Articles | Volume 21, issue 2
Hydrol. Earth Syst. Sci., 21, 805–820, 2017
https://doi.org/10.5194/hess-21-805-2017
Hydrol. Earth Syst. Sci., 21, 805–820, 2017
https://doi.org/10.5194/hess-21-805-2017

Research article 10 Feb 2017

Research article | 10 Feb 2017

Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography

Rafael Pimentel et al.

Related authors

Two decades of distributed global radiation time series across a mountainous semiarid area (Sierra Nevada, Spain)
Cristina Aguilar, Rafael Pimentel, and María J. Polo
Earth Syst. Sci. Data, 13, 1335–1359, https://doi.org/10.5194/essd-13-1335-2021,https://doi.org/10.5194/essd-13-1335-2021, 2021
Short summary
Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation
Berit Arheimer, Rafael Pimentel, Kristina Isberg, Louise Crochemore, Jafet C. M. Andersson, Abdulghani Hasan, and Luis Pineda
Hydrol. Earth Syst. Sci., 24, 535–559, https://doi.org/10.5194/hess-24-535-2020,https://doi.org/10.5194/hess-24-535-2020, 2020
Short summary
The Guadalfeo Monitoring Network (Sierra Nevada, Spain): 14 years of measurements to understand the complexity of snow dynamics in semiarid regions
María J. Polo, Javier Herrero, Rafael Pimentel, and María J. Pérez-Palazón
Earth Syst. Sci. Data, 11, 393–407, https://doi.org/10.5194/essd-11-393-2019,https://doi.org/10.5194/essd-11-393-2019, 2019
Short summary
Validating improved-MODIS products from spectral mixture-Landsat snow cover maps in a mountain region in southern Spain
Rafael Pimentel, Carlo Marín, Ludovica De Gregorio, Mattia Callegari, María J. Pérez-Palazón, Claudia Notarnicola, and María J. Polo
Proc. IAHS, 380, 67–72, https://doi.org/10.5194/piahs-380-67-2018,https://doi.org/10.5194/piahs-380-67-2018, 2018
Short summary
Wildfire impact on Boreal hydrology: empirical study of the Västmanland fire 2014 (Sweden)
Rafael Pimentel and Berit Arheimer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-387,https://doi.org/10.5194/hess-2018-387, 2018
Revised manuscript not accepted
Short summary

Related subject area

Subject: Snow and Ice | Techniques and Approaches: Modelling approaches
Assimilation of citizen science data in snowpack modeling using a new snow data set: Community Snow Observations
Ryan L. Crumley, David F. Hill, Katreen Wikstrom Jones, Gabriel J. Wolken, Anthony A. Arendt, Christina M. Aragon, Christopher Cosgrove, and Community Snow Observations Participants
Hydrol. Earth Syst. Sci., 25, 4651–4680, https://doi.org/10.5194/hess-25-4651-2021,https://doi.org/10.5194/hess-25-4651-2021, 2021
Short summary
Snowpack dynamics in the Lebanese mountains from quasi-dynamically downscaled ERA5 reanalysis updated by assimilating remotely sensed fractional snow-covered area
Esteban Alonso-González, Ethan Gutmann, Kristoffer Aalstad, Abbas Fayad, Marine Bouchet, and Simon Gascoin
Hydrol. Earth Syst. Sci., 25, 4455–4471, https://doi.org/10.5194/hess-25-4455-2021,https://doi.org/10.5194/hess-25-4455-2021, 2021
Short summary
The evaluation of the potential of global data products for snow hydrological modelling in ungauged high-alpine catchments
Michael Weber, Franziska Koch, Matthias Bernhardt, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2869–2894, https://doi.org/10.5194/hess-25-2869-2021,https://doi.org/10.5194/hess-25-2869-2021, 2021
Short summary
Learning about precipitation lapse rates from snow course data improves water balance modeling
Francesco Avanzi, Giulia Ercolani, Simone Gabellani, Edoardo Cremonese, Paolo Pogliotti, Gianluca Filippa, Umberto Morra di Cella, Sara Ratto, Hervè Stevenin, Marco Cauduro, and Stefano Juglair
Hydrol. Earth Syst. Sci., 25, 2109–2131, https://doi.org/10.5194/hess-25-2109-2021,https://doi.org/10.5194/hess-25-2109-2021, 2021
Short summary
Snow water equivalents exclusively from snow depths and their temporal changes: the Δsnow model
Michael Winkler, Harald Schellander, and Stefanie Gruber
Hydrol. Earth Syst. Sci., 25, 1165–1187, https://doi.org/10.5194/hess-25-1165-2021,https://doi.org/10.5194/hess-25-1165-2021, 2021
Short summary

Cited articles

Aguilar, C., Herrero, J., and Polo, M. J.: Topographic effects on solar radiation distribution in mountainous watersheds and their influence on reference evapotranspiration estimates at watershed scale, Hydrol. Earth Syst. Sci., 14, 2479–2494, https://doi.org/10.5194/hess-14-2479-2010, 2010.
Anderson, E. A.: A point energy and mass balance model of snow cover, National Weather Service, NOAA Technical Report NWS, 19, 1976.
Anderton, S. P., White, S. M., and Alvera, B: Evaluation of spatial variability in snow water equivalent for a high mountain catchment, Hydrol. Process., 18, 435–453, 2004.
Andreadis, K. M., Storck, P., and Lettenmainer, D. P.: Modeling snow accumulation and ablation processes in forested environments, Water Resour. Res., 45, 1275–1285, 2009.
Armstrong R. L. and Brun, E.: Snow and climate: Physical Processes, Surface Energy Exchanges and Modelling, Cambridge University Press, 2008.
Download
Short summary
This study analyses the subgrid variability of the snow distribution in a Mediterranean region and formulates a parametric approach that includes these scale effects in the physical modelling of snow by means of accumulation–depletion curves associated with snow evolution patterns, by means of terrestrial photography. The results confirm that the use of these on a cell scale provides a solid foundation for the extension of point snow models to larger areas.