Articles | Volume 21, issue 1
Hydrol. Earth Syst. Sci., 21, 589–615, 2017
https://doi.org/10.5194/hess-21-589-2017
Hydrol. Earth Syst. Sci., 21, 589–615, 2017
https://doi.org/10.5194/hess-21-589-2017
Research article
30 Jan 2017
Research article | 30 Jan 2017

MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data

Hylke E. Beck et al.

Related authors

The suitability of differentiable, learnable hydrologic models for ungauged regions and climate change impact assessment
Dapeng Feng, Hylke Beck, Kathryn Lawson, and Chaopeng Shen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-245,https://doi.org/10.5194/hess-2022-245, 2022
Preprint under review for HESS
Short summary
Remotely sensed reservoir water storage dynamics (1984–2015) and the influence of climate variability and management at a global scale
Jiawei Hou, Albert I. J. M. van Dijk, Hylke E. Beck, Luigi J. Renzullo, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 26, 3785–3803, https://doi.org/10.5194/hess-26-3785-2022,https://doi.org/10.5194/hess-26-3785-2022, 2022
Short summary
FarmCan: A Physical, Statistical, and Machine Learning Model to Forecast Crop Water Deficit at Farm Scales
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-96,https://doi.org/10.5194/hess-2022-96, 2022
Preprint under review for HESS
Short summary
On the selection of precipitation products for the regionalisation of hydrological model parameters
Oscar M. Baez-Villanueva, Mauricio Zambrano-Bigiarini, Pablo A. Mendoza, Ian McNamara, Hylke E. Beck, Joschka Thurner, Alexandra Nauditt, Lars Ribbe, and Nguyen Xuan Thinh
Hydrol. Earth Syst. Sci., 25, 5805–5837, https://doi.org/10.5194/hess-25-5805-2021,https://doi.org/10.5194/hess-25-5805-2021, 2021
Short summary
Model cascade from meteorological drivers to river flood hazard: flood-cascade v1.0
Peter Uhe, Daniel Mitchell, Paul D. Bates, Nans Addor, Jeff Neal, and Hylke E. Beck
Geosci. Model Dev., 14, 4865–4890, https://doi.org/10.5194/gmd-14-4865-2021,https://doi.org/10.5194/gmd-14-4865-2021, 2021
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Remote Sensing and GIS
Remotely sensed reservoir water storage dynamics (1984–2015) and the influence of climate variability and management at a global scale
Jiawei Hou, Albert I. J. M. van Dijk, Hylke E. Beck, Luigi J. Renzullo, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 26, 3785–3803, https://doi.org/10.5194/hess-26-3785-2022,https://doi.org/10.5194/hess-26-3785-2022, 2022
Short summary
Characterizing natural variability in complex hydrological systems using passive microwave-based climate data records: a case study for the Okavango Delta
Robin van der Schalie, Mendy van der Vliet, Clément Albergel, Wouter Dorigo, Piotr Wolski, and Richard de Jeu
Hydrol. Earth Syst. Sci., 26, 3611–3627, https://doi.org/10.5194/hess-26-3611-2022,https://doi.org/10.5194/hess-26-3611-2022, 2022
Short summary
High-resolution (1 km) satellite rainfall estimation from SM2RAIN applied to Sentinel-1: Po River basin as a case study
Paolo Filippucci, Luca Brocca, Raphael Quast, Luca Ciabatta, Carla Saltalippi, Wolfgang Wagner, and Angelica Tarpanelli
Hydrol. Earth Syst. Sci., 26, 2481–2497, https://doi.org/10.5194/hess-26-2481-2022,https://doi.org/10.5194/hess-26-2481-2022, 2022
Short summary
Scaling methods of leakage correction in GRACE mass change estimates revisited for the complex hydro-climatic setting of the Indus basin
Vasaw Tripathi, Andreas Groh, Martin Horwath, and RAAJ Ramsankaran
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-43,https://doi.org/10.5194/hess-2022-43, 2022
Revised manuscript accepted for HESS
Short summary
The accuracy of temporal upscaling of instantaneous evapotranspiration to daily values with seven upscaling methods
Zhaofei Liu
Hydrol. Earth Syst. Sci., 25, 4417–4433, https://doi.org/10.5194/hess-25-4417-2021,https://doi.org/10.5194/hess-25-4417-2021, 2021
Short summary

Cited articles

Adam, J. C. and Lettenmaier, D. P.: Adjustment of global gridded precipitation for systematic bias, J. Geophys. Res.-Atmos., 108, 4257, https://doi.org/10.1029/2002JD002499, 2003.
Adam, J. C., Clark, E. A., Lettenmaier, D. P., and Wood, E. F.: Correction of global precipitation products for orographic effects, J. Climate, 19, 15–38, https://doi.org/10.1175/JCLI3604.1, 2006.
Adler, R. F., Kidd, C., Petty, G., Morissey, M., and Goodman, H. M.: Intercomparison of global precipitation products: The third precipitation intercomparison project (PIP-3), B. Am. Meteorol. Soc., 82, 1377–1396, 2001.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, FAO – Food and Agriculture Organization of the United Nations, Rome, http://www.fao.org/docrep/X0490E/X0490E00.htm (last access: December 2015), 1998.
Amiro, B. D.: Measuring boreal forest evapotranspiration using the energy balance residual, J. Hydrol., 366, 112–118, 2009.
Download
Short summary
MSWEP (Multi-Source Weighted-Ensem­ble Pre­cip­i­ta­tion) is a new global ter­res­trial pre­cip­i­ta­tion dataset with a high 3-hourly tem­po­ral and 0.25° spa­tial res­o­lu­tion. The dataset is unique in that it takes advan­tage of a wide range of data sources, includ­ing gauge, satel­lite, and reanaly­sis data, to obtain the best pos­si­ble precipitation esti­mates at global scale. The dataset outper­forms existing gauge-adjusted precipitation datasets.