more comprehensive equation that can be used in ungauged catchments.
Wenchao Sun, Yuanyuan Wang, Guoqiang Wang, Xingqi Cui, Jingshan Yu, Depeng Zuo, and Zongxue Xu
Hydrol. Earth Syst. Sci., 21, 251–265, https://doi.org/10.5194/hess-21-251-2017, https://doi.org/10.5194/hess-21-251-2017, 2017
Short summary
Short summary
The possibility of using a short period of streamflow data (less than one year) to calibrate a physically based distributed hydrological model is evaluated. Contrary to the common understanding of using data of several years, it is shown that only using data covering several months could calibrate the model effectively, which indicates that this approach is valuable for solving the calibration problem of such models in data-sparse basins.
Remko Nijzink, Christopher Hutton, Ilias Pechlivanidis, René Capell, Berit Arheimer, Jim Freer, Dawei Han, Thorsten Wagener, Kevin McGuire, Hubert Savenije, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 20, 4775–4799, https://doi.org/10.5194/hess-20-4775-2016, https://doi.org/10.5194/hess-20-4775-2016, 2016
Short summary
Short summary
The core component of many hydrological systems, the moisture storage capacity available to vegetation, is typically treated as a calibration parameter in hydrological models and often considered to remain constant in time. In this paper we test the potential of a recently introduced method to robustly estimate catchment-scale root-zone storage capacities exclusively based on climate data to reproduce the temporal evolution of root-zone storage under change (deforestation).
Kue Bum Kim, Hyun-Han Kwon, and Dawei Han
Hydrol. Earth Syst. Sci., 20, 2019–2034, https://doi.org/10.5194/hess-20-2019-2016, https://doi.org/10.5194/hess-20-2019-2016, 2016
Short summary
Short summary
A primary advantage of using model ensembles for climate change impact studies is to represent the uncertainties associated with models through the ensemble spread. Currently, most of the conventional bias correction methods adjust all the ensemble members to one reference observation. As a result, the ensemble spread is degraded during bias correction. However the proposed method is able to correct the bias and conform to the ensemble spread so that the ensemble information can be better used.
Zongxue Xu and Gang Zhao
Proc. IAHS, 373, 7–12, https://doi.org/10.5194/piahs-373-7-2016, https://doi.org/10.5194/piahs-373-7-2016, 2016
Short summary
Short summary
China is undergoing rapid urbanization during the past decades. For example, the proportion of urban population in Beijing has increased from 57.6 % in 1980 to 86.3 % in 2013. Rapid urbanization has an adverse impact on the urban rainfall-runoff processes, which may result in the increase of urban flooding risk. In this study, the major purpose is to investigate the impact of land use/cover changes on hydrological processes and the flooding risk in Beijing.
Z. X. Xu and Q. Chu
Proc. IAHS, 369, 97–102, https://doi.org/10.5194/piahs-369-97-2015, https://doi.org/10.5194/piahs-369-97-2015, 2015
Short summary
Short summary
Three hourly assimilated precipitation series with 0.1 deg. are used to analyze the features and trends of extreme precipitation in Beijing, China. The results show that: (1) the local climate and topography are two main factors influencing the spatial distributions of precipitation; (2) areas with greater precipitation threshold may have shorter precipitation days; (3) extreme precipitation amount (48% of precipitation) concentrated on urban areas and mountain area within only 5 to 7 days.
Z. X. Xu, X. J. Yang, D. P. Zuo, Q. Chu, and W. F. Liu
Proc. IAHS, 369, 121–127, https://doi.org/10.5194/piahs-369-121-2015, https://doi.org/10.5194/piahs-369-121-2015, 2015
Short summary
Short summary
Spatiotemporal characteristics of extreme precipitation and temperature in Yunnan Province, China, were analyzed by using observed daily data at 28 meteorological stations from 1959-2013 in this study.Both maximum and minimum temperature showed significant increasing tendency while there was not obvious changes for precipitation.It was noted that extreme precipitation and temperature events occurred more frequently in central region where the risk of extreme climatic events was greater.
S. Ceola, B. Arheimer, E. Baratti, G. Blöschl, R. Capell, A. Castellarin, J. Freer, D. Han, M. Hrachowitz, Y. Hundecha, C. Hutton, G. Lindström, A. Montanari, R. Nijzink, J. Parajka, E. Toth, A. Viglione, and T. Wagener
Hydrol. Earth Syst. Sci., 19, 2101–2117, https://doi.org/10.5194/hess-19-2101-2015, https://doi.org/10.5194/hess-19-2101-2015, 2015
Short summary
Short summary
We present the outcomes of a collaborative hydrological experiment undertaken by five different international research groups in a virtual laboratory. Moving from the definition of accurate protocols, a rainfall-runoff model was independently applied by the research groups, which then engaged in a comparative discussion. The results revealed that sharing protocols and running the experiment within a controlled environment is fundamental for ensuring experiment repeatability and reproducibility.
J. Liu and D. Han
Hydrol. Earth Syst. Sci., 17, 3639–3659, https://doi.org/10.5194/hess-17-3639-2013, https://doi.org/10.5194/hess-17-3639-2013, 2013
J. Liu, M. Bray, and D. Han
Hydrol. Earth Syst. Sci., 17, 3095–3110, https://doi.org/10.5194/hess-17-3095-2013, https://doi.org/10.5194/hess-17-3095-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Seasonal soil moisture and crop yield prediction with fifth-generation seasonal forecasting system (SEAS5) long-range meteorological forecasts in a land surface modelling approach
A genetic particle filter scheme for univariate snow cover assimilation into Noah-MP model across snow climates
Investigating the response of land–atmosphere interactions and feedbacks to spatial representation of irrigation in a coupled modeling framework
Validation of precipitation reanalysis products for rainfall-runoff modelling in Slovenia
Statistical post-processing of precipitation forecasts using circulation classifications and spatiotemporal deep neural networks
Sensitivity of the pseudo-global warming method under flood conditions: a case study from the northeastern US
Hybrid forecasting: blending climate predictions with AI models
Sensitivities of subgrid-scale physics schemes, meteorological forcing, and topographic radiation in atmosphere-through-bedrock integrated process models: a case study in the Upper Colorado River basin
Local moisture recycling across the globe
How well does a convection-permitting regional climate model represent the reverse orographic effect of extreme hourly precipitation?
