Articles | Volume 20, issue 2
https://doi.org/10.5194/hess-20-843-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/hess-20-843-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Nitrate sinks and sources as controls of spatio-temporal water quality dynamics in an agricultural headwater catchment
Tobias Schuetz
CORRESPONDING AUTHOR
Chair of Hydrology, University of Freiburg, Freiburg, Germany
Chantal Gascuel-Odoux
INRA, UMR Sol Agro et Hydrosystème Spatialisation, Rennes, France
Patrick Durand
INRA, UMR Sol Agro et Hydrosystème Spatialisation, Rennes, France
Markus Weiler
Chair of Hydrology, University of Freiburg, Freiburg, Germany
Related authors
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Geosci. Model Dev., 14, 2127–2142, https://doi.org/10.5194/gmd-14-2127-2021, https://doi.org/10.5194/gmd-14-2127-2021, 2021
Short summary
Short summary
This paper presents FluSM, an algorithm to derive the water balance from soil moisture and metrological measurements. This data-driven water balance framework uses soil moisture as an input and therefore is applicable for cases with unclear processes and lacking parameters. In a case study, we apply FluSM to derive the water balance of 15 different permeable pavements under field conditions. These findings are of special interest for urban hydrology.
Merle Koelbing, Tobias Schuetz, and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-24, https://doi.org/10.5194/hess-2021-24, 2021
Revised manuscript not accepted
Short summary
Short summary
Based on a unique and comprehensive data set of urban micro-meteorological variables, which were observed with a mobile climate station, we developed a new method to transfer mesoscale reference potential evapotranspiration to the urban microscale in street canyons. Our findings can be transferred easily to existing urban hydrologic models to improve modelling results with a more precise estimate of potential evapotranspiration on street level.
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Earth Syst. Sci. Data, 12, 501–517, https://doi.org/10.5194/essd-12-501-2020, https://doi.org/10.5194/essd-12-501-2020, 2020
Short summary
Short summary
This paper contains detailed information about the instrumentation of permeable pavements with soil moisture sensors and the performance of infiltration experiments on these surfaces. The collected data are beneficial for studying urban water and energy cycles. They contain valuable information about the hydrological behavior of permeable pavements and urban subsurface heat anomalies. Due to the lack of similar data, we are convinced that the dataset is of great scientific value.
Michael Stoelzle, Tobias Schuetz, Markus Weiler, Kerstin Stahl, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 849–867, https://doi.org/10.5194/hess-24-849-2020, https://doi.org/10.5194/hess-24-849-2020, 2020
Short summary
Short summary
During dry weather, different delayed sources of runoff (e.g. from groundwater, wetlands or snowmelt) modulate the magnitude and variability of streamflow. Hydrograph separation methods often do not distinguish these delayed contributions and mostly pool them into only two components (i.e. quickflow and baseflow). We propose a method that uncovers multiple components and demonstrates how they better reflect streamflow generation processes of different flow regimes.
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024, https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Short summary
The new process-based hydrological toolbox model, RoGeR (https://roger.readthedocs.io/), can be used to estimate the components of the hydrological cycle and the related travel times of pollutants through parts of the hydrological cycle. These estimations may contribute to effective water resources management. This paper presents the toolbox concept and provides a simple example of providing estimations to water resources management.
Jonas Pyschik, Stefan Seeger, Barbara Herbstritt, and Markus Weiler
EGUsphere, https://doi.org/10.5194/egusphere-2024-528, https://doi.org/10.5194/egusphere-2024-528, 2024
Short summary
Short summary
We developed a device which automates the analysis process of stable water isotopes. Stable water isotopes are a natural tracer which many researchers use to investigate water (re-)distribution processes in environmental systems. The device helps to analyse such environmental samples by automating a formerly tidious manual labor process, alowwing for a higher sample throughput. This enables larger sampling campaigns, since more samples can be processed before reaching their limited storage time.
Barbara Herbstritt, Benjamin Gralher, Stefan Seeger, Michael Rinderer, and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023, https://doi.org/10.5194/hess-27-3701-2023, 2023
Short summary
Short summary
We present a method to collect water vapor samples into bags in the field without an in-field analyser, followed by isotope analysis in the lab. This new method resolves even fine-scaled natural isotope variations. It combines low-cost and lightweight components for maximum spatial and temporal flexibility regarding environmental setups. Hence, it allows for sampling even in terrains that are rather difficult to access, enabling future extended isotope datasets in soil sciences and ecohydrology.
Stefan Seeger and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3393–3404, https://doi.org/10.5194/hess-27-3393-2023, https://doi.org/10.5194/hess-27-3393-2023, 2023
Short summary
Short summary
This study proposes a low-budget method to quantify the radial distribution of water transport velocities within trees at a high spatial resolution. We observed a wide spread of water transport velocities within a tree stem section, which were on average 3 times faster than the flux velocity. The distribution of transport velocities has implications for studies that use water isotopic signatures to study root water uptake and usually assume uniform or even implicitly infinite velocities.
Andreas Hänsler and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 5069–5084, https://doi.org/10.5194/hess-26-5069-2022, https://doi.org/10.5194/hess-26-5069-2022, 2022
Short summary
Short summary
Spatially explicit quantification of design storms is essential for flood risk assessment and planning. However, available datasets are mainly based on spatially interpolated station-based design storms. Since the spatial interpolation of the data inherits a large potential for uncertainty, we develop an approach to be able to derive spatially explicit design storms on the basis of weather radar data. We find that our approach leads to an improved spatial representation of design storms.
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci., 26, 4953–4974, https://doi.org/10.5194/hess-26-4953-2022, https://doi.org/10.5194/hess-26-4953-2022, 2022
Short summary
Short summary
Analyzing the impact of soil age and rainfall intensity on vertical subsurface flow paths in calcareous soils, with a special focus on preferential flow occurrence, shows how water flow paths are linked to the organization of evolving landscapes. The observed increase in preferential flow occurrence with increasing moraine age provides important but rare data for a proper representation of hydrological processes within the feedback cycle of the hydro-pedo-geomorphological system.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022, https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Short summary
This study is analyses how characteristics of precipitation events and soil moisture and temperature dynamics during these events can be used to model the associated streamflow responses in intermittent streams. The models are used to identify differences between the dominant controls of streamflow intermittency in three distinct geologies of the Attert catchment, Luxembourg. Overall, soil moisture was found to be the most important control of intermittent streamflow in all geologies.
Benjamin Gralher, Barbara Herbstritt, and Markus Weiler
Hydrol. Earth Syst. Sci., 25, 5219–5235, https://doi.org/10.5194/hess-25-5219-2021, https://doi.org/10.5194/hess-25-5219-2021, 2021
Short summary
Short summary
We scrutinized the quickest currently available method for stable isotope analysis of matrix-bound water. Simulating common procedures, we demonstrated the limits of certain materials currently used and identified a reliable and cost-efficient alternative. Further, we calculated the optimum proportions of important protocol aspects critical for precise and accurate analyses. Our unifying protocol suggestions increase data quality and comparability as well as the method's general applicability.
Jan Greiwe, Markus Weiler, and Jens Lange
Biogeosciences, 18, 4705–4715, https://doi.org/10.5194/bg-18-4705-2021, https://doi.org/10.5194/bg-18-4705-2021, 2021
Short summary
Short summary
We analyzed variability in diel nitrate patterns at three locations in a lowland stream. Comparison of time lags between monitoring sites with water travel time indicated that diel patterns were created by in-stream processes rather than transported downstream from an upstream point of origin. Most of the patterns (70 %) could be explained by assimilatory nitrate uptake. The remaining patterns suggest seasonally varying dominance and synchronicity of different biochemical processes.
Stefan Seeger and Markus Weiler
Biogeosciences, 18, 4603–4627, https://doi.org/10.5194/bg-18-4603-2021, https://doi.org/10.5194/bg-18-4603-2021, 2021
Short summary
Short summary
We developed a setup for fully automated in situ measurements of stable water isotopes in soil and the stems of fully grown trees. We used this setup in a 12-week field campaign to monitor the propagation of a labelling pulse from the soil up to a stem height of 8 m.
We could observe trees shifting their main water uptake depths multiple times, depending on water availability.
The gained knowledge about the temporal dynamics can help to improve water uptake models and future study designs.
Andreas Hänsler and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-366, https://doi.org/10.5194/hess-2021-366, 2021
Manuscript not accepted for further review
Short summary
Short summary
Spatially explicit quantification on design storms are essential for flood risk assessment. However this information can be only achieved from substantially long records of rainfall measurements, usually only available for a few stations. Hence, design storms estimates from these few stations are then spatially interpolated leading to a major source of uncertainty. Therefore we defined a methodology to extend spatially explicit weather radar data to be used for the estimation of design storms.
Anne Hartmann, Markus Weiler, Konrad Greinwald, and Theresa Blume
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-242, https://doi.org/10.5194/hess-2021-242, 2021
Manuscript not accepted for further review
Short summary
Short summary
Our field observation-based examination of flow path evolution, soil formation and vegetation succession across ten millennia on calcareous parent material shows how water flow paths and subsurface water storage are linked to the organization of evolving landscapes. We provide important but rare data and observations for a proper handling of hydrologic processes and their role within the feedback cycle of the hydro-pedo-geomorphological system.
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Geosci. Model Dev., 14, 2127–2142, https://doi.org/10.5194/gmd-14-2127-2021, https://doi.org/10.5194/gmd-14-2127-2021, 2021
Short summary
Short summary
This paper presents FluSM, an algorithm to derive the water balance from soil moisture and metrological measurements. This data-driven water balance framework uses soil moisture as an input and therefore is applicable for cases with unclear processes and lacking parameters. In a case study, we apply FluSM to derive the water balance of 15 different permeable pavements under field conditions. These findings are of special interest for urban hydrology.
Robin Schwemmle, Dominic Demand, and Markus Weiler
Hydrol. Earth Syst. Sci., 25, 2187–2198, https://doi.org/10.5194/hess-25-2187-2021, https://doi.org/10.5194/hess-25-2187-2021, 2021
Short summary
Short summary
A better understanding of the reasons why model performance is unsatisfying represents a crucial part for meaningful model evaluation. We propose the novel diagnostic efficiency (DE) measure and diagnostic polar plots. The proposed evaluation approach provides a diagnostic tool for model developers and model users and facilitates interpretation of model performance.
