Articles | Volume 22, issue 5
https://doi.org/10.5194/hess-22-2987-2018
https://doi.org/10.5194/hess-22-2987-2018
Research article
 | 
22 May 2018
Research article |  | 22 May 2018

Framework for developing hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems

Jason M. Hunter, Holger R. Maier, Matthew S. Gibbs, Eloise R. Foale, Naomi A. Grosvenor, Nathan P. Harders, and Tahali C. Kikuchi-Miller

Related authors

State updating and calibration period selection to improve dynamic monthly streamflow forecasts for an environmental flow management application
Matthew S. Gibbs, David McInerney, Greer Humphrey, Mark A. Thyer, Holger R. Maier, Graeme C. Dandy, and Dmitri Kavetski
Hydrol. Earth Syst. Sci., 22, 871–887, https://doi.org/10.5194/hess-22-871-2018,https://doi.org/10.5194/hess-22-871-2018, 2018
Short summary
Sensitivity of potential evapotranspiration to changes in climate variables for different Australian climatic zones
Danlu Guo, Seth Westra, and Holger R. Maier
Hydrol. Earth Syst. Sci., 21, 2107–2126, https://doi.org/10.5194/hess-21-2107-2017,https://doi.org/10.5194/hess-21-2107-2017, 2017
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Flexible forecast value metric suitable for a wide range of decisions: application using probabilistic subseasonal streamflow forecasts
Richard Laugesen, Mark Thyer, David McInerney, and Dmitri Kavetski
Hydrol. Earth Syst. Sci., 27, 873–893, https://doi.org/10.5194/hess-27-873-2023,https://doi.org/10.5194/hess-27-873-2023, 2023
Short summary
An improved model of shade-affected stream temperature in Soil & Water Assessment Tool
Efrain Noa-Yarasca, Meghna Babbar-Sebens, and Chris Jordan
Hydrol. Earth Syst. Sci., 27, 739–759, https://doi.org/10.5194/hess-27-739-2023,https://doi.org/10.5194/hess-27-739-2023, 2023
Short summary
Seasonal forecasting of snow resources at Alpine sites
Silvia Terzago, Giulio Bongiovanni, and Jost von Hardenberg
Hydrol. Earth Syst. Sci., 27, 519–542, https://doi.org/10.5194/hess-27-519-2023,https://doi.org/10.5194/hess-27-519-2023, 2023
Short summary
Operationalizing equity in multipurpose water systems
Guang Yang, Matteo Giuliani, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 27, 69–81, https://doi.org/10.5194/hess-27-69-2023,https://doi.org/10.5194/hess-27-69-2023, 2023
Short summary
Evaluation of a new observationally based channel parameterization for the National Water Model
Aaron Heldmyer, Ben Livneh, James McCreight, Laura Read, Joseph Kasprzyk, and Toby Minear
Hydrol. Earth Syst. Sci., 26, 6121–6136, https://doi.org/10.5194/hess-26-6121-2022,https://doi.org/10.5194/hess-26-6121-2022, 2022
Short summary

Cited articles

Adamowski, J. and Chan, H. F.: A wavelet neural network conjunction model for groundwater level forecasting, J. Hydrol, 407, 28–40, https://doi.org/10.1016/j.jhydrol.2011.06.013, 2011.
Alvarez-Garreton, C., Ryu, D., Western, A. W., Su, C.-H., Crow, W. T., Robertson, D. E., and Leahy, C.: Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: comparison between lumped and semi-distributed schemes, Hydrol. Earth Syst. Sci., 19, 1659–1676, https://doi.org/10.5194/hess-19-1659-2015, 2015.
Banerjee, P., Singh, V. S., Chatttopadhyay, K., Chandra, P. C., and Singh, B.: Artificial neural network model as a potential alternative for groundwater salinity forecasting, J. Hydrol., 398, 212–220, https://doi.org/10.1016/j.jhydrol.2010.12.016, 2011.
Barnett, S.: Gurra Gurra Wetland Complex – Groundwater Data Review, Dept. of Water, Land and Biodiversity Conservation, 4, 2007.
Beecham, R., Arranz, P., Boddy, J., Burrell, M., Gilmore, R., Javam, A., Martin, J., O'Neill, R., and Salbe, I.: Implementing daily salinity models in the NSW Murray Darling Basin tributaries, in: Modsim 2003, International Congress on Modelling and Simulation, Vol 1–4: Vol 1: Natural Systems, Pt 1; Vol 2: Natural Systems, Pt 2; Vol 3: Socio-Economic Systems; Vol 4: General Systems, 362–367, 2003.
Download
Short summary
This research proposes a generalised hybrid model development framework and applies it to a case study of salinity prediction in a reach of the Murray River. The hybrid model combines five sub-models which describe one process of salt entry each and are developed based on the amount of system knowledge and data that are available to support each individual process. The model demonstrates increased performance over two benchmark models and has implications for future model development processes.