Regionalisation of rainfall depth–duration–frequency curves with different data types in Germany
A semi-parametric hourly space-time weather generator
The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Ensemble streamflow prediction considering the influence of reservoirs in Narmada River Basin, India
Declining water resources in response to global warming and changes in atmospheric circulation patterns over southern Mediterranean France
Linking the complementary evaporation relationship with the Budyko framework for ungauged areas in Australia
Risks of seasonal extreme rainfall events in Bangladesh under 1.5 and 2.0 °C warmer worlds – how anthropogenic aerosols change the story
Pan evaporation is increased by submerged macrophytes
Evaluation of water flux predictive models developed using eddy-covariance observations and machine learning: a meta-analysis
Characterizing basin-scale precipitation gradients in the Third Pole region using a high-resolution atmospheric simulation-based dataset
A comparison of hydrological models with different level of complexity in Alpine regions in the context of climate change
A principal component based strategy for regionalisation of precipitation intensity-duration-frequency (IDF) statistics
Modelling evaporation with local, regional and global BROOK90 frameworks: importance of parameterization and forcing
Hydrological concept formation inside long short-term memory (LSTM) networks
A two-step merging strategy for incorporating multi-source precipitation products and gauge observations using machine learning classification and regression over China
Hydrometeorological evaluation of two nowcasting systems for Mediterranean heavy precipitation events with operational considerations
On the links between sub-seasonal clustering of extreme precipitation and high discharge in Switzerland and Europe
Regional, multi-decadal analysis on the Loire River basin reveals that stream temperature increases faster than air temperature
Investigating the response of leaf area index to droughts in southern African vegetation using observations and model simulations
Recent decrease in summer precipitation over the Iberian Peninsula closely links to reduction in local moisture recycling
Exploring the possible role of satellite-based rainfall data in estimating inter- and intra-annual global rainfall erosivity
Critical transitions in the hydrological system: early-warning signals and network analysis
Testing a maximum evaporation theory over saturated land: implications for potential evaporation estimation
The role of morphology in the spatial distribution of short-duration rainfall extremes in Italy
Impact of correcting sub-daily climate model biases for hydrological studies
The Mesoamerican mid-summer drought: the impact of its definition on occurrences and recent changes
Reconstructing climate trends adds skills to seasonal reference crop evapotranspiration forecasting
Influence of initial soil moisture in a regional climate model study over West Africa – Part 1: Impact on the climate mean
Influence of initial soil moisture in a regional climate model study over West Africa – Part 2: Impact on the climate extremes
Compound flood impact forecasting: integrating fluvial and flash flood impact assessments into a unified system
Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning
Machine-learning methods to assess the effects of a non-linear damage spectrum taking into account soil moisture on winter wheat yields in Germany
Extreme precipitation events in the Mediterranean area: contrasting two different models for moisture source identification
Flexible and consistent quantile estimation for intensity–duration–frequency curves
Evaluation of Asian summer precipitation in different configurations of a high-resolution general circulation model in a range of decision-relevant spatial scales
Rainfall-induced shallow landslides and soil wetness: comparison of physically based and probabilistic predictions
Land use and climate change effects on water yield from East African forested water towers
Theresa Boas, Heye Reemt Bogena, Dongryeol Ryu, Harry Vereecken, Andrew Western, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 27, 3143–3167, https://doi.org/10.5194/hess-27-3143-2023, https://doi.org/10.5194/hess-27-3143-2023, 2023
Short summary
Short summary
In our study, we tested the utility and skill of a state-of-the-art forecasting product for the prediction of regional crop productivity using a land surface model. Our results illustrate the potential value and skill of combining seasonal forecasts with modelling applications to generate variables of interest for stakeholders, such as annual crop yield for specific cash crops and regions. In addition, this study provides useful insights for future technical model evaluations and improvements.
Yuanhong You, Chunlin Huang, Zuo Wang, Jinliang Hou, Ying Zhang, and Peipei Xu
Hydrol. Earth Syst. Sci., 27, 2919–2933, https://doi.org/10.5194/hess-27-2919-2023, https://doi.org/10.5194/hess-27-2919-2023, 2023
Short summary
Short summary
This study aims to investigate the performance of a genetic particle filter which was used as a snow data assimilation scheme across different snow climates. The results demonstrated that the genetic algorithm can effectively solve the problem of particle degeneration and impoverishment in a particle filter algorithm. The system has revealed a low sensitivity to the particle number in point-scale application of the ground snow depth measurement.
Patricia Lawston-Parker, Joseph A. Santanello Jr., and Nathaniel W. Chaney
Hydrol. Earth Syst. Sci., 27, 2787–2805, https://doi.org/10.5194/hess-27-2787-2023, https://doi.org/10.5194/hess-27-2787-2023, 2023
Short summary
Short summary
Irrigation has been shown to impact weather and climate, but it has only recently been considered in prediction models. Prescribing where (globally) irrigation takes place is important to accurately simulate its impacts on temperature, humidity, and precipitation. Here, we evaluated three different irrigation maps in a weather model and found that the extent and intensity of irrigated areas and their boundaries are important drivers of weather impacts resulting from human practices.
Marcos Julien Alexopoulos, Hannes Müller-Thomy, Patrick Nistahl, Mojca Šraj, and Nejc Bezak
Hydrol. Earth Syst. Sci., 27, 2559–2578, https://doi.org/10.5194/hess-27-2559-2023, https://doi.org/10.5194/hess-27-2559-2023, 2023
Short summary
Short summary
For rainfall-runoff simulation of a certain area, hydrological models are used, which requires precipitation data and temperature data as input. Since these are often not available as observations, we have tested simulation results from atmospheric models. ERA5-Land and COSMO-REA6 were tested for Slovenian catchments. Both lead to good simulations results. Their usage enables the use of rainfall-runoff simulation in unobserved catchments as a requisite for, e.g., flood protection measures.
Tuantuan Zhang, Zhongmin Liang, Wentao Li, Jun Wang, Yiming Hu, and Binquan Li
Hydrol. Earth Syst. Sci., 27, 1945–1960, https://doi.org/10.5194/hess-27-1945-2023, https://doi.org/10.5194/hess-27-1945-2023, 2023
Short summary
Short summary
We use circulation classifications and spatiotemporal deep neural networks to correct raw daily forecast precipitation by combining large-scale circulation patterns with local spatiotemporal information. We find that the method not only captures the westward and northward movement of the western Pacific subtropical high but also shows substantially higher bias-correction capabilities than existing standard methods in terms of spatial scale, timescale, and intensity.
Zeyu Xue, Paul Ullrich, and Lai-Yung Ruby Leung
Hydrol. Earth Syst. Sci., 27, 1909–1927, https://doi.org/10.5194/hess-27-1909-2023, https://doi.org/10.5194/hess-27-1909-2023, 2023
Short summary
Short summary
We examine the sensitivity and robustness of conclusions drawn from the PGW method over the NEUS by conducting multiple PGW experiments and varying the perturbation spatial scales and choice of perturbed meteorological variables to provide a guideline for this increasingly popular regional modeling method. Overall, we recommend PGW experiments be performed with perturbations to temperature or the combination of temperature and wind at the gridpoint scale, depending on the research question.
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023, https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Short summary
Hybrid forecasting systems combine data-driven methods with physics-based weather and climate models to improve the accuracy of predictions for meteorological and hydroclimatic events such as rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. We review recent developments in hybrid forecasting and outline key challenges and opportunities in the field.