Michael Rinderer, Jaane Krüger, Friederike Lang, Heike Puhlmann, and Markus Weiler
Biogeosciences, 18, 1009–1027, https://doi.org/10.5194/bg-18-1009-2021, https://doi.org/10.5194/bg-18-1009-2021, 2021
Short summary
Short summary
We quantified the lateral and vertical subsurface flow (SSF) and P concentrations of three beech forest plots with contrasting soil properties during sprinkling experiments. Vertical SSF was 2 orders of magnitude larger than lateral SSF, and both consisted mainly of pre-event water. P concentrations in SSF were high during the first 1 to 2 h (nutrient flushing) but nearly constant thereafter. This suggests that P in the soil solution was replenished fast by mineral or organic sources.
Merle Koelbing, Tobias Schuetz, and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-24, https://doi.org/10.5194/hess-2021-24, 2021
Revised manuscript not accepted
Short summary
Short summary
Based on a unique and comprehensive data set of urban micro-meteorological variables, which were observed with a mobile climate station, we developed a new method to transfer mesoscale reference potential evapotranspiration to the urban microscale in street canyons. Our findings can be transferred easily to existing urban hydrologic models to improve modelling results with a more precise estimate of potential evapotranspiration on street level.
Anne Hartmann, Markus Weiler, and Theresa Blume
Earth Syst. Sci. Data, 12, 3189–3204, https://doi.org/10.5194/essd-12-3189-2020, https://doi.org/10.5194/essd-12-3189-2020, 2020
Short summary
Short summary
Our analysis of soil physical and hydraulic properties across two soil chronosequences of 10 millennia in the Swiss Alps provides important observation of the evolution of soil hydraulic behavior. A strong co-evolution of soil physical and hydraulic properties was revealed by the observed change of fast-draining coarse-textured soils to slow-draining soils with a high water-holding capacity in correlation with a distinct change in structural properties and organic matter content.
Daniel Beiter, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 24, 5713–5744, https://doi.org/10.5194/hess-24-5713-2020, https://doi.org/10.5194/hess-24-5713-2020, 2020
Short summary
Short summary
We investigated the interactions between streams and their adjacent hillslopes in terms of water flow. It could be revealed that soil structure has a strong influence on how hillslopes connect to the streams, while the groundwater table tells us a lot about when the two connect. This observation could be used to improve models that try to predict whether or not hillslopes are in a state where a rain event will be likely to produce a flood in the stream.
Maria Staudinger, Stefan Seeger, Barbara Herbstritt, Michael Stoelzle, Jan Seibert, Kerstin Stahl, and Markus Weiler
Earth Syst. Sci. Data, 12, 3057–3066, https://doi.org/10.5194/essd-12-3057-2020, https://doi.org/10.5194/essd-12-3057-2020, 2020
Short summary
Short summary
The data set CH-IRP provides isotope composition in precipitation and streamflow from 23 Swiss catchments, being unique regarding its long-term multi-catchment coverage along an alpine–pre-alpine gradient. CH-IRP contains fortnightly time series of stable water isotopes from streamflow grab samples complemented by time series in precipitation. Sampling conditions, catchment and climate information, lab standards and errors are provided together with areal precipitation and catchment boundaries.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 24, 5453–5472, https://doi.org/10.5194/hess-24-5453-2020, https://doi.org/10.5194/hess-24-5453-2020, 2020
Short summary
Short summary
In recent decades the demand for detailed information of spatial and temporal dynamics of the stream network has grown in the fields of eco-hydrology and extreme flow prediction. We use temporal streamflow intermittency data obtained at various sites using innovative sensing technology as well as spatial predictors to predict and map probabilities of streamflow intermittency. This approach has the potential to provide intermittency maps for hydrological modelling and management practices.
Michael Stoelzle, Maria Staudinger, Kerstin Stahl, and Markus Weiler
Proc. IAHS, 383, 43–50, https://doi.org/10.5194/piahs-383-43-2020, https://doi.org/10.5194/piahs-383-43-2020, 2020
Short summary
Short summary
The role of recharge and catchment storage is crucial to understand streamflow drought sensitivity. Here we introduce a model experiment with recharge stress tests as complement to climate scenarios to quantify the streamflow drought sensitivities of catchments in Switzerland. We identified a pre-drought period of 12 months as maximum storage-memory for the study catchments. From stress testing, we found up to 200 days longer summer streamflow droughts and minimum flow reductions of 50 %–80 %.
Anne Hartmann, Ekaterina Semenova, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 24, 3271–3288, https://doi.org/10.5194/hess-24-3271-2020, https://doi.org/10.5194/hess-24-3271-2020, 2020
Short summary
Short summary
Our field observation-based examination of flow path evolution, soil formation, and vegetation succession across 10 millennia shows how water flow paths and subsurface water storage are linked to the organization of evolving landscapes.
The increase found in water storage and preferential flow paths with increasing soil age shows the effect of the complex interaction of vegetation and soil development on flow paths, water balance, and runoff formation during landscape evolution.
Mirko Mälicke, Sibylle K. Hassler, Theresa Blume, Markus Weiler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 24, 2633–2653, https://doi.org/10.5194/hess-24-2633-2020, https://doi.org/10.5194/hess-24-2633-2020, 2020
Short summary
Short summary
We could show that distributed soil moisture time series bear a considerable amount of information about dynamic changes in soil moisture. We developed a new method to describe spatial patterns and analyze their persistency. By combining uncertainty propagation with information theory, we were able to calculate the information content of spatial similarity with respect to measurement uncertainty. This does help to understand when and why the soil is drying in an organized manner.
Axel Schaffitel, Tobias Schuetz, and Markus Weiler
Earth Syst. Sci. Data, 12, 501–517, https://doi.org/10.5194/essd-12-501-2020, https://doi.org/10.5194/essd-12-501-2020, 2020
Short summary
Short summary
This paper contains detailed information about the instrumentation of permeable pavements with soil moisture sensors and the performance of infiltration experiments on these surfaces. The collected data are beneficial for studying urban water and energy cycles. They contain valuable information about the hydrological behavior of permeable pavements and urban subsurface heat anomalies. Due to the lack of similar data, we are convinced that the dataset is of great scientific value.
Michael Stoelzle, Tobias Schuetz, Markus Weiler, Kerstin Stahl, and Lena M. Tallaksen
Hydrol. Earth Syst. Sci., 24, 849–867, https://doi.org/10.5194/hess-24-849-2020, https://doi.org/10.5194/hess-24-849-2020, 2020
Short summary
Short summary
During dry weather, different delayed sources of runoff (e.g. from groundwater, wetlands or snowmelt) modulate the magnitude and variability of streamflow. Hydrograph separation methods often do not distinguish these delayed contributions and mostly pool them into only two components (i.e. quickflow and baseflow). We propose a method that uncovers multiple components and demonstrates how they better reflect streamflow generation processes of different flow regimes.
Fabian Ries, Lara Kirn, and Markus Weiler
Earth Syst. Sci. Data, 12, 245–255, https://doi.org/10.5194/essd-12-245-2020, https://doi.org/10.5194/essd-12-245-2020, 2020
Short summary
Short summary
Pluvial or flash floods generated by heavy precipitation events cause large economic damage and loss of life worldwide. As discharge observations from such extreme occurrences are rare, data from artificial sprinkling experiments offer valuable information on runoff generation processes, overland and subsurface flow rates, and response times. A extensive data set from 132 large-scale sprinkling experiments in Germany is described and presented in this paper.
Dominic Demand, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 23, 4869–4889, https://doi.org/10.5194/hess-23-4869-2019, https://doi.org/10.5194/hess-23-4869-2019, 2019
Short summary
Short summary
This study presents an analysis of 135 soil moisture profiles for identification of the spatial and temporal preferential flow occurrence in a complex landscape. Especially dry conditions and high rainfall intensities were found to increase preferential flow occurrence in soils. This results in a seasonal pattern of preferential flow with a higher occurrence in summer. During this time grasslands showed increased flow velocities, whereas forest sites exhibited a higher amount of bypass flow.
Nils Hinrich Kaplan, Ernestine Sohrt, Theresa Blume, and Markus Weiler
Earth Syst. Sci. Data, 11, 1363–1374, https://doi.org/10.5194/essd-11-1363-2019, https://doi.org/10.5194/essd-11-1363-2019, 2019
Short summary
Short summary
Different sensing techniques including time-lapse imagery, electric conductivity and stage measurements were used to generate a combined dataset of the presence and absence of streamflow within a large number of nested sub-catchments in the Attert catchment, Luxembourg. The first sites of observation were established in 2013 and successively extended to a total number of 182 in 2016. The dataset can be used to improve understanding of the temporal and spatial dynamics of the stream network.
Barbara Herbstritt, Benjamin Gralher, and Markus Weiler
Hydrol. Earth Syst. Sci., 23, 3007–3019, https://doi.org/10.5194/hess-23-3007-2019, https://doi.org/10.5194/hess-23-3007-2019, 2019
Short summary
Short summary
We describe a novel technique for the precise, quasi real-time observation of water-stable isotopes in gross precipitation and throughfall from tree canopies in parallel. Various processes (e.g. rainfall intensity, evapotranspiration, exchange with ambient vapour) thereby control throughfall intensity and isotopic composition. The achieved temporal resolution now competes with common meteorological measurements, thus enabling new ways to employ water-stable isotopes in forested catchments.
Jobin Joseph, Christoph Külls, Matthias Arend, Marcus Schaub, Frank Hagedorn, Arthur Gessler, and Markus Weiler
SOIL, 5, 49–62, https://doi.org/10.5194/soil-5-49-2019, https://doi.org/10.5194/soil-5-49-2019, 2019
Short summary
Short summary
By coupling an OA-ICOS with hydrophobic but gas-permeable membranes placed at different depths in acidic and calcareous soils, we investigated the contribution of abiotic and biotic components to total soil CO2 release. In calcareous Gleysol, CO2 originating from carbonate dissolution contributed to total soil CO2 concentration at detectable degrees, probably due to CO2 evasion from groundwater. Inward diffusion of atmospheric CO2 was found to be pronounced in the topsoil layers at both sites.
Mirko Mälicke, Sibylle K. Hassler, Markus Weiler, Theresa Blume, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-396, https://doi.org/10.5194/hess-2018-396, 2018
Manuscript not accepted for further review
Short summary
Short summary
In this study we use time dependent variograms to identify periods of organized soil moisture during drying. We could identify emerging spatial patterns which imply periods of terrestrial control on soil moisture organization. The coupling of time dependent variograms with density based clustering is a new approach to detect similarity in spatial patterns. The presented method is useful to describe states of organization and improve kriging workflows by extending their prerequisites.
