Articles | Volume 21, issue 9
https://doi.org/10.5194/hess-21-4727-2017
https://doi.org/10.5194/hess-21-4727-2017
Research article
 | 
21 Sep 2017
Research article |  | 21 Sep 2017

Can spatial statistical river temperature models be transferred between catchments?

Faye L. Jackson, Robert J. Fryer, David M. Hannah, and Iain A. Malcolm

Related authors

Brief communication: Forecasting extreme precipitation from atmospheric rivers in New Zealand
Daniel G. Kingston, Liam Cooper, David A. Lavers, and David M. Hannah
EGUsphere, https://doi.org/10.5194/egusphere-2024-1742,https://doi.org/10.5194/egusphere-2024-1742, 2024
Short summary
Physically-based modelling of glacier evolution under climate change in the tropical Andes
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Emily Potter, Nilton Montoya, and Wouter Buytaert
EGUsphere, https://doi.org/10.5194/egusphere-2024-863,https://doi.org/10.5194/egusphere-2024-863, 2024
Short summary
Seasonal and interannual dissolved organic carbon transport process dynamics in a subarctic headwater catchment revealed by high-resolution measurements
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024,https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Brief communication: Inclusiveness in designing an early warning system for flood resilience
Tahmina Yasmin, Kieran Khamis, Anthony Ross, Subir Sen, Anita Sharma, Debashish Sen, Sumit Sen, Wouter Buytaert, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 23, 667–674, https://doi.org/10.5194/nhess-23-667-2023,https://doi.org/10.5194/nhess-23-667-2023, 2023
Short summary
Evaluating integrated water management strategies to inform hydrological drought mitigation
Doris E. Wendt, John P. Bloomfield, Anne F. Van Loon, Margaret Garcia, Benedikt Heudorfer, Joshua Larsen, and David M. Hannah
Nat. Hazards Earth Syst. Sci., 21, 3113–3139, https://doi.org/10.5194/nhess-21-3113-2021,https://doi.org/10.5194/nhess-21-3113-2021, 2021
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Isotopic evaluation of the National Water Model reveals missing agricultural irrigation contributions to streamflow across the western United States
Annie L. Putman, Patrick C. Longley, Morgan C. McDonnell, James Reddy, Michelle Katoski, Olivia L. Miller, and J. Renée Brooks
Hydrol. Earth Syst. Sci., 28, 2895–2918, https://doi.org/10.5194/hess-28-2895-2024,https://doi.org/10.5194/hess-28-2895-2024, 2024
Short summary
Timing of spring events changes under modelled future climate scenarios in a mesotrophic lake
Jorrit P. Mesman, Inmaculada C. Jiménez-Navarro, Ana I. Ayala, Javier Senent-Aparicio, Dennis Trolle, and Don C. Pierson
Hydrol. Earth Syst. Sci., 28, 1791–1802, https://doi.org/10.5194/hess-28-1791-2024,https://doi.org/10.5194/hess-28-1791-2024, 2024
Short summary
Effects of high-quality elevation data and explanatory variables on the accuracy of flood inundation mapping via Height Above Nearest Drainage
Fernando Aristizabal, Taher Chegini, Gregory Petrochenkov, Fernando Salas, and Jasmeet Judge
Hydrol. Earth Syst. Sci., 28, 1287–1315, https://doi.org/10.5194/hess-28-1287-2024,https://doi.org/10.5194/hess-28-1287-2024, 2024
Short summary
Estimating flood discharge at river bridges using the entropy theory. Insights from Computational Fluid Dynamics flow fields
Farhad Bahmanpouri, Tommaso Lazzarin, Silvia Barbetta, Tommaso Moramarco, and Daniele Pietro Viero
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-253,https://doi.org/10.5194/hess-2023-253, 2023
Revised manuscript accepted for HESS
Short summary
Understanding the compound flood risk along the coast of the contiguous United States
Dongyu Feng, Zeli Tan, Donghui Xu, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 27, 3911–3934, https://doi.org/10.5194/hess-27-3911-2023,https://doi.org/10.5194/hess-27-3911-2023, 2023
Short summary

Cited articles

Anon: Sun or Moon Altitude/Azimuth Table, Data Serv. Washington, D.C., US Nav. Obs. Astron. Appl. Dep., available at: http://aa.usno.navy.mil/data/docs/AltAz.php (last access: 26 March 2014), 2001.
Arora, R., Tockner, K., and Venohr, M.: Changing river temperatures in Northern Germany: trends and drivers of change, Hydrol. Process., 30, 3084–3096, 2016.
Bivand, R. and Rundel, C.: rgeos: Interface to Geometry Engine – Open Source (GEOS), R package version 0.3-17., available at: https://cran.r-project.org/package=rgeos (last access: 14 September 2017), 2016.
Brown, L. E. and Hannah, D. M.: Spatial heterogeneity of water temperature across an alpine river basin, Hydrol. Process., 22, 954–967, 2008.
Brown, L. E., Hannah, D. M., Milner, A. M., Soulsby, C., Hodson, A. J., and Brewer, M. J.: Water source dynamics in a glacierized alpine river basin (Taillon-Gabiétous, French Pyrénées), Water Resour. Res., 42, W08404, https://doi.org/10.1029/2005WR004268, 2006.
Download
Short summary
River temperature (Tw) is important to fish populations, but one cannot monitor everywhere. Thus, models are used to predict Tw, sometimes in rivers with no data. To date, the accuracy of these predictions has not been determined. We found that models including landscape predictors (e.g. altitude, tree cover) could describe spatial patterns in Tw in other rivers better than those including air temperature. Such findings are critical for developing Tw models that have management application.