Zexuan Xu, Erica R. Siirila-Woodburn, Alan M. Rhoades, and Daniel Feldman
Hydrol. Earth Syst. Sci., 27, 1771–1789, https://doi.org/10.5194/hess-27-1771-2023, https://doi.org/10.5194/hess-27-1771-2023, 2023
Short summary
Short summary
The goal of this study is to understand the uncertainties of different modeling configurations for simulating hydroclimate responses in the mountainous watershed. We run a group of climate models with various configurations and evaluate them against various reference datasets. This paper integrates a climate model and a hydrology model to have a full understanding of the atmospheric-through-bedrock hydrological processes.
Jolanda J. E. Theeuwen, Arie Staal, Obbe A. Tuinenburg, Bert V. M. Hamelers, and Stefan C. Dekker
Hydrol. Earth Syst. Sci., 27, 1457–1476, https://doi.org/10.5194/hess-27-1457-2023, https://doi.org/10.5194/hess-27-1457-2023, 2023
Short summary
Short summary
Evaporation changes over land affect rainfall over land via moisture recycling. We calculated the local moisture recycling ratio globally, which describes the fraction of evaporated moisture that rains out within approx. 50 km of its source location. This recycling peaks in summer as well as over wet and elevated regions. Local moisture recycling provides insight into the local impacts of evaporation changes and can be used to study the influence of regreening on local rainfall.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Bora Shehu, Winfried Willems, Henrike Stockel, Luisa-Bianca Thiele, and Uwe Haberlandt
Hydrol. Earth Syst. Sci., 27, 1109–1132, https://doi.org/10.5194/hess-27-1109-2023, https://doi.org/10.5194/hess-27-1109-2023, 2023
Short summary
Short summary
Rainfall volumes at varying duration and frequencies are required for many engineering water works. These design volumes have been provided by KOSTRA-DWD in Germany. However, a revision of the KOSTRA-DWD is required, in order to consider the recent state-of-the-art and additional data. For this purpose, in our study, we investigate different methods and data available to achieve the best procedure that will serve as a basis for the development of the new KOSTRA-DWD product.
Ross Pidoto and Uwe Haberlandt
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-45, https://doi.org/10.5194/hess-2023-45, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
Long continuous time series of meteorological variables (i.e. rainfall, temperature) are required for the modelling of floods. Observed time series are generally too short or not available. Weather generators are models that reproduce observed weather time series. This study extends an existing station based rainfall model into space by enforcing observed spatial rainfall characteristics. To model other variables (i.e. temperuatre), the model is then coupled to a simple resampling approach.
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023, https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Short summary
Forecasts on water availability are important for water managers. We test a hybrid framework based on machine learning models and global input data for generating seasonal forecasts. Our evaluation shows that our discharge and surface water level predictions are able to create reliable forecasts up to 2 months ahead. We show that a hybrid framework, developed for local purposes and combined and rerun with global data, can create valuable information similar to large-scale forecasting models.
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023, https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Short summary
Predicting flow in rivers where no observation records are available is a daunting task. For decades, hydrological models were set up on these gauges, and their parameters were estimated based on the hydrological response of similar or nearby catchments where records exist. New developments in machine learning have now made it possible to estimate flows at ungauged locations more precisely than with hydrological models. This study confirms the performance superiority of machine learning models.
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023, https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Short summary
Real-time river discharge forecasts and reforecasts from the Global Flood Awareness System (GloFAS) have been made publicly available, together with an evaluation of forecast skill at the global scale. Results show that GloFAS is skillful in over 93 % of catchments in the short (1–3 d) and medium range (5–15 d) and skillful in over 80 % of catchments in the extended lead time (16–30 d). Skill is summarised in a new layer on the GloFAS Web Map Viewer to aid decision-making.
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022, https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Short summary
Spatial quantification of oceanic moisture contribution to the precipitation over the Tibetan Plateau (TP) contributes to the reliable assessments of regional water resources and the interpretation of paleo archives in the region. Based on atmospheric reanalysis datasets and numerical moisture tracking, this work reveals the previously underestimated oceanic moisture contributions brought by the westerlies in winter and the overestimated moisture contributions from the Indian Ocean in summer.
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022, https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary
Short summary
Floods cause enormous damage to infrastructure and agriculture in India. However, the utility of ensemble meteorological forecast for hydrologic prediction has not been examined. Moreover, Indian river basins have a considerable influence of reservoirs that alter the natural flow variability. We developed a hydrologic modelling-based streamflow prediction considering the influence of reservoirs in India.
Camille Labrousse, Wolfgang Ludwig, Sébastien Pinel, Mahrez Sadaoui, Andrea Toreti, and Guillaume Lacquement
Hydrol. Earth Syst. Sci., 26, 6055–6071, https://doi.org/10.5194/hess-26-6055-2022, https://doi.org/10.5194/hess-26-6055-2022, 2022
Short summary
Short summary
The interest of this study is to demonstrate that we identify two zones in our study area whose hydroclimatic behaviours are uneven. By investigating relationships between the hydroclimatic conditions in both clusters for past observations with the overall atmospheric functioning, we show that the inequalities are mainly driven by a different control of the atmospheric teleconnection patterns over the area.
Daeha Kim, Minha Choi, and Jong Ahn Chun
Hydrol. Earth Syst. Sci., 26, 5955–5969, https://doi.org/10.5194/hess-26-5955-2022, https://doi.org/10.5194/hess-26-5955-2022, 2022
Short summary
Short summary
We proposed a practical method that predicts the evaporation rates on land surfaces (ET) where only atmospheric data are available. Using a traditional equation that describes partitioning of precipitation into ET and streamflow, we could approximately identify the key parameter of the predicting formulation based on land–atmosphere interactions. The simple method conditioned by local climates outperformed sophisticated models in reproducing water-balance estimates across Australia.
Ruksana H. Rimi, Karsten Haustein, Emily J. Barbour, Sarah N. Sparrow, Sihan Li, David C. H. Wallom, and Myles R. Allen
Hydrol. Earth Syst. Sci., 26, 5737–5756, https://doi.org/10.5194/hess-26-5737-2022, https://doi.org/10.5194/hess-26-5737-2022, 2022
Short summary
Short summary
Extreme rainfall events are major concerns in Bangladesh. Heavy downpours can cause flash floods and damage nearly harvestable crops in pre-monsoon season. While in monsoon season, the impacts can range from widespread agricultural loss, huge property damage, to loss of lives and livelihoods. This paper assesses the role of anthropogenic climate change drivers in changing risks of extreme rainfall events during pre-monsoon and monsoon seasons at local sub-regional-scale within Bangladesh.
Brigitta Simon-Gáspár, Gábor Soós, and Angela Anda
Hydrol. Earth Syst. Sci., 26, 4741–4756, https://doi.org/10.5194/hess-26-4741-2022, https://doi.org/10.5194/hess-26-4741-2022, 2022
Short summary
Short summary
Due to climate change, it is extremely important to determine evaporation as accurately as possible. In nature, there are sediments and macrophytes in the open waters; thus, one of the aims was to investigate their effect on evaporation. The second aim of this paper was to estimate daily evaporation by using different models, which, according to results, have high priority in the evaporation prediction. Water management can obtain useful information from the results of the current research.