Jana von Freyberg, Scott T. Allen, Stefan Seeger, Markus Weiler, and James W. Kirchner
Hydrol. Earth Syst. Sci., 22, 3841–3861, https://doi.org/10.5194/hess-22-3841-2018, https://doi.org/10.5194/hess-22-3841-2018, 2018
Short summary
Short summary
We explored how the fraction of streamflow younger than ca. 3 months (Fyw) varies with landscape characteristics and climatic forcing, using an extensive isotope data set from 22 Swiss catchments. Overall, Fyw tends to be larger when catchments are wet and discharge is correspondingly higher, indicating an increase in the proportional contribution of faster flow paths at higher flows. We quantify this
discharge sensitivityof Fyw and relate it to the dominant streamflow-generating mechanisms.
Natalie Orlowski, Lutz Breuer, Nicolas Angeli, Pascal Boeckx, Christophe Brumbt, Craig S. Cook, Maren Dubbert, Jens Dyckmans, Barbora Gallagher, Benjamin Gralher, Barbara Herbstritt, Pedro Hervé-Fernández, Christophe Hissler, Paul Koeniger, Arnaud Legout, Chandelle Joan Macdonald, Carlos Oyarzún, Regine Redelstein, Christof Seidler, Rolf Siegwolf, Christine Stumpp, Simon Thomsen, Markus Weiler, Christiane Werner, and Jeffrey J. McDonnell
Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, https://doi.org/10.5194/hess-22-3619-2018, 2018
Short summary
Short summary
To extract water from soils for isotopic analysis, cryogenic water extraction is the most widely used removal technique. This work presents results from a worldwide laboratory intercomparison test of cryogenic extraction systems. Our results showed large differences in retrieved isotopic signatures among participating laboratories linked to interactions between soil type and properties, system setup, extraction efficiency, extraction system leaks, and each lab’s internal accuracy.
Jakob Sohrt, Heike Puhlmann, and Markus Weiler
SOIL Discuss., https://doi.org/10.5194/soil-2018-13, https://doi.org/10.5194/soil-2018-13, 2018
Revised manuscript not accepted
Short summary
Short summary
We sampled concentrations of phosphorus (P) in laterally flowing water in the organic layer of three beech forest sites. Sampling frequency was in the range to minutes to ours with the intent of capturing short term variability of this parameter and the underlying mechanisms, which were analyzed with a modeling approach. While site affiliation was found to be a strong influence on P concentrations in lateral flow, some universal effects – like antecedent soil moisture – could also be determined.
Daphné Freudiger, David Mennekes, Jan Seibert, and Markus Weiler
Earth Syst. Sci. Data, 10, 805–814, https://doi.org/10.5194/essd-10-805-2018, https://doi.org/10.5194/essd-10-805-2018, 2018
Short summary
Short summary
To understand glacier changes in the Swiss Alps at the large scale, long-term datasets are needed. To fill the gap between the existing glacier inventories of the Swiss Alps between 1850 and 1973, we digitized glacier outlines from topographic historical maps of Switzerland for the time periods ca. 1900 and ca. 1935. We found that > 88 % of the digitized glacier area was plausible compared to four inventories. The presented dataset is therefore valuable information for long-term glacier studies.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Biogeosciences, 15, 2177–2188, https://doi.org/10.5194/bg-15-2177-2018, https://doi.org/10.5194/bg-15-2177-2018, 2018
Short summary
Short summary
We studied the diel fluctuations of dissolved organic carbon (DOC) concentrations in a small stream in Luxembourg. We identified an increased proportion of DOC from terrestrial sources as responsible for the peaks in DOC in the afternoon. Warmer water temperatures in the riparian zone in the afternoon increased the amount of water flowing towards the stream. Consequently, an increased amount of DOC-rich water from the riparian zone was entering the stream.
Jan Seibert, Marc J. P. Vis, Irene Kohn, Markus Weiler, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 22, 2211–2224, https://doi.org/10.5194/hess-22-2211-2018, https://doi.org/10.5194/hess-22-2211-2018, 2018
Short summary
Short summary
In many glacio-hydrological models glacier areas are assumed to be constant over time, which is a crucial limitation. Here we describe a novel approach to translate mass balances as simulated by the (glacio)hydrological model into glacier area changes. We combined the Δh approach of Huss et al. (2010) with the bucket-type model HBV and introduced a lookup table approach, which also allows periods with advancing glaciers to be represented, which is not possible with the original Huss method.
Sibylle Kathrin Hassler, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 22, 13–30, https://doi.org/10.5194/hess-22-13-2018, https://doi.org/10.5194/hess-22-13-2018, 2018
Short summary
Short summary
We use sap velocity measurements from 61 trees on 132 days to gain knowledge about the controls of landscape-scale transpiration, distinguishing tree-, stand- and site-specific controls on sap velocity and sap flow patterns and examining their dynamics during the vegetation period. Our results show that these patterns are not exclusively determined by tree characteristics. Thus, including site characteristics such as geology and aspect could be beneficial for modelling or management purposes.
Willem J. van Verseveld, Holly R. Barnard, Chris B. Graham, Jeffrey J. McDonnell, J. Renée Brooks, and Markus Weiler
Hydrol. Earth Syst. Sci., 21, 5891–5910, https://doi.org/10.5194/hess-21-5891-2017, https://doi.org/10.5194/hess-21-5891-2017, 2017
Short summary
Short summary
How stream water responds immediately to a rainfall or snow event, while the average time it takes water to travel through the hillslope can be years or decades and is poorly understood. We assessed this difference by combining a 24-day sprinkler experiment (a tracer was applied at the start) with a process-based hydrologic model. Immobile soil water, deep groundwater contribution and soil depth variability explained this difference at our hillslope site.
Michael P. Schwab, Julian Klaus, Laurent Pfister, and Markus Weiler
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-416, https://doi.org/10.5194/hess-2017-416, 2017
Revised manuscript not accepted
Lisa Angermann, Conrad Jackisch, Niklas Allroggen, Matthias Sprenger, Erwin Zehe, Jens Tronicke, Markus Weiler, and Theresa Blume
Hydrol. Earth Syst. Sci., 21, 3727–3748, https://doi.org/10.5194/hess-21-3727-2017, https://doi.org/10.5194/hess-21-3727-2017, 2017
Short summary
Short summary
This study investigates the temporal dynamics and response velocities of lateral preferential flow at the hillslope. The results are compared to catchment response behavior to infer the large-scale implications of the observed processes. A large portion of mobile water flows through preferential flow paths in the structured soils, causing an immediate discharge response. The study presents a methodological approach to cover the spatial and temporal domain of these highly heterogeneous processes.
Conrad Jackisch, Lisa Angermann, Niklas Allroggen, Matthias Sprenger, Theresa Blume, Jens Tronicke, and Erwin Zehe
Hydrol. Earth Syst. Sci., 21, 3749–3775, https://doi.org/10.5194/hess-21-3749-2017, https://doi.org/10.5194/hess-21-3749-2017, 2017
Short summary
Short summary
Rapid subsurface flow in structured soils facilitates fast vertical and lateral redistribution of event water. We present its in situ exploration through local measurements and irrigation experiments. Special emphasis is given to a coherent combination of hydrological and geophysical methods. The study highlights that form and function operate as conjugated pairs. Dynamic imaging through time-lapse GPR was key to observing both and to identifying hydrologically relevant structures.
Rémi Dupas, Jordy Salmon-Monviola, Keith J. Beven, Patrick Durand, Philip M. Haygarth, Michael J. Hollaway, and Chantal Gascuel-Odoux
Hydrol. Earth Syst. Sci., 20, 4819–4835, https://doi.org/10.5194/hess-20-4819-2016, https://doi.org/10.5194/hess-20-4819-2016, 2016
Short summary
Short summary
We developed a parsimonious topography-based hydrologic model coupled with a soil biogeochemistry sub-model in order to improve understanding and prediction of soluble reactive phosphorus (SRP) transfer in agricultural headwater catchments. The modelling approach includes an analysis of the information contained in the calibration data and propagation of uncertainty in model predictions using a GLUE "limits of acceptability" framework.
Maik Renner, Sibylle K. Hassler, Theresa Blume, Markus Weiler, Anke Hildebrandt, Marcus Guderle, Stanislaus J. Schymanski, and Axel Kleidon
Hydrol. Earth Syst. Sci., 20, 2063–2083, https://doi.org/10.5194/hess-20-2063-2016, https://doi.org/10.5194/hess-20-2063-2016, 2016
Short summary
Short summary
We estimated forest transpiration (European beech) along a steep valley cross section. Atmospheric demand, obtained by the thermodynamic limit of maximum power, is the dominant control of transpiration at all sites.
To our surprise we find that transpiration is rather similar across sites with different aspect (north vs. south) and different stand structure due to systematically varying sap velocities. Such a compensation effect is highly relevant for modeling and upscaling of transpiration.
Katharina F. Gimbel, Heike Puhlmann, and Markus Weiler
Hydrol. Earth Syst. Sci., 20, 1301–1317, https://doi.org/10.5194/hess-20-1301-2016, https://doi.org/10.5194/hess-20-1301-2016, 2016
Short summary
Short summary
It is usually assumed that soil properties are not affected by drought events. We used dye tracer experiments to test this assumption on six forest soils, which were forced into drought conditions. The results of this study show clear evidence for changes in infiltration pathways. In addition, most soils developed soil water repellency. Overall, the results suggest that the past climatic conditions are more important than the actual soil moisture status regarding hydrophobicity and infiltration.
A. Hartmann, J. Kobler, M. Kralik, T. Dirnböck, F. Humer, and M. Weiler
Biogeosciences, 13, 159–174, https://doi.org/10.5194/bg-13-159-2016, https://doi.org/10.5194/bg-13-159-2016, 2016
Short summary
Short summary
We consider the time period before and after a wind disturbance in an Austrian karst system. Using a process-based flow and solute transport simulation model we estimate impacts on DIN and DOC. We show that DIN increases for several years, while DOC remains within its pre-disturbance variability. Simulated transit times indicate that impact passes through the hydrological system within some months but with a small fraction exceeding transit times of even a year.
M. Sprenger, T. H. M. Volkmann, T. Blume, and M. Weiler
Hydrol. Earth Syst. Sci., 19, 2617–2635, https://doi.org/10.5194/hess-19-2617-2015, https://doi.org/10.5194/hess-19-2617-2015, 2015
Short summary
Short summary
We present a novel approach that includes information about the pore water stable isotopic composition in inverse model approaches to estimate soil hydraulic parameters. Different approaches are presented and their adequacy regarding the model efficiency, realism and parameter identifiability are discussed. The advantages of the new approach are shown by an application of the inverse estimated parameters to infer the water balance and the transit time for three different study sites.
