Articles | Volume 22, issue 4
https://doi.org/10.5194/hess-22-2057-2018
https://doi.org/10.5194/hess-22-2057-2018
Research article
 | 
03 Apr 2018
Research article |  | 03 Apr 2018

Skilful seasonal forecasts of streamflow over Europe?

Louise Arnal, Hannah L. Cloke, Elisabeth Stephens, Fredrik Wetterhall, Christel Prudhomme, Jessica Neumann, Blazej Krzeminski, and Florian Pappenberger

Related authors

Skilful probabilistic predictions of UK flood risk months ahead using a large-sample machine learning model trained on multimodel ensemble climate forecasts
Simon Moulds, Louise Slater, Louise Arnal, and Andrew W. Wood
Hydrol. Earth Syst. Sci., 29, 2393–2406, https://doi.org/10.5194/hess-29-2393-2025,https://doi.org/10.5194/hess-29-2393-2025, 2025
Short summary
Editorial: The shadowlands of (geo)science communication in academia – definitions, problems, and possible solutions
Shahzad Gani, Louise Arnal, Lucy Beattie, John Hillier, Sam Illingworth, Tiziana Lanza, Solmaz Mohadjer, Karoliina Pulkkinen, Heidi Roop, Iain Stewart, Kirsten von Elverfeldt, and Stephanie Zihms
Geosci. Commun., 7, 251–266, https://doi.org/10.5194/gc-7-251-2024,https://doi.org/10.5194/gc-7-251-2024, 2024
Short summary
FROSTBYTE: a reproducible data-driven workflow for probabilistic seasonal streamflow forecasting in snow-fed river basins across North America
Louise Arnal, Martyn P. Clark, Alain Pietroniro, Vincent Vionnet, David R. Casson, Paul H. Whitfield, Vincent Fortin, Andrew W. Wood, Wouter J. M. Knoben, Brandi W. Newton, and Colleen Walford
Hydrol. Earth Syst. Sci., 28, 4127–4155, https://doi.org/10.5194/hess-28-4127-2024,https://doi.org/10.5194/hess-28-4127-2024, 2024
Short summary
Hybrid forecasting: blending climate predictions with AI models
Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, Andrew Wood, and Massimiliano Zappa
Hydrol. Earth Syst. Sci., 27, 1865–1889, https://doi.org/10.5194/hess-27-1865-2023,https://doi.org/10.5194/hess-27-1865-2023, 2023
Short summary
Canadian historical Snow Water Equivalent dataset (CanSWE, 1928–2020)
Vincent Vionnet, Colleen Mortimer, Mike Brady, Louise Arnal, and Ross Brown
Earth Syst. Sci. Data, 13, 4603–4619, https://doi.org/10.5194/essd-13-4603-2021,https://doi.org/10.5194/essd-13-4603-2021, 2021
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
The role of land–atmosphere coupling in subseasonal surface air temperature prediction across the contiguous United States
Yuna Lim, Andrea M. Molod, Randal D. Koster, and Joseph A. Santanello
Hydrol. Earth Syst. Sci., 29, 3435–3445, https://doi.org/10.5194/hess-29-3435-2025,https://doi.org/10.5194/hess-29-3435-2025, 2025
Short summary
Barriers to urban hydrometeorological simulation: a review
Xuan Chen, Job Augustijn van der Werf, Arjan Droste, Miriam Coenders-Gerrits, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 29, 3447–3480, https://doi.org/10.5194/hess-29-3447-2025,https://doi.org/10.5194/hess-29-3447-2025, 2025
Short summary
Global catalog of soil moisture droughts over the past four decades
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, Yannis Markonis, and Miroslav Trnka
Hydrol. Earth Syst. Sci., 29, 3341–3358, https://doi.org/10.5194/hess-29-3341-2025,https://doi.org/10.5194/hess-29-3341-2025, 2025
Short summary
Probabilistic precipitation downscaling for ungauged mountain sites: a pilot study for the Hindu Kush Himalaya
Marc Girona-Mata, Andrew Orr, Martin Widmann, Daniel Bannister, Ghulam Hussain Dars, Scott Hosking, Jesse Norris, David Ocio, Tony Phillips, Jakob Steiner, and Richard E. Turner
Hydrol. Earth Syst. Sci., 29, 3073–3100, https://doi.org/10.5194/hess-29-3073-2025,https://doi.org/10.5194/hess-29-3073-2025, 2025
Short summary
Implementation of global soil databases in the Noah-MP model and the effects on simulated mean and extreme soil hydrothermal changes
Kazeem Abiodun Ishola, Gerald Mills, Ankur Prabhat Sati, Benjamin Obe, Matthias Demuzere, Deepak Upreti, Gourav Misra, Paul Lewis, Daire Walsh, Tim McCarthy, and Rowan Fealy
Hydrol. Earth Syst. Sci., 29, 2551–2582, https://doi.org/10.5194/hess-29-2551-2025,https://doi.org/10.5194/hess-29-2551-2025, 2025
Short summary

Cited articles

Alfieri, L., Pappenberger, F., Wetterhall, F., Haiden, T., Richardson, D., and Salamon, P.: Evaluation of ensemble streamflow predictions in Europe, J. Hydrol., 517, 913–922, https://doi.org/10.1016/j.jhydrol.2014.06.035, 2014.
Arnal, L., Wood, A. W., Stephens, E., Cloke, H. L., and Pappenberger, F.: An Efficient Approach for Estimating Streamflow Forecast Skill Elasticity, J. Hydrometeorol., 18, 1715–1729, https://doi.org/10.1175/JHM-D-16-0259.1, 2017.
Arribas, A., Glover, M., Maidens, A., Peterson, K., Gordon, M., MacLachlan, C., Graham, R., Fereday, D., Camp, J., Scaife, A. A., Xavier, P., McLean, P., and Colman, A.: The GloSea4 Ensemble Prediction System for Seasonal Forecasting, Mon. Weather. Rev., 139, 1891–1910, https://doi.org/10.1175/2010MWR3615.1, 2010.
Bell, V. A., Davies, H. N., Kay, A. L., Brookshaw, A., and Scaife, A. A.: A national-scale seasonal hydrological forecast system: development and evaluation over Britain, Hydrol. Earth Syst. Sci., 21, 4681–4691, https://doi.org/10.5194/hess-21-4681-2017, 2017.
Bennett, J. C., Wang, J. Q., Li, M., Robertson, D. E., and Schepen, A.: Reliable long-range ensemble streamflow forecasts: Combining calibrated climate forecasts with a conceptual runoff model and a staged error model, Water Resour. Res., 52, 8238–8259, https://doi.org/10.1002/2016WR019193, 2016.
Download
Short summary
This paper presents a new operational forecasting system (driven by atmospheric forecasts), predicting river flow in European rivers for the next 7 months. For the first month only, these river flow forecasts are, on average, better than predictions that do not make use of atmospheric forecasts. Overall, this forecasting system can predict whether abnormally high or low river flows will occur in the next 7 months in many parts of Europe, and could be valuable for various applications.
Share