Haiyang Shi, Geping Luo, Olaf Hellwich, Mingjuan Xie, Chen Zhang, Yu Zhang, Yuangang Wang, Xiuliang Yuan, Xiaofei Ma, Wenqiang Zhang, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 26, 4603–4618, https://doi.org/10.5194/hess-26-4603-2022, https://doi.org/10.5194/hess-26-4603-2022, 2022
Short summary
Short summary
There have been many machine learning simulation studies based on eddy-covariance observations for water flux and evapotranspiration. We performed a meta-analysis of such studies to clarify the impact of different algorithms and predictors, etc., on the reported prediction accuracy. It can, to some extent, guide future global water flux modeling studies and help us better understand the terrestrial ecosystem water cycle.
Yaozhi Jiang, Kun Yang, Hua Yang, Hui Lu, Yingying Chen, Xu Zhou, Jing Sun, Yuan Yang, and Yan Wang
Hydrol. Earth Syst. Sci., 26, 4587–4601, https://doi.org/10.5194/hess-26-4587-2022, https://doi.org/10.5194/hess-26-4587-2022, 2022
Short summary
Short summary
Our study quantified the altitudinal precipitation gradients (PGs) over the Third Pole (TP). Most sub-basins in the TP have positive PGs, and negative PGs are found in the Himalayas, the Hengduan Mountains and the western Kunlun. PGs are positively correlated with wind speed but negatively correlated with relative humidity. In addition, PGs tend to be positive at smaller spatial scales compared to those at larger scales. The findings can assist precipitation interpolation in the data-sparse TP.
Francesca Carletti, Adrien Michel, Francesca Casale, Alice Burri, Daniele Bocchiola, Mathias Bavay, and Michael Lehning
Hydrol. Earth Syst. Sci., 26, 3447–3475, https://doi.org/10.5194/hess-26-3447-2022, https://doi.org/10.5194/hess-26-3447-2022, 2022
Short summary
Short summary
High Alpine catchments are dominated by the melting of seasonal snow cover and glaciers, whose amount and seasonality are expected to be modified by climate change. This paper compares the performances of different types of models in reproducing discharge among two catchments under present conditions and climate change. Despite many advantages, the use of simpler models for climate change applications is controversial as they do not fully represent the physics of the involved processes.
Kajsa Maria Parding, Rasmus Emil Benestad, Anita Verpe Dyrrdal, and Julia Lutz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-233, https://doi.org/10.5194/hess-2022-233, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
Intensity-Duration-Frequency (IDF) curves describe the likelihood of extreme rainfall and are used in hydrology and engineering, e.g., for flood forecasting and water management. We develop a model to estimate IDF curves from daily meteorological observations which are more widely available than the observations on finer timescales (minutes to hours) that are needed for IDF calculations. The method is applied to all data at once, making it efficient and robust to individual errors.
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, Thomas Grünwald, and Christian Bernhofer
Hydrol. Earth Syst. Sci., 26, 3177–3239, https://doi.org/10.5194/hess-26-3177-2022, https://doi.org/10.5194/hess-26-3177-2022, 2022
Short summary
Short summary
In the study we analysed the uncertainties of the meteorological data and model parameterization for evaporation modelling. We have taken a physically based lumped BROOK90 model and applied it in three different frameworks using global, regional and local datasets. Validating the simulations with eddy-covariance data from five stations in Germany, we found that the accuracy model parameterization plays a bigger role than the quality of the meteorological forcing.
Thomas Lees, Steven Reece, Frederik Kratzert, Daniel Klotz, Martin Gauch, Jens De Bruijn, Reetik Kumar Sahu, Peter Greve, Louise Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 26, 3079–3101, https://doi.org/10.5194/hess-26-3079-2022, https://doi.org/10.5194/hess-26-3079-2022, 2022
Short summary
Short summary
Despite the accuracy of deep learning rainfall-runoff models, we are currently uncertain of what these models have learned. In this study we explore the internals of one deep learning architecture and demonstrate that the model learns about intermediate hydrological stores of soil moisture and snow water, despite never having seen data about these processes during training. Therefore, we find evidence that the deep learning approach learns a physically realistic mapping from inputs to outputs.
Huajin Lei, Hongyu Zhao, and Tianqi Ao
Hydrol. Earth Syst. Sci., 26, 2969–2995, https://doi.org/10.5194/hess-26-2969-2022, https://doi.org/10.5194/hess-26-2969-2022, 2022
Short summary
Short summary
How to combine multi-source precipitation data effectively is one of the hot topics in hydrometeorological research. This study presents a two-step merging strategy based on machine learning for multi-source precipitation merging over China. The results demonstrate that the proposed method effectively distinguishes the occurrence of precipitation events and reduces the error in precipitation estimation. This method is robust and may be successfully applied to other areas even with scarce data.
Alexane Lovat, Béatrice Vincendon, and Véronique Ducrocq
Hydrol. Earth Syst. Sci., 26, 2697–2714, https://doi.org/10.5194/hess-26-2697-2022, https://doi.org/10.5194/hess-26-2697-2022, 2022
Short summary
Short summary
The hydrometeorological skills of two new nowcasting systems for forecasting Mediterranean intense rainfall events and floods are investigated. The results reveal that up to 75 or 90 min of forecast the performance of the nowcasting system blending numerical weather prediction and extrapolation of radar estimation is higher than the numerical weather model. For lead times up to 3 h the skills are equivalent in general. Using these nowcasting systems for flash flood forecasting is also promising.
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022, https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary
Short summary
River discharge is strongly influenced by the temporal structure of precipitation. Here, we show how extreme precipitation events that occur a few days or weeks after a previous event have a larger effect on river discharge than events occurring in isolation. Windows of 2 weeks or less between events have the most impact. Similarly, periods of persistent high discharge tend to be associated with the occurrence of several extreme precipitation events in close succession.
Hanieh Seyedhashemi, Jean-Philippe Vidal, Jacob S. Diamond, Dominique Thiéry, Céline Monteil, Frédéric Hendrickx, Anthony Maire, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, https://doi.org/10.5194/hess-26-2583-2022, 2022
Short summary
Short summary
Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data. Using a thermal model, this study provides a large-scale understanding of the evolution of stream temperature over a long period (1963–2019). This research highlights that air temperature and streamflow can exert joint influence on stream temperature trends, and riparian shading in small mountainous streams may mitigate warming in stream temperatures.
Shakirudeen Lawal, Stephen Sitch, Danica Lombardozzi, Julia E. M. S. Nabel, Hao-Wei Wey, Pierre Friedlingstein, Hanqin Tian, and Bruce Hewitson
Hydrol. Earth Syst. Sci., 26, 2045–2071, https://doi.org/10.5194/hess-26-2045-2022, https://doi.org/10.5194/hess-26-2045-2022, 2022
Short summary
Short summary
To investigate the impacts of drought on vegetation, which few studies have done due to various limitations, we used the leaf area index as proxy and dynamic global vegetation models (DGVMs) to simulate drought impacts because the models use observationally derived climate. We found that the semi-desert biome responds strongly to drought in the summer season, while the tropical forest biome shows a weak response. This study could help target areas to improve drought monitoring and simulation.