M. Staudinger, M. Weiler, and J. Seibert
Hydrol. Earth Syst. Sci., 19, 1371–1384, https://doi.org/10.5194/hess-19-1371-2015, https://doi.org/10.5194/hess-19-1371-2015, 2015
K. F. Gimbel, K. Felsmann, M. Baudis, H. Puhlmann, A. Gessler, H. Bruelheide, Z. Kayler, R. H. Ellerbrock, A. Ulrich, E. Welk, and M. Weiler
Biogeosciences, 12, 961–975, https://doi.org/10.5194/bg-12-961-2015, https://doi.org/10.5194/bg-12-961-2015, 2015
Short summary
Short summary
This paper introduces a novel rainfall reduction experiment to investigate drought effects on soil-forest-understory-ecosystems. An annual drought with a return period of 40 years was imposed, while other ecosystem variables (humidity, air & soil temperature) remained unaffected. The first year of drought showed considerable changes in soil moisture dynamics, which affected leaf stomatal conductance of understory species as well as evapotranspiration rates of the forest understory ecosystem.
O. Fovet, L. Ruiz, M. Hrachowitz, M. Faucheux, and C. Gascuel-Odoux
Hydrol. Earth Syst. Sci., 19, 105–123, https://doi.org/10.5194/hess-19-105-2015, https://doi.org/10.5194/hess-19-105-2015, 2015
Short summary
Short summary
We studied the annual hysteretic patterns observed between stream flow and water storage in the saturated and unsaturated zones of a hillslope and a riparian zone. We described these signatures using a hysteresis index and then used this to assess conceptual hydrological models. This led us to identify four hydrological periods and a clearly distinct behaviour between riparian and hillslope groundwaters and to provide new information about the model performances.
S. Ferrant, S. Gascoin, A. Veloso, J. Salmon-Monviola, M. Claverie, V. Rivalland, G. Dedieu, V. Demarez, E. Ceschia, J.-L. Probst, P. Durand, and V. Bustillo
Hydrol. Earth Syst. Sci., 18, 5219–5237, https://doi.org/10.5194/hess-18-5219-2014, https://doi.org/10.5194/hess-18-5219-2014, 2014
Short summary
Short summary
A set of high spatial and temporal satellite images have been used to spatially calibrate crop growth within an agro-hydrological model dedicated to nitrogen contamination of stream water. This type of spatial calibration greatly improved the simulation of nitrogen plant uptake and better constrained nutrient fluxes in the river. This is an example of the benefit of the forthcoming Sentinel-2 high resolution optical image series that will be acquired every 4/5 days over continental surfaces.
S. Seeger and M. Weiler
Hydrol. Earth Syst. Sci., 18, 4751–4771, https://doi.org/10.5194/hess-18-4751-2014, https://doi.org/10.5194/hess-18-4751-2014, 2014
E. Zehe, U. Ehret, L. Pfister, T. Blume, B. Schröder, M. Westhoff, C. Jackisch, S. J. Schymanski, M. Weiler, K. Schulz, N. Allroggen, J. Tronicke, L. van Schaik, P. Dietrich, U. Scherer, J. Eccard, V. Wulfmeyer, and A. Kleidon
Hydrol. Earth Syst. Sci., 18, 4635–4655, https://doi.org/10.5194/hess-18-4635-2014, https://doi.org/10.5194/hess-18-4635-2014, 2014
J. Schwerdtfeger, M. S. Johnson, E. G. Couto, R. S. S. Amorim, L. Sanches, J. H. Campelo Jr., and M. Weiler
Hydrol. Earth Syst. Sci., 18, 4407–4422, https://doi.org/10.5194/hess-18-4407-2014, https://doi.org/10.5194/hess-18-4407-2014, 2014
B. Merz, J. Aerts, K. Arnbjerg-Nielsen, M. Baldi, A. Becker, A. Bichet, G. Blöschl, L. M. Bouwer, A. Brauer, F. Cioffi, J. M. Delgado, M. Gocht, F. Guzzetti, S. Harrigan, K. Hirschboeck, C. Kilsby, W. Kron, H.-H. Kwon, U. Lall, R. Merz, K. Nissen, P. Salvatti, T. Swierczynski, U. Ulbrich, A. Viglione, P. J. Ward, M. Weiler, B. Wilhelm, and M. Nied
Nat. Hazards Earth Syst. Sci., 14, 1921–1942, https://doi.org/10.5194/nhess-14-1921-2014, https://doi.org/10.5194/nhess-14-1921-2014, 2014
D. Freudiger, I. Kohn, K. Stahl, and M. Weiler
Hydrol. Earth Syst. Sci., 18, 2695–2709, https://doi.org/10.5194/hess-18-2695-2014, https://doi.org/10.5194/hess-18-2695-2014, 2014
R. S. Smith, R. D. Moore, M. Weiler, and G. Jost
Hydrol. Earth Syst. Sci., 18, 1835–1856, https://doi.org/10.5194/hess-18-1835-2014, https://doi.org/10.5194/hess-18-1835-2014, 2014
T. H. M. Volkmann and M. Weiler
Hydrol. Earth Syst. Sci., 18, 1819–1833, https://doi.org/10.5194/hess-18-1819-2014, https://doi.org/10.5194/hess-18-1819-2014, 2014
M. Gassmann, C. Stamm, O. Olsson, J. Lange, K. Kümmerer, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 5213–5228, https://doi.org/10.5194/hess-17-5213-2013, https://doi.org/10.5194/hess-17-5213-2013, 2013
A. Hartmann, M. Weiler, T. Wagener, J. Lange, M. Kralik, F. Humer, N. Mizyed, A. Rimmer, J. A. Barberá, B. Andreo, C. Butscher, and P. Huggenberger
Hydrol. Earth Syst. Sci., 17, 3305–3321, https://doi.org/10.5194/hess-17-3305-2013, https://doi.org/10.5194/hess-17-3305-2013, 2013
N. Dietermann and M. Weiler
Hydrol. Earth Syst. Sci., 17, 2657–2668, https://doi.org/10.5194/hess-17-2657-2013, https://doi.org/10.5194/hess-17-2657-2013, 2013
J. Garvelmann, S. Pohl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 1415–1429, https://doi.org/10.5194/hess-17-1415-2013, https://doi.org/10.5194/hess-17-1415-2013, 2013
M. Stoelzle, K. Stahl, and M. Weiler
Hydrol. Earth Syst. Sci., 17, 817–828, https://doi.org/10.5194/hess-17-817-2013, https://doi.org/10.5194/hess-17-817-2013, 2013
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Theory development
Root zone in the Earth system
Soil water sources and their implications for vegetation restoration in the Three-Rivers Headwater Region during different ablation periods
Biocrust-reduced soil water retention and soil infiltration in an alpine Kobresia meadow
The natural abundance of stable water isotopes method may overestimate deep-layer soil water use by trees
Contribution of cryosphere to runoff in the transition zone between the Tibetan Plateau and arid region based on environmental isotopes
Vegetation optimality explains the convergence of catchments on the Budyko curve
Differential response of plant transpiration to uptake of rainwater-recharged soil water for dominant tree species in the semiarid Loess Plateau
Isotopic offsets between bulk plant water and its sources are larger in cool and wet environments
Hydrology without dimensions
Long-term climate-influenced land cover change in discontinuous permafrost peatland complexes
Groundwater fauna in an urban area – natural or affected?
Age and origin of leaf wax n-alkanes in fluvial sediment–paleosol sequences and implications for paleoenvironmental reconstructions
Seasonal partitioning of precipitation between streamflow and evapotranspiration, inferred from end-member splitting analysis
The influence of litter crusts on soil properties and hydrological processes in a sandy ecosystem
Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest
A synthesis of three decades of hydrological research at Scotty Creek, NWT, Canada
Potential evaporation at eddy-covariance sites across the globe
Scaling properties reveal regulation of river flows in the Amazon through a “forest reservoir”
Water movement through plant roots – exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties
Large-scale vegetation responses to terrestrial moisture storage changes
Vegetation dynamics and climate seasonality jointly control the interannual catchment water balance in the Loess Plateau under the Budyko framework
Leaf-scale experiments reveal an important omission in the Penman–Monteith equation
The Budyko functions under non-steady-state conditions
Matching the Budyko functions with the complementary evaporation relationship: consequences for the drying power of the air and the Priestley–Taylor coefficient
Hydrological recovery in two large forested watersheds of southeastern China: the importance of watershed properties in determining hydrological responses to reforestation
The socioecohydrology of rainwater harvesting in India: understanding water storage and release dynamics across spatial scales
Impacts of beaver dams on hydrologic and temperature regimes in a mountain stream
Estimation of crop water requirements: extending the one-step approach to dual crop coefficients
Technical Note: On the Matt–Shuttleworth approach to estimate crop water requirements
Horizontal soil water potential heterogeneity: simplifying approaches for crop water dynamics models
Hurricane impacts on a pair of coastal forested watersheds: implications of selective hurricane damage to forest structure and streamflow dynamics
Regional and local patterns in depth to water table, hydrochemistry and peat properties of bogs and their laggs in coastal British Columbia
Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China
A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach
Training hydrologists to be ecohydrologists and play a leading role in environmental problem solving
Thermodynamic constraints on effective energy and mass transfer and catchment function
Can we predict groundwater discharge from terrestrial ecosystems using existing eco-hydrological concepts?
Macroinvertebrate community responses to a dewatering disturbance gradient in a restored stream
Mechanisms of vegetation uprooting by flow in alluvial non-cohesive sediment
Forest decline caused by high soil water conditions in a permafrost region
Hongkai Gao, Markus Hrachowitz, Lan Wang-Erlandsson, Fabrizio Fenicia, Qiaojuan Xi, Jianyang Xia, Wei Shao, Ge Sun, and Hubert Savenije
EGUsphere, https://doi.org/10.5194/egusphere-2024-332, https://doi.org/10.5194/egusphere-2024-332, 2024
Short summary
Short summary
The concept of root zone is widely used, but still lacks a precise definition. Moreover, its importance in Earth system science is not well elaborated. Here, we clarified its definition with several similar terms, to bridge the multi-disciplinary gap. We underscore the key role of root zone in Earth system, which links biosphere, hydrosphere, lithosphere, atmosphere, and anthroposphere. To better represent root zone, we advocate a paradigm shift towards ecosystem-centered modelling.
