Articles | Volume 20, issue 9
Hydrol. Earth Syst. Sci., 20, 3907–3922, 2016
https://doi.org/10.5194/hess-20-3907-2016
Hydrol. Earth Syst. Sci., 20, 3907–3922, 2016
https://doi.org/10.5194/hess-20-3907-2016

Research article 26 Sep 2016

Research article | 26 Sep 2016

Areal rainfall estimation using moving cars – computer experiments including hydrological modeling

Ehsan Rabiei et al.

Related authors

Rainfall estimation using moving cars as rain gauges – laboratory experiments
E. Rabiei, U. Haberlandt, M. Sester, and D. Fitzner
Hydrol. Earth Syst. Sci., 17, 4701–4712, https://doi.org/10.5194/hess-17-4701-2013,https://doi.org/10.5194/hess-17-4701-2013, 2013

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Instruments and observation techniques
Unshielded precipitation gauge collection efficiency with wind speed and hydrometeor fall velocity
Jeffery Hoover, Michael E. Earle, Paul I. Joe, and Pierre E. Sullivan
Hydrol. Earth Syst. Sci., 25, 5473–5491, https://doi.org/10.5194/hess-25-5473-2021,https://doi.org/10.5194/hess-25-5473-2021, 2021
Short summary
Evaluation of Integrated Nowcasting through Comprehensive Analysis (INCA) precipitation analysis using a dense rain-gauge network in southeastern Austria
Esmail Ghaemi, Ulrich Foelsche, Alexander Kann, and Jürgen Fuchsberger
Hydrol. Earth Syst. Sci., 25, 4335–4356, https://doi.org/10.5194/hess-25-4335-2021,https://doi.org/10.5194/hess-25-4335-2021, 2021
Short summary
Microphysical features of typhoon and non-typhoon rainfall observed in Taiwan, an island in the northwestern Pacific
Jayalakshmi Janapati, Balaji Kumar Seela, Pay-Liam Lin, Meng-Tze Lee, and Everette Joseph
Hydrol. Earth Syst. Sci., 25, 4025–4040, https://doi.org/10.5194/hess-25-4025-2021,https://doi.org/10.5194/hess-25-4025-2021, 2021
Short summary
Partial energy balance closure of eddy covariance evaporation measurements using concurrent lysimeter observations over grassland
Peter Widmoser and Dominik Michel
Hydrol. Earth Syst. Sci., 25, 1151–1163, https://doi.org/10.5194/hess-25-1151-2021,https://doi.org/10.5194/hess-25-1151-2021, 2021
Short summary
Rivers in the sky, flooding on the ground: the role of atmospheric rivers in inland flooding in central Europe
Monica Ionita, Viorica Nagavciuc, and Bin Guan
Hydrol. Earth Syst. Sci., 24, 5125–5147, https://doi.org/10.5194/hess-24-5125-2020,https://doi.org/10.5194/hess-24-5125-2020, 2020
Short summary

Cited articles

Berndt, C., Rabiei, E., and Haberlandt, U.: Geostatistical merging of rain gauge and radar data for high temporal resolutions and various station density scenarios, J. Hydrol., 508, 88–101, 2014.
Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, 2004.
de Jong, S.: Low cost disdrometer, master thesis report, TU Delft, 2010.
Haberlandt, U. and Sester, M.: Areal rainfall estimation using moving cars as rain gauges – a modelling study, Hydrol. Earth Syst. Sci., 14, 1139–1151, https://doi.org/10.5194/hess-14-1139-2010, 2010.
Hydreon: Rain Gauge Model RG-11 Instructions, available at: http://www.rainsensors.com/ (last access: 19 September 2016), 2015.
Download
Short summary
The value of using moving cars for rainfall measurement purposes (RCs) was investigated with laboratory experiments by Rabiei et al. (2013). They analyzed the Hydreon and Xanonex optical sensors against different rainfall intensities. A continuous investigation of using RCs with the derived uncertainties from laboratory experiments for areal rainfall estimation as well as implementing the data in a hydrological model are addressed in this study.