Yubo Liu, Monica Garcia, Chi Zhang, and Qiuhong Tang
Hydrol. Earth Syst. Sci., 26, 1925–1936, https://doi.org/10.5194/hess-26-1925-2022, https://doi.org/10.5194/hess-26-1925-2022, 2022
Short summary
Short summary
Our findings indicate that the reduction in contribution to the Iberian Peninsula (IP) summer precipitation is mainly concentrated in the IP and its neighboring grids. Compared with 1980–1997, both local recycling and external moisture were reduced during 1998–2019. The reduction in local recycling in the IP closely links to the disappearance of the wet years and the decreasing contribution in the dry years.
Nejc Bezak, Pasquale Borrelli, and Panos Panagos
Hydrol. Earth Syst. Sci., 26, 1907–1924, https://doi.org/10.5194/hess-26-1907-2022, https://doi.org/10.5194/hess-26-1907-2022, 2022
Short summary
Short summary
Rainfall erosivity is one of the main factors in soil erosion. A satellite-based global map of rainfall erosivity was constructed using data with a 30 min time interval. It was shown that the satellite-based precipitation products are an interesting option for estimating rainfall erosivity, especially in regions with limited ground data. However, ground-based high-frequency precipitation measurements are (still) essential for accurate estimates of rainfall erosivity.
Xueli Yang, Zhi-Hua Wang, and Chenghao Wang
Hydrol. Earth Syst. Sci., 26, 1845–1856, https://doi.org/10.5194/hess-26-1845-2022, https://doi.org/10.5194/hess-26-1845-2022, 2022
Short summary
Short summary
In this study, we investigated potentially catastrophic transitions in hydrological processes by identifying the early-warning signals which manifest as a
critical slowing downin complex dynamic systems. We then analyzed the precipitation network of cities in the contiguous United States and found that key network parameters, such as the nodal density and the clustering coefficient, exhibit similar dynamic behaviour, which can serve as novel early-warning signals for the hydrological system.
Zhuoyi Tu, Yuting Yang, and Michael L. Roderick
Hydrol. Earth Syst. Sci., 26, 1745–1754, https://doi.org/10.5194/hess-26-1745-2022, https://doi.org/10.5194/hess-26-1745-2022, 2022
Short summary
Short summary
Here we test a maximum evaporation theory that acknowledges the interdependence between radiation, surface temperature, and evaporation over saturated land. We show that the maximum evaporation approach recovers observed evaporation and surface temperature under non-water-limited conditions across a broad range of bio-climates. The implication is that the maximum evaporation concept can be used to predict potential evaporation that has long been a major difficulty for the hydrological community.
Paola Mazzoglio, Ilaria Butera, Massimiliano Alvioli, and Pierluigi Claps
Hydrol. Earth Syst. Sci., 26, 1659–1672, https://doi.org/10.5194/hess-26-1659-2022, https://doi.org/10.5194/hess-26-1659-2022, 2022
Short summary
Short summary
We have analyzed the spatial dependence of rainfall extremes upon elevation and morphology in Italy. Regression analyses show that previous rainfall–elevation relations at national scale can be substantially improved with new data, both using topography attributes and constraining the analysis within areas stemming from geomorphological zonation. Short-duration mean rainfall depths can then be estimated, all over Italy, using different parameters in each area of the geomorphological subdivision.
Mina Faghih, François Brissette, and Parham Sabeti
Hydrol. Earth Syst. Sci., 26, 1545–1563, https://doi.org/10.5194/hess-26-1545-2022, https://doi.org/10.5194/hess-26-1545-2022, 2022
Short summary
Short summary
The diurnal cycles of precipitation and temperature generated by climate models are biased. This work investigates whether or not impact modellers should correct the diurnal cycle biases prior to conducting hydrological impact studies at the sub-daily scale. The results show that more accurate streamflows are obtained when the diurnal cycles biases are corrected. This is noticeable for smaller catchments, which have a quicker reaction time to changes in precipitation and temperature.
Edwin P. Maurer, Iris T. Stewart, Kenneth Joseph, and Hugo G. Hidalgo
Hydrol. Earth Syst. Sci., 26, 1425–1437, https://doi.org/10.5194/hess-26-1425-2022, https://doi.org/10.5194/hess-26-1425-2022, 2022
Short summary
Short summary
The mid-summer drought (MSD) is common in Mesoamerica. It is a short (weeks-long) period of reduced rainfall near the middle of the rainy season. When it occurs, how long it lasts, and how dry it is all have important implications for smallholder farmers. Studies of changes in MSD characteristics rely on defining characteristics of an MSD. Different definitions affect whether an area would be considered to experience an MSD as well as the changes that have happened in the last 40 years.
Qichun Yang, Quan J. Wang, Andrew W. Western, Wenyan Wu, Yawen Shao, and Kirsti Hakala
Hydrol. Earth Syst. Sci., 26, 941–954, https://doi.org/10.5194/hess-26-941-2022, https://doi.org/10.5194/hess-26-941-2022, 2022
Short summary
Short summary
Forecasts of evaporative water loss in the future are highly valuable for water resource management. These forecasts are often produced using the outputs of climate models. We developed an innovative method to correct errors in these forecasts, particularly the errors caused by deficiencies of climate models in modeling the changing climate. We apply this method to seasonal forecasts of evaporative water loss across Australia and achieve significant improvements in the forecast quality.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 711–730, https://doi.org/10.5194/hess-26-711-2022, https://doi.org/10.5194/hess-26-711-2022, 2022
Short summary
Short summary
The impact of initial soil moisture anomalies can persist for up to 3–4 months and is greater on temperature than on precipitation over West Africa. The strongest homogeneous impact on temperature is located over the Central Sahel, with a peak change of −1.5 and 0.5 °C in the wet and dry experiments, respectively. The strongest impact on precipitation in the wet and dry experiments is found over the West and Central Sahel, with a peak change of about 40 % and −8 %, respectively.
Brahima Koné, Arona Diedhiou, Adama Diawara, Sandrine Anquetin, N'datchoh Evelyne Touré, Adama Bamba, and Arsene Toka Kobea
Hydrol. Earth Syst. Sci., 26, 731–754, https://doi.org/10.5194/hess-26-731-2022, https://doi.org/10.5194/hess-26-731-2022, 2022
Short summary
Short summary
The impact of initial soil moisture is more significant on temperature extremes than on precipitation extremes. A stronger impact is found on maximum temperature than on minimum temperature. The impact on extreme precipitation indices is homogeneous, especially over the Central Sahel, and dry (wet) experiments tend to decrease (increase) the number of precipitation extreme events but not their intensity.