Zongxing Li, Juan Gui, Qiao Cui, Jian Xue, Fa Du, and Lanping Si
Hydrol. Earth Syst. Sci., 28, 719–734, https://doi.org/10.5194/hess-28-719-2024, https://doi.org/10.5194/hess-28-719-2024, 2024
Short summary
Short summary
Precipitation, ground ice, and snow meltwater accounted for approximately 72 %, 20 %, and 8 % of soil water during the early ablation period. Snow is completely melted in the heavy ablation period and the end of the ablation period, and precipitation contributed about 90 % and 94 % of soil water, respectively. These recharges also vary markedly with altitude and vegetation type.
Licong Dai, Ruiyu Fu, Xiaowei Guo, Yangong Du, Guangmin Cao, Huakun Zhou, and Zhongmin Hu
Hydrol. Earth Syst. Sci., 27, 4247–4256, https://doi.org/10.5194/hess-27-4247-2023, https://doi.org/10.5194/hess-27-4247-2023, 2023
Short summary
Short summary
We found that, in the 0–30 cm soil layer, soil water retention and soil water content in normal Kobresia meadow (NM) were higher than those in biocrust meadow (BM), whereas the 30–40 cm layer's soil water retention and soil water content in NM were lower than those in BM. The topsoil infiltration rate in BM was lower than that in NM. Our findings revealed that the establishment of biocrust did not improve soil water retention and infiltration.
Shaofei Wang, Xiaodong Gao, Min Yang, Gaopeng Huo, Xiaolin Song, Kadambot H. M. Siddique, Pute Wu, and Xining Zhao
Hydrol. Earth Syst. Sci., 27, 123–137, https://doi.org/10.5194/hess-27-123-2023, https://doi.org/10.5194/hess-27-123-2023, 2023
Short summary
Short summary
Water uptake depth of 11-year-old apple trees reached 300 cm in the blossom and young fruit stage and only 100 cm in the fruit swelling stage, while 17-year-old trees always consumed water from 0–320 cm soil layers. Overall, the natural abundance of stable water isotopes method overestimated the contribution of deep soil water, especially in the 320–500 cm soils. Our findings highlight that determining the occurrence of root water uptake in deep soils helps to quantify trees' water use strategy.
Juan Gui, Zongxing Li, Qi Feng, Qiao Cui, and Jian Xue
Hydrol. Earth Syst. Sci., 27, 97–122, https://doi.org/10.5194/hess-27-97-2023, https://doi.org/10.5194/hess-27-97-2023, 2023
Short summary
Short summary
As the transition zone between the Tibetan Plateau and the arid region, the Qilian Mountains are important ecological barriers and source regions of inland rivers in northwest China. In recent decades, drastic changes in the cryosphere have had a significant impact on the quantity and formation process of water resources in the Qilian Mountains. The mountain runoff of the Qilian Mountains mainly comes from the cryosphere belt, which contributes to approximately 80 % runoff.
Remko C. Nijzink and Stanislaus J. Schymanski
Hydrol. Earth Syst. Sci., 26, 6289–6309, https://doi.org/10.5194/hess-26-6289-2022, https://doi.org/10.5194/hess-26-6289-2022, 2022
Short summary
Short summary
Most catchments plot close to the empirical Budyko curve, which allows for estimating the long-term mean annual evaporation and runoff. We found that a model that optimizes vegetation properties in response to changes in precipitation leads it to converge to a single curve. In contrast, models that assume no changes in vegetation start to deviate from a single curve. This implies that vegetation has a stabilizing role, bringing catchments back to equilibrium after changes in climate.
Yakun Tang, Lina Wang, Yongqiang Yu, and Dongxu Lu
Hydrol. Earth Syst. Sci., 26, 4995–5013, https://doi.org/10.5194/hess-26-4995-2022, https://doi.org/10.5194/hess-26-4995-2022, 2022
Short summary
Short summary
Whether rainwater-recharged soil water (RRS) uptake can increase plant transpiration after rainfall pulses requires investigation. Our results indicate a differential response of plant transpiration to RRS uptake. Mixed afforestation enhances these water relationships and decreases soil water source competition in deep soil. Our results suggest that plant species or plantation types that can enhance RRS uptake and reduce water competition should be considered for use in water-limited regions.
Javier de la Casa, Adrià Barbeta, Asun Rodríguez-Uña, Lisa Wingate, Jérôme Ogée, and Teresa E. Gimeno
Hydrol. Earth Syst. Sci., 26, 4125–4146, https://doi.org/10.5194/hess-26-4125-2022, https://doi.org/10.5194/hess-26-4125-2022, 2022
Short summary
Short summary
Recently, studies have been reporting mismatches in the water isotopic composition of plants and soils. In this work, we reviewed worldwide isotopic composition data of field and laboratory studies to see if the mismatch is generalised, and we found it to be true. This contradicts theoretical expectations and may underlie an non-described phenomenon that should be forward investigated and implemented in ecohydrological models to avoid erroneous estimations of water sources used by vegetation.
Amilcare Porporato
Hydrol. Earth Syst. Sci., 26, 355–374, https://doi.org/10.5194/hess-26-355-2022, https://doi.org/10.5194/hess-26-355-2022, 2022
Short summary
Short summary
Applying dimensional analysis to the partitioning of water and soil on terrestrial landscapes reveals their dominant environmental controls. We discuss how the dryness index and the storage index affect the long-term rainfall partitioning, the key nonlinear control of the dryness index in global datasets of weathering rates, and the existence of new macroscopic relations among average variables in landscape evolution statistics with tantalizing analogies with turbulent fluctuations.
Olivia Carpino, Kristine Haynes, Ryan Connon, James Craig, Élise Devoie, and William Quinton
Hydrol. Earth Syst. Sci., 25, 3301–3317, https://doi.org/10.5194/hess-25-3301-2021, https://doi.org/10.5194/hess-25-3301-2021, 2021
Short summary
Short summary
This study demonstrates how climate warming in peatland-dominated regions of discontinuous permafrost is changing the form and function of the landscape. Key insights into the rates and patterns of such changes in the coming decades are provided through careful identification of land cover transitional stages and characterization of the hydrological and energy balance regimes for each stage.
Fabien Koch, Kathrin Menberg, Svenja Schweikert, Cornelia Spengler, Hans Jürgen Hahn, and Philipp Blum
Hydrol. Earth Syst. Sci., 25, 3053–3070, https://doi.org/10.5194/hess-25-3053-2021, https://doi.org/10.5194/hess-25-3053-2021, 2021
Short summary
Short summary
In this study, we address the question of whether groundwater fauna in an urban area is natural or affected in comparison to forested land. We find noticeable differences in the spatial distribution of groundwater species and abiotic parameters. An ecological assessment reveals that conditions in the urban area are mainly not good. Yet, there is no clear spatial pattern in terms of land use and anthropogenic impacts. These are significant findings for conservation and usage of urban groundwater.
Marcel Bliedtner, Hans von Suchodoletz, Imke Schäfer, Caroline Welte, Gary Salazar, Sönke Szidat, Mischa Haas, Nathalie Dubois, and Roland Zech
Hydrol. Earth Syst. Sci., 24, 2105–2120, https://doi.org/10.5194/hess-24-2105-2020, https://doi.org/10.5194/hess-24-2105-2020, 2020
Short summary
Short summary
This study investigates the age and origin of leaf wax n-alkanes from a fluvial sediment–paleosol sequence (FSPS) by compound-class 14C dating. Our results show varying age offsets between the formation and sedimentation of leaf wax n-alkanes from well-developed (paleo)soils and fluvial sediments that are mostly due to their complex origin in such sequences. Thus, dating the leaf wax n-alkanes is an important step for more robust leaf-wax-based paleoenvironmental reconstructions in FSPSs.
James W. Kirchner and Scott T. Allen
Hydrol. Earth Syst. Sci., 24, 17–39, https://doi.org/10.5194/hess-24-17-2020, https://doi.org/10.5194/hess-24-17-2020, 2020
Short summary
Short summary
Perhaps the oldest question in hydrology is
Where does water go when it rains?. Here we present a new way to measure how the terrestrial water cycle partitions precipitation into its two ultimate fates:
green waterthat is evaporated or transpired back to the atmosphere and
blue waterthat is discharged to stream channels. Our analysis may help in gauging the vulnerability of both water resources and terrestrial ecosystems to changes in rainfall patterns.
Yu Liu, Zeng Cui, Ze Huang, Hai-Tao Miao, and Gao-Lin Wu
Hydrol. Earth Syst. Sci., 23, 2481–2490, https://doi.org/10.5194/hess-23-2481-2019, https://doi.org/10.5194/hess-23-2481-2019, 2019
Short summary
Short summary
We focus on the positive effects of litter crusts on soil water holding capacity and water interception capacity compared with biocrusts. Litter crusts can significantly improve sandy water content and organic matter. Water-holding capacity increased with development of litter crusts in the sandy interface. Water infiltration rate is increased by sandy and litter crusts' interface properties. Litter crusts provided a better microhabitat conducive to plant growth in sandy lands.
Adrià Barbeta, Sam P. Jones, Laura Clavé, Lisa Wingate, Teresa E. Gimeno, Bastien Fréjaville, Steve Wohl, and Jérôme Ogée
Hydrol. Earth Syst. Sci., 23, 2129–2146, https://doi.org/10.5194/hess-23-2129-2019, https://doi.org/10.5194/hess-23-2129-2019, 2019
Short summary
Short summary
Plant water sources of a beech riparian forest were monitored using stable isotopes. Isotopic fractionation during root water uptake is usually neglected but may be more common than previously accepted. Xylem water was always more depleted in δ2H than all sources considered, suggesting isotopic discrimination during water uptake or within plant tissues. Thus, the identification and quantification of tree water sources was affected. Still, oxygen isotopes were a good tracer of plant source water.
William Quinton, Aaron Berg, Michael Braverman, Olivia Carpino, Laura Chasmer, Ryan Connon, James Craig, Élise Devoie, Masaki Hayashi, Kristine Haynes, David Olefeldt, Alain Pietroniro, Fereidoun Rezanezhad, Robert Schincariol, and Oliver Sonnentag
Hydrol. Earth Syst. Sci., 23, 2015–2039, https://doi.org/10.5194/hess-23-2015-2019, https://doi.org/10.5194/hess-23-2015-2019, 2019
Short summary
Short summary
This paper synthesizes nearly three decades of eco-hydrological field and modelling studies at Scotty Creek, Northwest Territories, Canada, highlighting the key insights into the major water flux and storage processes operating within and between the major land cover types of this wetland-dominated region of discontinuous permafrost. It also examines the rate and pattern of permafrost-thaw-induced land cover change and how such changes will affect the hydrology and water resources of the region.