Josias Láng-Ritter, Marc Berenguer, Francesco Dottori, Milan Kalas, and Daniel Sempere-Torres
Hydrol. Earth Syst. Sci., 26, 689–709, https://doi.org/10.5194/hess-26-689-2022, https://doi.org/10.5194/hess-26-689-2022, 2022
Short summary
Short summary
During flood events, emergency managers such as civil protection authorities rely on flood forecasts to make informed decisions. In the current practice, they monitor several separate forecasts, each one of them covering a different type of flooding. This can be time-consuming and confusing, ultimately compromising the effectiveness of the emergency response. This work illustrates how the automatic combination of flood type-specific impact forecasts can improve decision support systems.
Junjiang Liu, Xing Yuan, Junhan Zeng, Yang Jiao, Yong Li, Lihua Zhong, and Ling Yao
Hydrol. Earth Syst. Sci., 26, 265–278, https://doi.org/10.5194/hess-26-265-2022, https://doi.org/10.5194/hess-26-265-2022, 2022
Short summary
Short summary
Hourly streamflow ensemble forecasts with the CSSPv2 land surface model and ECMWF meteorological forecasts reduce both the probabilistic and deterministic forecast error compared with the ensemble streamflow prediction approach during the first week. The deterministic forecast error can be further reduced in the first 72 h when combined with the long short-term memory (LSTM) deep learning method. The forecast skill for LSTM using only historical observations drops sharply after the first 24 h.
Michael Peichl, Stephan Thober, Luis Samaniego, Bernd Hansjürgens, and Andreas Marx
Hydrol. Earth Syst. Sci., 25, 6523–6545, https://doi.org/10.5194/hess-25-6523-2021, https://doi.org/10.5194/hess-25-6523-2021, 2021
Short summary
Short summary
Using a statistical model that can also take complex systems into account, the most important factors affecting wheat yield in Germany are determined. Different spatial damage potentials are taken into account. In many parts of Germany, yield losses are caused by too much soil water in spring. Negative heat effects as well as damaging soil drought are identified especially for north-eastern Germany. The model is able to explain years with exceptionally high yields (2014) and losses (2003, 2018).
Sara Cloux, Daniel Garaboa-Paz, Damián Insua-Costa, Gonzalo Miguez-Macho, and Vicente Pérez-Muñuzuri
Hydrol. Earth Syst. Sci., 25, 6465–6477, https://doi.org/10.5194/hess-25-6465-2021, https://doi.org/10.5194/hess-25-6465-2021, 2021
Short summary
Short summary
We examine the performance of a widely used Lagrangian method for moisture tracking by comparing it with a highly accurate Eulerian tool, both operating on the same WRF atmospheric model fields. Although the Lagrangian approach is very useful for a qualitative analysis of moisture sources, it has important limitations in quantifying the contribution of individual sources to precipitation. These drawbacks should be considered by other authors in the future so as to not draw erroneous conclusions.
Felix S. Fauer, Jana Ulrich, Oscar E. Jurado, and Henning W. Rust
Hydrol. Earth Syst. Sci., 25, 6479–6494, https://doi.org/10.5194/hess-25-6479-2021, https://doi.org/10.5194/hess-25-6479-2021, 2021
Short summary
Short summary
Extreme rainfall events are modeled in this study for different timescales. A new parameterization of the dependence between extreme values and their timescale enables our model to estimate extremes on very short (1 min) and long (5 d) timescales simultaneously. We compare different approaches of modeling this dependence and find that our new model improves performance for timescales between 2 h and 2 d without affecting model performance on other timescales.
Mark R. Muetzelfeldt, Reinhard Schiemann, Andrew G. Turner, Nicholas P. Klingaman, Pier Luigi Vidale, and Malcolm J. Roberts
Hydrol. Earth Syst. Sci., 25, 6381–6405, https://doi.org/10.5194/hess-25-6381-2021, https://doi.org/10.5194/hess-25-6381-2021, 2021
Short summary
Short summary
Simulating East Asian Summer Monsoon (EASM) rainfall poses many challenges because of its multi-scale nature. We evaluate three setups of a 14 km global climate model against observations to see if they improve simulated rainfall. We do this over catchment basins of different sizes to estimate how model performance depends on spatial scale. Using explicit convection improves rainfall diurnal cycle, yet more model tuning is needed to improve mean and intensity biases in simulated summer rainfall.
Elena Leonarduzzi, Brian W. McArdell, and Peter Molnar
Hydrol. Earth Syst. Sci., 25, 5937–5950, https://doi.org/10.5194/hess-25-5937-2021, https://doi.org/10.5194/hess-25-5937-2021, 2021
Short summary
Short summary
Landslides are a dangerous natural hazard affecting alpine regions, calling for effective warning systems. Here we consider different approaches for the prediction of rainfall-induced shallow landslides at the regional scale, based on open-access datasets and operational hydrological forecasting systems. We find antecedent wetness useful to improve upon the classical rainfall thresholds and the resolution of the hydrological model used for its estimate to be a critical aspect.
Charles Nduhiu Wamucii, Pieter R. van Oel, Arend Ligtenberg, John Mwangi Gathenya, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 25, 5641–5665, https://doi.org/10.5194/hess-25-5641-2021, https://doi.org/10.5194/hess-25-5641-2021, 2021
Short summary
Short summary
East African water towers (WTs) are under pressure from human influences within and without, but the water yield (WY) is more sensitive to climate changes from within. Land use changes have greater impacts on WY in the surrounding lowlands. The WTs have seen a strong shift towards wetter conditions while, at the same time, the potential evapotranspiration is gradually increasing. The WTs were identified as non-resilient, and future WY may experience more extreme variations.
Cited articles
Aligo, E. A., Gallus Jr., W. A., and Segal, M.: On the impact of WRF model
vertical grid resolution on Midwest summer rainfall forecasts, Weather Forecast.,
24, 575–594, 2009.
Bartholmes and Todini: Coupling meteorological and hydrological models for flood
forecasting, Hydrol. Earth Syst. Sci., 9, 333–346, https://doi.org/10.5194/hess-9-333-2005, 2005.
Berrisford, P., Dee, D. P., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi,
S., and Uppala, S. M.: The ERA-Interim Archive, ERA Report Series, 1, 1–16, 2009.
Brömmel, D., Frings, W., and Wylie, B.: Technical Report Juqueen Extreme
Scaling Workshop 2015, Tech. rep., Jülich, Germany, available at:
http://hdl.handle.net/2128/8435, last access: 17 June 2018.
Castelli, F.: Atmosphere modeling and hydrologic-prediction uncertainty, U.S. – Italy
Research Workshop on the Hydrometeorology, impacts and management of extreme
floods, Perugia, 1995.
Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with
the Penn State-NCAR MM5 modeling system. Part I: Model implementation and
sensitivity, Mon. Weather Rev., 129, 569–585, 2001.
Chen, H., Sun, J., Chen, X., and Zhou, W.: CGCM projections of heavy rainfall
events in China, Int. J. Climatol., 32, 441–450, 2012.
Clark, P., Roberts, N., Lean, H., Ballard, S. P., and Charlton-Perez, C.:
Convection-permitting models: a step-change in rainfall forecasting, Meteorol.
Appl., 23, 165–181, 2016.