Wouter H. Maes, Pierre Gentine, Niko E. C. Verhoest, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 23, 925–948, https://doi.org/10.5194/hess-23-925-2019, https://doi.org/10.5194/hess-23-925-2019, 2019
Short summary
Short summary
Potential evaporation (Ep) is the amount of water an ecosystem would consume if it were not limited by water availability or other stress factors. In this study, we compared several methods to estimate Ep using a global dataset of 107 FLUXNET sites. A simple radiation-driven method calibrated per biome consistently outperformed more complex approaches and makes a suitable tool to investigate the impact of water use and demand, drought severity and biome productivity.
Juan Fernando Salazar, Juan Camilo Villegas, Angela María Rendón, Estiven Rodríguez, Isabel Hoyos, Daniel Mercado-Bettín, and Germán Poveda
Hydrol. Earth Syst. Sci., 22, 1735–1748, https://doi.org/10.5194/hess-22-1735-2018, https://doi.org/10.5194/hess-22-1735-2018, 2018
Short summary
Short summary
River flow regimes are being altered by global change. Understanding the mechanisms behind such alterations is crucial for hydrological prediction. We introduce a novel interpretation of river flow metrics (scaling) that allows any river basin to be classified as regulated or unregulated, and to identify transitions between these states. We propose the
forest reservoirhypothesis to explain how forest loss can force the Amazonian river basins from regulated to unregulated states.
Félicien Meunier, Valentin Couvreur, Xavier Draye, Mohsen Zarebanadkouki, Jan Vanderborght, and Mathieu Javaux
Hydrol. Earth Syst. Sci., 21, 6519–6540, https://doi.org/10.5194/hess-21-6519-2017, https://doi.org/10.5194/hess-21-6519-2017, 2017
Short summary
Short summary
To maintain its yield, a plant needs to transpire water that it acquires from the soil. A deep understanding of the mechanisms that lead to water uptake location and intensity is required to correctly simulate the water transfer in the soil to the atmosphere. This work presents novel and general solutions of the water flow equation in roots with varying hydraulic properties that deeply affect the uptake pattern and the transpiration rate and can be used in ecohydrological models.
Robert L. Andrew, Huade Guan, and Okke Batelaan
Hydrol. Earth Syst. Sci., 21, 4469–4478, https://doi.org/10.5194/hess-21-4469-2017, https://doi.org/10.5194/hess-21-4469-2017, 2017
Short summary
Short summary
In this study we statistically analyse the relationship between vegetation cover and components of total water storage. Splitting water storage into different components allows for a more comprehensive understanding of the temporal response of vegetation to changes in water storage. Generally, vegetation appears to be more sensitive to interannual changes in water storage than to shorter changes, though this varies in different land use types.
Tingting Ning, Zhi Li, and Wenzhao Liu
Hydrol. Earth Syst. Sci., 21, 1515–1526, https://doi.org/10.5194/hess-21-1515-2017, https://doi.org/10.5194/hess-21-1515-2017, 2017
Short summary
Short summary
The relationship between controlling parameters of annual catchment water balance and climate seasonality (S) and vegetation coverage (M) was discussed under the Budyko framework and an empirical equation was further developed so that the contributions from M to actual evapotranspiration (ET) could be determined more accurately. The results showed that the effects of landscape condition changes to ET variation will be estimated with a large error if the impacts of S are ignored.
Stanislaus J. Schymanski and Dani Or
Hydrol. Earth Syst. Sci., 21, 685–706, https://doi.org/10.5194/hess-21-685-2017, https://doi.org/10.5194/hess-21-685-2017, 2017
Short summary
Short summary
Most of the rain falling on land is returned to the atmosphere by plant leaves, which release water vapour (transpire) through tiny pores. To better understand this process, we used artificial leaves in a special wind tunnel and discovered major problems with an established approach (PM equation) widely used to quantify transpiration and its sensitivity to climate change. We present an improved set of equations, consistent with experiments and displaying more realistic climate sensitivity.
Roger Moussa and Jean-Paul Lhomme
Hydrol. Earth Syst. Sci., 20, 4867–4879, https://doi.org/10.5194/hess-20-4867-2016, https://doi.org/10.5194/hess-20-4867-2016, 2016
Short summary
Short summary
A new physically based formulation is proposed to extend the Budyko framework under non-steady-state conditions, taking into account the change in water storage. The new formulation, which introduces an additional parameter, represents a generic framework applicable to any Budyko function at various time steps. It is compared to other formulations from the literature and the analytical solution of Greve et al. (2016) appears to be a particular case.
Jean-Paul Lhomme and Roger Moussa
Hydrol. Earth Syst. Sci., 20, 4857–4865, https://doi.org/10.5194/hess-20-4857-2016, https://doi.org/10.5194/hess-20-4857-2016, 2016
Short summary
Short summary
The Budyko functions are matched with the complementary evaporation relationship. We show that there is a functional dependence between the Budyko functions and the drying power of the air. Examining the case where potential evaporation is calculated by means of a Priestley–Taylor type equation with a varying coefficient, we show that this coefficient should have a specified value as a function of the Budyko shape parameter and the aridity index.
Wenfei Liu, Xiaohua Wei, Qiang Li, Houbao Fan, Honglang Duan, Jianping Wu, Krysta Giles-Hansen, and Hao Zhang
Hydrol. Earth Syst. Sci., 20, 4747–4756, https://doi.org/10.5194/hess-20-4747-2016, https://doi.org/10.5194/hess-20-4747-2016, 2016
Short summary
Short summary
In recent decades, limited research has been conducted to examine the role of watershed properties in hydrological responses in large watersheds. Based on pair-wise comparisons, we conclude that reforestation decreased high flows but increased low flows in the watersheds studied. Hydrological recovery through reforestation is largely dependent on watershed properties when forest change and climate are similar and comparable. This finding has important implications for designing reforestation.
Kimberly J. Van Meter, Michael Steiff, Daniel L. McLaughlin, and Nandita B. Basu
Hydrol. Earth Syst. Sci., 20, 2629–2647, https://doi.org/10.5194/hess-20-2629-2016, https://doi.org/10.5194/hess-20-2629-2016, 2016
Short summary
Short summary
Although village-scale rainwater harvesting (RWH) structures have been used for millennia in India, many of these structures have fallen into disrepair due to increased dependence on groundwater. This dependence has contributed to declines in groundwater resources, and in turn to efforts to revive older RWH systems. In the present study, we use field data to quantify water fluxes in a cascade of irrigation tanks to better our understanding of the impact of RWH systems on the water balance in con
M. Majerova, B. T. Neilson, N. M. Schmadel, J. M. Wheaton, and C. J. Snow
Hydrol. Earth Syst. Sci., 19, 3541–3556, https://doi.org/10.5194/hess-19-3541-2015, https://doi.org/10.5194/hess-19-3541-2015, 2015
Short summary
Short summary
This study quantifies the impacts of beaver on hydrologic and temperature regimes, as well as highlights the importance of understanding the spatial and temporal scales of those impacts.
Reach-scale discharge showed shift from losing to gaining. Temperature increased by 0.38°C (3.8%) and mean residence time by 230%. At the sub-reach scale, discharge gains and losses increased in variability. At the beaver dam scale, we observed increase in thermal heterogeneity with warmer and cooler niches.
J. P. Lhomme, N. Boudhina, M. M. Masmoudi, and A. Chehbouni
Hydrol. Earth Syst. Sci., 19, 3287–3299, https://doi.org/10.5194/hess-19-3287-2015, https://doi.org/10.5194/hess-19-3287-2015, 2015
J. P. Lhomme, N. Boudhina, and M. M. Masmoudi
Hydrol. Earth Syst. Sci., 18, 4341–4348, https://doi.org/10.5194/hess-18-4341-2014, https://doi.org/10.5194/hess-18-4341-2014, 2014
V. Couvreur, J. Vanderborght, L. Beff, and M. Javaux
Hydrol. Earth Syst. Sci., 18, 1723–1743, https://doi.org/10.5194/hess-18-1723-2014, https://doi.org/10.5194/hess-18-1723-2014, 2014
A. D. Jayakaran, T. M. Williams, H. Ssegane, D. M. Amatya, B. Song, and C. C. Trettin
Hydrol. Earth Syst. Sci., 18, 1151–1164, https://doi.org/10.5194/hess-18-1151-2014, https://doi.org/10.5194/hess-18-1151-2014, 2014
S. A. Howie and H. J. van Meerveld
Hydrol. Earth Syst. Sci., 17, 3421–3435, https://doi.org/10.5194/hess-17-3421-2013, https://doi.org/10.5194/hess-17-3421-2013, 2013
X. Cui, S. Liu, and X. Wei
Hydrol. Earth Syst. Sci., 16, 4279–4290, https://doi.org/10.5194/hess-16-4279-2012, https://doi.org/10.5194/hess-16-4279-2012, 2012
V. Couvreur, J. Vanderborght, and M. Javaux
Hydrol. Earth Syst. Sci., 16, 2957–2971, https://doi.org/10.5194/hess-16-2957-2012, https://doi.org/10.5194/hess-16-2957-2012, 2012
M. E. McClain, L. Chícharo, N. Fohrer, M. Gaviño Novillo, W. Windhorst, and M. Zalewski
Hydrol. Earth Syst. Sci., 16, 1685–1696, https://doi.org/10.5194/hess-16-1685-2012, https://doi.org/10.5194/hess-16-1685-2012, 2012
C. Rasmussen
Hydrol. Earth Syst. Sci., 16, 725–739, https://doi.org/10.5194/hess-16-725-2012, https://doi.org/10.5194/hess-16-725-2012, 2012
A. P. O'Grady, J. L. Carter, and J. Bruce
Hydrol. Earth Syst. Sci., 15, 3731–3739, https://doi.org/10.5194/hess-15-3731-2011, https://doi.org/10.5194/hess-15-3731-2011, 2011
J. D. Muehlbauer, M. W. Doyle, and E. S. Bernhardt
Hydrol. Earth Syst. Sci., 15, 1771–1783, https://doi.org/10.5194/hess-15-1771-2011, https://doi.org/10.5194/hess-15-1771-2011, 2011
K. Edmaier, P. Burlando, and P. Perona
Hydrol. Earth Syst. Sci., 15, 1615–1627, https://doi.org/10.5194/hess-15-1615-2011, https://doi.org/10.5194/hess-15-1615-2011, 2011
H. Iwasaki, H. Saito, K. Kuwao, T. C. Maximov, and S. Hasegawa
Hydrol. Earth Syst. Sci., 14, 301–307, https://doi.org/10.5194/hess-14-301-2010, https://doi.org/10.5194/hess-14-301-2010, 2010
Cited articles
Alexander, R. B., Böhlke, J. K., Boyer, E. W., David, M. B., Harvey, J.
W., Mulholland, P. J., Seitzinger, S. P., Tobias, C. R., Tonitto, C., and
Wollheim, W. M.: Dynamic modeling of nitrogen losses in river networks
unravels the coupled effects of hydrological and biogeochemical processes,
Biogeochemistry, 93, 91–116, https://doi.org/10.1007/s10533-008-9274-8, 2009.
Aquilina, L., Vergnaud-Ayraud, V., Labasque, T., Bour, O., Molénat, J.,
Ruiz, L., de Montety, V., De Ridder, J., Roques, C., and Longuevergne, L.:
Nitrate dynamics in agricultural catchments deduced from groundwater dating
and long-term nitrate monitoring in surface and groundwaters, Sci. Total
Environ., 435–436, 167–178, https://doi.org/10.1016/j.scitotenv.2012.06.028, 2012.
Basu, N. B., Destouni, G., Jawitz, J. W., Thompson, S. E., Loukinova, N. V,
Darracq, A., Zanardo, S., Yaeger, M., Sivapalan, M., Rinaldo, A., and Rao, P.
S. C.: Nutrient loads exported from managed catchments reveal emergent
biogeochemical stationarity, Geophys. Res. Lett., 37, L23404, https://doi.org/10.1029/2010gl045168, 2010.
Basu, N. B., Rao, P. S. C., Thompson, S. E., Loukinova, N. V., Donner, S. D.,
Ye, S., and Sivapalan, M.: Spatiotemporal averaging of in-stream solute
removal dynamics, Water Resour. Res., 47, W00J06, https://doi.org/10.1029/2010wr010196, 2011.
Bernhardt, E. S., Hall Jr., R. O., and Likens, G. E.: Whole-system estimates of
nitrification and nitrate uptake in streams of the Hubbard Brook
Exp. Forest. Ecosyst., 5, 419–430, https://doi.org/10.1007/s10021-002-0179-4, 2002.
Binley, A., Ullah, S., Heathwaite, A. L., Heppell, C., Byrne, P., Lansdown,
K., Trimmer, M., and Zhang, H.: Revealing the spatial variability of water
fluxes at the groundwater-surface water interface, Water Resour. Res.,
49, 3978–3992, https://doi.org/10.1002/wrcr.20214, 2013.
Bormann, F. and Likens, G.: Nutrient cycling, Science, available at:
http://biology.duke.edu/upe302/pdffiles/Emily_BormannLikens1967.pdf
(last access: 22 May 2014), 1967.
Botter, G. and Rinaldo, A.: Scale effect on geomorphologic and kinematic
dispersion, Water Resour. Res., 39, 1286, https://doi.org/10.1029/2003WR002154, 2003.
Bowes, M. J., Jarvie, H. P., Naden, P. S., Old, G. H., Scarlett, P. M.,
Roberts, C., Armstrong, L. K., Harman, S. A., Wickham, H. D., and Collins, A.
L.: Identifying priorities for nutrient mitigation using river
concentration-flow relationships: the Thames basin, UK, J. Hydrol.,
517, 1–12, https://doi.org/10.1016/j.jhydrol.2014.03.063, 2014.
Briggs, M. A., Lautz, L. K., and Hare, D. K.: Residence time control on hot
moments of net nitrate production and uptake in the hyporheic zone, Hydrol.
Process., 28.11, 3741–3751, https://doi.org/10.1002/hyp.9921, 2013.
Buchanan, B., Easton, Z. M., Schneider, R. L., and Walter, M. T.: Modeling
the hydrologic effects of roadside ditch networks on receiving waters, J.
Hydrol., 486, 293–305, https://doi.org/10.1016/j.jhydrol.2013.01.040, 2013.
Bukaveckas, P. A.: Effects of channel restoration on water velocity,
transient storage, and nutrient uptake in a channelized stream, Environ.
Sci. Technol., 41, 1570–1576, https://doi.org/10.1021/es061618x, 2007.
Burgin, A. J. and Hamilton, S. K.: Have we overemphasized the role of
denitrification in aquatic ecosystems? A review of nitrate removal pathways,
Front. Ecol. Environ., 5, 89–96, 2007.
Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley,
A. N., and Smith, V. H.: Nonpoint pollution of surface waters with phosphorus
and nitrogen, Ecol. Appl., 8, 559–568, 1998.
Covino, T., McGlynn, B., and McNamara, R.: Land use/land cover and scale
influences on in-stream nitrogen uptake kinetics, J. Geophys. Res.-Biogeo.,
117, G02006, https://doi.org/10.1029/2011jg001874, 2012.
Donner, S. D., Coe, M. T., Lenters, J. D., Twine, T. E., and Foley, J. A.:
Modeling the impact of hydrological changes on nitrate transport in the
Mississippi River Basin from 1955 to 1994, Global Biogeochem. Cy,, 16,
16-1–16-19, https://doi.org/10.1029/2001GB001396, 2002.
Dupas, R., Curie, F., Gascuel-Odoux, C., Moatar, F., Delmas, M., Parnaudeau,
V., and Durand, P.: Assessing N emissions in surface water at the national
level: comparison of country-wide vs. regionalized models, Sci. Total
Environ., 443, 152–162, https://doi.org/10.1016/j.scitotenv.2012.10.011, 2013.
Fellows, C. S., Valett, H. M., Dahm, C. N., Mulholland, P. J., and Thomas, S.
A.: Coupling Nutrient Uptake and Energy Flow in Headwater Streams,
Ecosystems, 9, 788–804, https://doi.org/10.1007/s10021-006-0005-5, 2006.
Flewelling, S. A., Hornberger, G. M., Herman, J. S., Mills, A. L., and
Robertson, W. M.: Diel patterns in coastal-stream nitrate concentrations
linked to evapotranspiration in the riparian zone of a low-relief,
agricultural catchment, Hydrol. Process., 28, 2150–2158, https://doi.org/10.1002/hyp.9763, 2014.
Gassmann, M., Lange, J., and Schuetz, T.: Erosion modelling designed for
water quality simulation, Ecohydrology, 5.3, 269–278, https://doi.org/10.1002/eco.207, 2011.
Genereux, D.: Quantifying uncertainty in tracer-based hydrograph
separations, Water Resour. Res., 34, 915–919, https://doi.org/10.1029/98wr00010, 1998.
Guan, K., Thompson, S. E., Harman, C. J., Basu, N. B., Rao, P. S. C.,
Sivapalan, M., Packman, A. I., and Kalita, P. K.: Spatiotemporal scaling of
hydrological and agrochemical export dynamics in a tile-drained Midwestern
watershed, Water Resour. Res., 47, W00J02, https://doi.org/10.1029/2010wr009997, 2011.
Haggerty, R., Ribot, M., Singer, G. A., Martí, E., Argerich, A., Agell,
G., and Battin, T. J.: Ecosystem respiration increases with biofilm growth
and bedforms: Flume measurements with resazurin, J. Geophys. Res.-Biogeo.,
119, 2220–2230, https://doi.org/10.1002/2013JG002498, 2014.
Hall, R. J. O. and Tank, J. L.: Ecosystem metabolism controls nitrogen
uptake in streams in Grand Teton National Park, Wyoming, Limnol. Oceanogr.,
48, 1120–1128, https://doi.org/10.4319/lo.2003.48.3.1120, 2003.
Harvey, J. W., Böhlke, J. K., Voytek, M. A., Scott, D., and Tobias, C.
R.: Hyporheic zone denitrification: Controls on effective reaction depth and
contribution to whole-stream mass balance, Water Resour. Res., 49, 6298–6316,
https://doi.org/10.1002/wrcr.20492, 2013.
Hensley, R. T., Cohen, M. J., and Korhnak, L. V.: Hydraulic effects on
nitrogen removal in a tidal spring-fed river, Water Resour. Res., 51.3, 1443–1456,
https://doi.org/10.1002/2014WR016178, 2015.
Hill, A. R.: Nitrate Removal in Stream Riparian Zones, J. Environ. Qual.,
25, 743–755, https://doi.org/10.2134/jeq1996.00472425002500040014x, 1996.
Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha,
K., Downing, J. A., Elmgren, R., Caraco, N., Jordan, T., Berendse, F.,
Freney, J., Kudeyarov, V., Murdoch, P., and Zhao-Liang, Z.: Regional nitrogen
budgets and riverine N & P fluxes for the drainages to the North Atlantic
Ocean: Natural and human influences, Biogeochemistry, 35, 75–139, https://doi.org/10.1007/978-94-009-1776-7, 1996.
Huang, H., Chen, D., Zhang, B., Zeng, L., and Dahlgren, R. A.: Modeling and
forecasting riverine dissolved inorganic nitrogen export using anthropogenic
nitrogen inputs, hydroclimate, and land-use change, J. Hydrol., 517,
95–104, https://doi.org/10.1016/j.jhydrol.2014.05.024, 2014.
Hunsaker, C. T. and Levine, D. A.: Hierarchical Approaches to the Study of
Water Quality in Rivers, Bioscience, 45, 193–203, https://doi.org/10.2307/1312558, 1995.
Isaak, D. J., Peterson, E. E., Ver Hoef, J. M., Wenger, S. J., Falke, J. A.,
Torgersen, C. E., Sowder, C., Steel, E. A., Fortin, M.-J., Jordan, C. E.,
Ruesch, A. S., Som, N., and Monestiez, P.: Applications of spatial
statistical network models to stream data, Wiley Interdiscip. Rev. Water,
1, 277–294, https://doi.org/10.1002/wat2.1023, 2014.
Johnes, P. J.: Evaluation and management of the impact of land use change on
the nitrogen and phosphorus load delivered to surface waters: the export
coefficient modelling approach, J. Hydrol., 183, 323–349, https://doi.org/10.1016/0022-1694(95)02951-6, 1996.
Kiel, B. A. and Cardenas, B. M.: Lateral hyporheic exchange throughout the
Mississippi River network, Nat. Geosci., 7, 413–417, https://doi.org/10.1038/ngeo2157, 2014.
Krause, S., Blume, T., and Cassidy, N. J.: Investigating patterns and
controls of groundwater up-welling in a lowland river by combining
Fibre-optic Distributed Temperature Sensing with observations of vertical
hydraulic gradients, Hydrol. Earth Syst. Sci., 16, 1775–1792, https://doi.org/10.5194/hess-16-1775-2012, 2012.