Coen, J. L., Cameron, M., Michalakes, J., Patton, E. G., Riggan, P. J., and
Yedinak, K. M.: WRF-Fire: coupled weather–wildland fire modeling with the
weather research and forecasting model, J. Appl. Meteorol. Clim., 52, 16–38, 2013.
Crétat, J., Pohl, B., Richard, Y., and Drobinski, P.: Uncertainties in
simulating regional climate of Southern Africa: sensitivity to physical
parameterizations using WRF, Clim. Dynam., 38, 613–634, 2012.
Cuo, L., Pagano, T. C., and Wang, Q. J.: A review of quantitative precipitation
forecasts and their use in short-to medium-range streamflow forecasting, J.
Hydrometeorol., 12, 713–728, 2011.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars,
A. C. M., van de Berg, L., Bidlot J., Bormann, N., Delsol, C., Dragani, R.,
Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm,
E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay,
P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
configuration and performance of the data assimilation system, Q. J. Roy. Meteorol.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Di, Z. H., Duan, Q. Y., Gong, W., Wang, C., Gan, Y. J., Quan, J. P., Li, J. D.,
Miao, C. Y., Ye, A. Z., and Tong, C.: Assessing WRF model parameter sensitivity:
A case study with five-day summer precipitation forecasting in the Greater Beijing
Area, Geophys. Res. Lett., 42, 579–587, 2015.
Done, J., Davis, C. A., and Weisman, M.: The next generation of NWP: Explicit
forecasts of convection using the Weather Research and Forecasting (WRF) model,
Atmos. Sci. Lett., 5, 110–117, 2004.
Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno,
G., and Tarpley, J. D.: Implementation of Noah land surface model advances in
the National Centers for Environmental Prediction operational mesoscale Eta
model, J. Geophys. Res.-Atmos., 108, 8851, https://doi.org/10.1029/2002JD003296, 2003.
Fierro, A. O., Rogers, R. F., Marks, F. D., and Nolan, D. S.: The impact of
horizontal grid spacing on the microphysical and kinematic structures of strong
tropical cyclones simulated with the WRF-ARW model, Mon. Weather Rev., 137, 3717–3743, 2009.
Foley, A. M., Leahy, P. G., Marvuglia, A., and McKeogh, E. J.: Current methods
and advances in forecasting of wind power generation, Renewable Energy, 37, 1–8, 2012.
Gao, Y., Yuan, Y., Wang, H., Schmidt, A. R., Wang, K., and Ye, L.: Examining
the effects of urban agglomeration polders on flood events in Qinhuai River
basin, China with HEC-HMS model, Water Sci. Technol., 75, 2130–2138, 2017.
Goswami, P., Shivappa, H., and Goud, S.: Comparative analysis of the role of
domain size, horizontal resolution and initial conditions in the simulation of
tropical heavy rainfall events, Meteorol. Appl., 19, 170–178, 2012.
Grell, G. A. and Dévényi, D.: A generalized approach to parameterizing
convection combining ensemble and data assimilation techniques, Geophys. Res.
Lett., 29, 1693, https://doi.org/10.1029/2002GL015311, 2002.
Guo, C., Xiao, H., Yang, H., and Tang, Q.: Observation and modeling analyses
of the macro-and microphysical characteristics of a heavy rain storm in Beijing,
Atmos. Res., 156, 125–141, 2015.
Heinzeller, D., Duda, M. G., and Kunstmann, H.: Towards convection-resolving,
global atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3.1:
an extreme scaling experiment, Geosci. Model Dev., 9, 77–110, https://doi.org/10.5194/gmd-9-77-2016, 2016.
Hong, S. Y. and Lee, J. W.: Assessment of the WRF model in reproducing a
flash-flood heavy rainfall event over Korea, Atmos. Res., 93, 818–831, 2009.
Hong, S. Y. and Lim, J. O. J.: The WRF single-moment 6-class microphysics
scheme (WSM6), J. Korean Meteorol. Soc., 42, 129–151, 2006.
Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with an
explicit treatment of entrainment processes, Mon. Weather Rev., 134, 2318–2341, 2006.
Huang, C., Zheng, X., Tait, A., Dai, Y., Yang, C., Chen, Z., Li, T., and Wang,
Z.: On using smoothing spline and residual correction to fuse rain gauge
observations and remote sensing data, J. Hydrol., 508, 410–417, 2013.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: calculations
with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103,
https://doi.org/10.1029/2008JD009944, 2008.
Kain, J. S., Weiss, S. J., Bright, D. R., Baldwin, M. E., Levit, J. J., Carbin,
G. W., Schwartz, C. S., Weisman, M. L., Droegemeeier, K. K., Weber, D. B., and
Thomas, K. W.: Some practical considerations regarding horizontal resolution
in the first generation of operational convection-allowing NWP, Weather Forecast.,
23, 931–952, 2008.
Kleczek, M. A., Steeneveld, G. J., and Holtslag, A. A.: Evaluation of the
weather research and forecasting mesoscale model for GABLS3: impact of
boundary-layer schemes, boundary conditions and spin-up, Bound.-Lay. Meteorol.,
152, 213–243, 2014.
Klemp, J. B.: Advances in the WRF model for convection-resolving forecasting,
Adv. Geosci., 7, 25–29, https://doi.org/10.5194/adgeo-7-25-2006, 2006.
Leduc, M. and Laprise, R.: Regional climate model sensitivity to domain size,
Clim. Dynam., 32, 833–854, 2009.
Li, J., Chen, Y., Wang, H., Qin, J., Li, J., and Chiao, S.: Extending flood
forecasting lead time in a large watershed by coupling WRF QPF with a distributed
hydrological model, Hydrol. Earth Syst. Sci., 21, 1279–1294, https://doi.org/10.5194/hess-21-1279-2017, 2017.
Liu, J., Bray, M., and Han, D.: Sensitivity of the Weather Research and
Forecasting (WRF) model to downscaling ratios and storm types in rainfall
simulation, Hydrol. Process., 26, 3012–3031, 2012.
Luna, T., Castanheira, M., and Rocha, A.: Assessment of WRF-ARW forecasts
using warm initializations, available at: http://climetua.fis.ua.pt/publicacoes/APMG_extended_abstract_2013_Luna_et_al.pdf
(last access: 17 June 2018), 2013.
Miguez-Macho, G., Stenchikov, G. L., and Robock, A.: Spectral nudging to
eliminate the effects of domain position and geometry in regional climate model
simulations, J. Geophys. Res.-Atmos., 109, D13104, https://doi.org/10.1029/2003JD004495, 2004.
Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C. A., Dudhia, J., Gill,
D. O., Coen, J. L., and Grell, G. A.: The Weather Research and Forecasting Model:
Overview, System Efforts, and Future Directions, B. Am. Meteorol. Soc., 98,
1717–1737, https://doi.org/10.1175/BAMS-D-15-00308.1, 2017.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gitjahr, O., Feser, F., Brisson, E., Kollet, S.,
Schmidli, J., van Lipzig, N. P. M., and Leung, R.: A review on regional
convection-permitting climate modeling: Demonstrations, prospects, and challenges,
Rev. Geophys., 53, 323–361, 2015.