Lam, Q. D., Schmalz, B., and Fohrer, N.: Assessing the spatial and temporal
variations of water quality in lowland areas, Northern Germany, J. Hydrol.,
438–439, 137–147, https://doi.org/10.1016/j.jhydrol.2012.03.011, 2012.
Lewandowski, J. and Nützmann, G.: Nutrient retention and release in a
floodplain's aquifer and in the hyporheic zone of a lowland river, Ecol.
Eng., 36, 1156–1166, https://doi.org/10.1016/j.ecoleng.2010.01.005, 2010.
Likens, G. E. and Bormann, F. H.: Linkages between terrestrial and aquatic
ecosystems, Bioscience, 24, 447–456, 1974.
Lomas, M. W. and Glibert, P. M.: Temperature regulation of nitrate uptake: A
novel hypothesis about nitrate uptake and reduction in cool-water diatoms,
Limnol. Oceanogr., 44, 556–572, https://doi.org/10.4319/lo.1999.44.3.0556, 1999.
Luft, G., Morgenschweis, G., and Vogelbacher, A.: Influence of large-scale
changes of relief on runoff characteristics and their consequences for flood-control
design, in: Scientific procedures applied to the planning, design and management
of water resources systems, edited by: Plate, E. and Buras, N., Hamburg, 1985.
Mallard, J., McGlynn, B. and Covino, T.: Lateral inflows,
stream–groundwater exchange, and network geometry influence stream water
composition, Water Resour. Res., 50.6, 4603–4623, https://doi.org/10.1002/2013wr014944, 2014.
Marwick, T. R., Tamooh, F., Ogwoka, B., Teodoru, C., Borges, A. V.,
Darchambeau, F., and Bouillon, S.: Dynamic seasonal nitrogen cycling in
response to anthropogenic N loading in a tropical catchment,
Athi–Galana–Sabaki River, Kenya, Biogeosciences, 11, 443–460, https://doi.org/10.5194/bg-11-443-2014, 2014.
McCarty, G. W., Hapeman, C. J., Rice, C. P., Hively, W. D., McConnell, L.
L., Sadeghi, A. M., Lang, M. W., Whitall, D. R., Bialek, K. and Downey, P.:
Metolachlor metabolite (MESA) reveals agricultural nitrate-N fate and
transport in Choptank River watershed, Sci. Total Environ., 473–474,
473–482, https://doi.org/10.1016/j.scitotenv.2013.12.017, 2014.
Mitchell, M. J., Driscoll, C. T., Kahl, J. S., Murdoch, P. S., and Pardo, L.
H.: Climatic Control of Nitrate Loss from Forested Watersheds in the
Northeast United States, Environ. Sci. Technol., 30, 2609–2612, https://doi.org/10.1021/es9600237, 1996.
Molenat, J., Gascuel-Odoux, C., Ruiz, L., and Gruau, G.: Role of water table
dynamics on stream nitrate export and concentration in agricultural
headwater catchment (France), J. Hydrol., 348, 363–378, https://doi.org/10.1016/j.jhydrol.2007.10.005, 2008.
Montreuil, O., Merot, P., and Marmonier, P.: Estimation of nitrate removal by
riparian wetlands and streams in agricultural catchments: effect of
discharge and stream order, Freshw. Biol., 55, 2305–2318, https://doi.org/10.1111/j.1365-2427.2010.02439.x, 2010.
Moore, I. D. and Foster, G. R.: Hydraulics and overland flow,
in: Process studies in hillslope hydrology, Vol. 539, edited by:
Anderson, M. G. and Burt, T. P., Wiley, Chichester, 1990.
Moore, R. D.: Slug injection using salt in solution, in: Streamline Watershed
Management Bulletin 8.2, 1–6, 2005.
Mulholland, P. J., Helton, A. M., Poole, G. C., Hall, R. O., Hamilton, S.
K., Peterson, B. J., Tank, J. L., Ashkenas, L. R., Cooper, L. W., Dahm, C.
N., Dodds, W. K., Findlay, S. E. G., Gregory, S. V, Grimm, N. B., Johnson,
S. L., McDowell, W. H., Meyer, J. L., Valett, H. M., Webster, J. R., Arango,
C. P., Beaulieu, J. J., Bernot, M. J., Burgin, A. J., Crenshaw, C. L.,
Johnson, L. T., Niederlehner, B. R., O'Brien, J. M., Potter, J. D.,
Sheibley, R. W., Sobota, D. J., and Thomas, S. M.: Stream denitrification
across biomes and its response to anthropogenic nitrate loading, Nature,
452, 202–205, 2008.
Payn, R. A., Gooseff, M. N., McGlynn, B. L., Bencala, K. E., and Wondzell, S.
M.: Exploring changes in the spatial distribution of stream baseflow
generation during a seasonal recession, Water Resour. Res., 48, W04519,
https://doi.org/10.1029/2011wr011552, 2012.
Poff, N., Bledsoe, B., and Cuhaciyan, C.: Hydrologic variation with land use
across the contiguous United States: geomorphic and ecological consequences
for stream ecosystems, Geomorphology, 79, 264–285, https://doi.org/10.1016/j.geomorph.2006.06.032, 2006.
Ranalli, A. J. and Macalady, D. L.: The importance of the riparian zone and
in-stream processes in nitrate attenuation in undisturbed and agricultural
watersheds–A review of the scientific literature, J. Hydrol., 389, 406–415, 2010.
Ruiz, L., Abiven, S., Martin, C., Durand, P., Beaujouan, V., and Molénat,
J.: Effect on nitrate concentration in stream water of agricultural
practices in small catchments in Brittany: II. Temporal variations and
mixing processes, Hydrol. Earth Syst. Sci., 6, 507–514, https://doi.org/10.5194/hess-6-507-2002, 2002.
Schilling, K. E., Li, Z., and Zhang, Y.-K.: Groundwater–surface water
interaction in the riparian zone of an incised channel, Walnut Creek, Iowa,
J. Hydrol., 327, 140–150, https://doi.org/10.1016/j.jhydrol.2005.11.014, 2006.
Schilling, K. and Zhang, Y.-K.: Baseflow contribution to nitrate-nitrogen
export from a large, agricultural watershed, USA, J. Hydrol., 295, 305–316,
https://doi.org/10.1016/j.jhydrol.2004.03.010, 2004.
Schneider, V. R. and Arcement, G. J.: Guide for Selecting Manning's Roughness
Coefficients for Natural Channels and Flood Plains, Water-Supply Paper 2339,
available from the US Geological Survey, Books and Open-File Reports Section,
Federal Center, Denver, CO, 1989.
Schuetz, T. and Weiler, M.: Quantification of localized groundwater inflow
into streams using ground-based infrared thermography, Geophys. Res. Lett.,
38, L03401, https://doi.org/10.1029/2010gl046198, 2011.
Smethurst, P. J., Petrone, K. C., Langergraber, G., Baillie, C. C.,
Worledge, D., and Nash, D.: Nitrate dynamics in a rural headwater catchment:
measurements and modelling, Hydrol. Process., 28, 1820–1834, https://doi.org/10.1002/hyp.9709, 2014.
Stream Solute Workshop: Concepts and Methods for Assessing Solute Dynamics
in Stream Ecosystems, J. N. Am. Benthol. Soc., 9, 95–119, https://doi.org/10.2307/1467445, 1990.
Tesoriero, A. J., Duff, J. H., Saad, D. A., Spahr, N. E., and Wolock, D. M.:
Vulnerability of Streams to Legacy Nitrate Sources, Environ. Sci. Technol.,
47, 3623–3629, https://doi.org/10.1021/es305026x, 2013.
Thompson, S. E., Basu, N. B., Lascurain Jr., J., Aubeneau, A., and Rao, P.
S. C.: Relative dominance of hydrologic versus biogeochemical factors on
solute export across impact gradients, Water Resour. Res., 47, W00J05,
https://doi.org/10.1029/2010wr009605, 2011.
Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W., and
Bencala, K. E.: Retention and transport of nutrients in a third-order stream
in northwestern California: hyporheic processes, Ecology, 1893–1905, 1989.
Vogt, E., Braban, C. F., Dragosits, U., Durand, P., Sutton, M. A., Theobald,
M. R., Rees, R. M., McDonald, C., Murray, S., and Billett, M. F.: Catchment
land use effects on fluxes and concentrations of organic and inorganic
nitrogen in streams, Agr. Ecosyst. Environ., 199, 320–332, https://doi.org/10.1016/j.agee.2014.10.010, 2015.
Wagenschein, D. and Rode, M.: Modelling the impact of river morphology on
nitrogen retention – A case study of the Weisse Elster River (Germany),
Ecol. Modell., 211, 224–232, https://doi.org/10.1016/j.ecolmodel.2007.09.009, 2008.
Windolf, J., Thodsen, H., Troldborg, L., Larsen, S. E., Bøgestrand, J.,
Ovesen, N. B., and Kronvang, B.: A distributed modelling system for
simulation of monthly runoff and nitrogen sources, loads and sinks for
ungauged catchments in Denmark, J. Environ. Monit., 13, 2645–2658,
https://doi.org/10.1039/c1em10139k, 2011.
Wriedt, G. and Rode, M.: Modelling nitrate transport and turnover in a
lowland catchment system, J. Hydrol., 328, 157–176, https://doi.org/10.1016/j.jhydrol.2005.12.017, 2006.
Wriedt, G., Spindler, J., Neef, T., Meißner, R., and Rode, M.:
Groundwater dynamics and channel activity as major controls of in-stream
nitrate concentrations in a lowland catchment system?, J. Hydrol., 343, 154–168,
https://doi.org/10.1016/j.jhydrol.2007.06.010, 2007.
Zarnetske, J. P., Haggerty, R., Wondzell, S. M., and Baker, M. A.: Dynamics
of nitrate production and removal as a function of residence time in the
hyporheic zone, J. Geophys. Res., 116, G01025, https://doi.org/10.1029/2010JG001356, 2011.
Zarnetske, J. P., Haggerty, R., Wondzell, S. M., Bokil, V. A., and
González-Pinzón, R.: Coupled transport and reaction kinetics control
the nitrate source-sink function of hyporheic zones, Water Resour. Res.,
48, W11508, https://doi.org/10.1029/2012wr011894, 2012.
Short summary
We quantify the spatio-temporal impact of distinct nitrate sinks and sources on stream network nitrate dynamics in an agricultural headwater. By applying a data-driven modelling approach, we are able to fully distinguish between mixing and dilution processes, and biogeochemical in-stream removal processes along the stream network. In-stream nitrate removal is estimated by applying a novel transfer coefficient based on energy availability.
We quantify the spatio-temporal impact of distinct nitrate sinks and sources on stream network...