Roberts, N. M. and Lean, H. W.: Scale-selective verification of rainfall
accumulations from high-resolution forecasts of convective events, Mon. Weather
Rev., 136, 78–97, 2008.
Ruiz, J. J., Saulo, C., and Nogués-Paegle, J.: WRF model sensitivity to
choice of parameterization over South America: validation against surface
variables, Mon. Weather Rev., 138, 3342–3355, 2010.
Schwartz, C. S., Kain, J. S., Weiss, S. J., Xue, M., Bright, D. R., Kong, F. Y.,
Thomas, K. W., Levit, J. J., and Coniglio, M. C.: Next-day convection-allowing
WRF model guidance: A second look at 2-km versus 4-km grid spacing, Mon. Weather
Rev., 137, 3351–3372, 2009.
Seth, A. and Rojas, M.: Simulation and sensitivity in a nested modeling system
for South America. Part I: Reanalyses boundary forcing, J. Climate, 16, 2437–2453, 2003.
Shih, D. S., Chen, C. H., and Yeh, G. T.: Improving our understanding of flood
forecasting using earlier hydro-meteorological intelligence, J. Hydrol.,
512, 470–481, 2014.
Sikder, S. and Hossain, F.: Assessment of the weather research and forecasting
model generalized parameterization schemes for advancement of precipitation
forecasting in monsoon-driven river basins, J. Adv. Model. Earth Syst., 8, 1210–1228, 2016.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda,
M. G., Huang, X. Y., Wang, W., and Powers, J. G.: A Description of the Advanced
Research WRF Version 3, NCAR Note NCAR/TN-475, NCAR, Boulder, Colorado, USA, 2008.
Soares, P. M., Cardoso, R. M., Miranda, P. M., de Medeiros, J., Belo-Pereira,
M., and Espirito-Santo, F.: WRF high resolution dynamical downscaling of
ERA-Interim for Portugal, Clim. Dynam., 39, 2497–2522, 2012.
Sun, M. S., Yang, L. Q., Yin, Q., Niu, Z. Y., and Gao, L. M.: Analysis of the
cause of a torrential rain occurring in Beijing on 21 July 2012, Torrent. Rain
Disast., 32, 218–223, 2013.
Swinbank, R. and James Purser, R.: Fibonacci grids: A novel approach to global
modeling, Q. J. Roy. Meteorol. Soc., 132, 1769–1793, 2006.
Tian, J., Liu, J., Yan, D., Li, C., and Yu, F.: Numerical rainfall simulation
with different spatial and temporal evenness by using a WRF multiphysics
ensemble, Nat. Hazards Earth Syst. Sci., 17, 563–579, https://doi.org/10.5194/nhess-17-563-2017, 2017.
Vrac, M., Drobinski, P., Merlo, A., Herrmann, M., Lavaysse, C., Li, L., and
Somot, S.: Dynamical and statistical downscaling of the French Mediterranean
climate: uncertainty assessment, Nat. Hazards Earth Syst. Sci., 12, 2769–2784,
https://doi.org/10.5194/nhess-12-2769-2012, 2012.
Wang, K., Wang, L., Wei, Y. M., and Ye, M.: Beijing storm of July 21, 2012:
observations and reflections, Nat. Hazards, 67, 969–974, 2013.
Wang, S. L., Kang, H. W., Gu, X. Q., and Ni, Y. Q.: Numerical Simulation of
Mesoscale Convective System in the Warm Sector of Beijing `7.21' Severe
Rainstorm, Meteorol. Mon., 41, 544–553, 2015.
Warner, T. T.: Quality assurance in atmospheric modeling, B. Am. Meteorol. Soc.,
92, 1601–1610, 2011.
Warner, T. T., Peterson, R. A., and Treadon, R. E.: A tutorial on lateral
boundary conditions as a basic and potentially serious limitation to regional
numerical weather prediction, B. Am. Meteorol. Soc., 78, 2599–2617, 1997.
Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson,
F., Kendon, E. J., Lenderink, G., and Roberts, N. M.: Future changes to the
intensity and frequency of short-duration extreme rainfall, Rev. Geophys.,
52, 522–555, 2014.
Willems, P., Arnbjerg-Nielsen, K., Olsson, J., and Nguyen, V. T. V.: Climate
change impact assessment on urban rainfall extremes and urban drainage: methods
and shortcomings, Atmos. Res., 103, 106–118, 2012.
WMO: Anticipated advances in numerical weather prediction, and the growing
technology gap in weather forecast, available at: https://www.wmo.int/pages/prog/www/swfdp/Meetings/documents/Advances_NWP.pdf
(last access: 17 June 2018), 2013.
Xu, Z. X. and Chu, Q.: Climatological features and trends of extreme precipitation
during 1979–2012 in Beijing, China, P. Int. Assoc. Hydrolog. Sci., 369, 97–102, 2015.
Xu, Z. X. and Zhao, G.: Impact of urbanization on rainfall-runoff processes:
case study in the Liangshui River Basin in Beijing, China, P. Int. Assoc.
Hydrolog. Sci., 373, 7–12, 2016.
Yu, E.-T., Wang, H.-J., and Sun, J.-Q.: A quick report on a dynamical downscaling
simulation over China using the nested model, Atmos. Ocean. Sc. Lett., 3, 325–329, 2010.
Yu, R., Xu, Y., Zhou, T., and Li, J.: Relation between rainfall duration and
diurnal variation in the warm season precipitation over central eastern China,
Geophys. Res. Lett., 34, L13703, https://doi.org/10.1029/2007GL030315, 2007.
Yu, W., Nakakita, E., Kim, S., and Yamaguchi, K.: Impact Assessment of
Uncertainty Propagation of Ensemble NWP Rainfall to Flood Forecasting with
Catchment Scale, Adv. Meteorol., 4, 1–17, https://doi.org/10.1155/2016/1384302, 2016.
Yucel, I., Onen, A., Yilmaz, K. K., and Gochis, D. J.: Calibration and
evaluation of a flood forecasting system: Utility of numerical weather
prediction model, data assimilation and satellite-based rainfall, J. Hydrol.,
523, 49–66, 2015.
Zhou, Y. S., Liu, L., Zhu, K. F., and Li, J. T.: Simulation and evolution
characteristics of mesoscale systems occurring in Beijing on 21 July 2012,
Chinese J. Atmos. Sci., 38, 885–896, 2014.
Short summary
The effects of WRF domain configurations and spin-up time on rainfall were evaluated at high temporal and spatial scales for simulating an extreme sub-daily heavy rainfall (SDHR) event. Both objective verification metrics and subjective verification were used to identify the likely best set of the configurations. Results show that re-evaluation of these WRF settings is of great importance in improving the accuracy and reliability of the rainfall simulations in the regional SDHR applications.
The effects of WRF domain configurations and spin-up time on rainfall were evaluated at high...