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Abstract. The need for high temporal and spatial resolu-
tion precipitation data for hydrological analyses has been dis-
cussed in several studies. Although rain gauges provide valu-
able information, a very dense rain gauge network is costly.
As a result, several new ideas have emerged to help estimat-
ing areal rainfall with higher temporal and spatial resolution.
Rabiei et al. (2013) observed that moving cars, called Rain-
Cars (RCs), can potentially be a new source of data for mea-
suring rain rate. The optical sensors used in that study are
designed for operating the windscreen wipers and showed
promising results for rainfall measurement purposes. Their
measurement accuracy has been quantified in laboratory ex-
periments. Considering explicitly those errors, the main ob-
jective of this study is to investigate the benefit of using RCs
for estimating areal rainfall. For that, computer experiments
are carried out, where radar rainfall is considered as the refer-
ence and the other sources of data, i.e., RCs and rain gauges,
are extracted from radar data. Comparing the quality of areal
rainfall estimation by RCs with rain gauges and reference
data helps to investigate the benefit of the RCs. The value
of this additional source of data is not only assessed for areal
rainfall estimation performance but also for use in hydrologi-
cal modeling. Considering measurement errors derived from
laboratory experiments, the result shows that the RCs pro-
vide useful additional information for areal rainfall estima-
tion as well as for hydrological modeling. Moreover, by test-
ing larger uncertainties for RCs, they observed to be useful
up to a certain level for areal rainfall estimation and discharge
simulation.

1 Introduction

The quality of rainfall data plays an important role in the
quality of hydrological analyses and water resources man-
agement. The spatial and temporal resolutions of the data
are crucial for the quality of hydrological analyses. Different
modeling scales usually require different resolutions of in-
put data. A relatively high spatial and temporal resolution is
required for smaller-scale modeling such as in urban hydrol-
ogy, whereas data with coarser resolution could be sufficient
for larger-scale hydrological modeling. Hypothetically, the
performance of a model could be objectively judged when in-
put data of a high quality are provided. In particular, the spa-
tial and temporal resolution of rainfall data over a study area
influences the model performance significantly. The quality
of areal rainfall estimation depends, on the one hand, on the
data availability, i.e., rain gauge network density, the tem-
poral resolution of data and/or availability of additional in-
formation such as a digital elevation model (DEM) or radar
data, and, on the other hand, on the interpolation techniques
used for areal rainfall estimation.

Conventional rain gauges provide accurate point rainfall
depth, but they are sparsely and irregularly located over the
study area. This results in missing rainfall information where
no rain gauge is available. On the other hand, a dense rain
gauge network is costly. There are several innovative ideas
discussing new manners of measuring rainfall. Weather radar
data with relatively high spatial and temporal resolution are
widely used for rain-rate estimation purposes, but the data are
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subject to several sources of error. In addition, weather radar
is not available all over the world. Estimating rainfall using
satellite data has become of interest for practical purposes,
in particular for remote areas, because of good spatial cov-
erage and being freely available. The satellite data provide
precipitation data globally, but they suffer from the intrin-
sic weakness of the principle behind estimating rainfall, i.e.,
finding the relationship between observable variables from
space (e.g., cloud top temperature and the presence of frozen
particles aloft) and rain intensity. The satellite data are rela-
tively coarse for local use. The TRMM PR (Tropical Rain-
fall Measuring Mission — precipitation radar) data, for exam-
ple, are provided in 3 h temporal resolution and a 0.25° by
0.25° spatial resolution. Prakash et al. (2016) compared the
new GPM (global precipitation measurement)-based multi-
satellite IMERG precipitation estimates with the TRMM
Multi-satellite Precipitation Analysis (TMPA) in capturing
heavy rainfall over India for the southwest monsoon season.
They observed notably better estimation from the GPM data.
Kidd and Levizzani (2011) and Kidd and Huffman (2011)
have summarized some of the efforts given to improve the
accuracy of satellite rain-rate estimation. Several studies in-
vestigated rain-rate estimation using microwave links as an-
other potential source of data (Overeem et al., 2013; Rahimi
et al., 2006; Upton et al., 2005; Zinevich et al., 2009), where
a line-averaged precipitation is estimated therefrom. Acous-
tic rain gauges are an economical alternative which analyze
the raindrops’ sound similar to when one listens to rain in a
tent (de Jong, 2010). Most of the mentioned studies seek for
alternatives which either are not initially intended for rainfall
estimation or have low operational costs.

Haberlandt and Sester (2010) hypothetically presented the
potential of using moving cars for rainfall measurement pur-
poses, called RainCars (RCs). They pointed at the poten-
tial of using RCs because of the widespread availability of
cars especially in countries such as Germany. They con-
cluded that a large number of hypothetically inaccurate de-
vices could help in improving the estimation of rainfall com-
pared with just a few accurate devices. The main purpose
for implementing RCs is to increase the number of obser-
vations. This is more important for high temporal resolu-
tion data when the spatial variability of rainfall becomes
larger. Rabiei et al. (2013) investigated the possibility of us-
ing RCs for rainfall estimation with laboratory experiments.
A strong relationship between rainfall intensity and the wiper
speed, adjusted with front visibility, was observed. The rain-
fall estimation by the two optical sensors, Hydreon (2015)
and Xanonex (2015), implemented in that study showed also
promising results. Whether the derived accuracy of the sen-
sors is sufficient for areal rainfall estimation or not is a ques-
tion which is addressed in this study. Because of the low
number of real observations with RCs available on roads and
lack of a reliable reference for them, the investigations are
carried out by computer experiments with a view to deter-
mining the practicality of the concept. A continuous investi-
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gation using RCs with the derived uncertainties from labora-
tory experiments for a long period of time as well as imple-
menting the data in a hydrological model would answer three
important scientific questions:

1. Is the accuracy of optical sensors investigated by Rabiei
et al. (2013) sufficient for areal rainfall estimation as
well as discharge simulation?

2. What is the minimum required accuracy of RCs mea-
suring rain rate for areal rainfall estimation as well as
for discharge simulation?

3. What is the influence of using RCs over a longer period
of time rather than just for certain events? These ques-
tions address the main objective of the study which is a
better assessment of the value of the RCs for areal rain-
fall estimation rather than only for point measurement
purposes.

The influence of input data quality on hydrological modeling
performances has been under investigation by several stud-
ies. For example, Shrestha et al. (2006) investigated the in-
fluence of data resolution on the performance of a macro-
scale distributed hydrological model (MaScOD). They split
the factors influencing the quality of model performance into
three categories:

1. the quality of the model,
2. the selected model parameters, and

3. the quality of the input data.

The advantages of using RCs are assumed to provide a
denser measurement network and additional information. Xu
et al. (2013) investigated the influence of rain gauge density
and network distribution on the Xinanjiang River in China
with the Xinanjiang model. They found that the probability
of getting a poor model performance increases significantly
when the number of rain gauges falls below a certain thresh-
old. They also concluded that the number of rain gauges
above a certain threshold does not improve the model perfor-
mance meaningfully. Not surprisingly, they realized that not
only the number of stations is important but also the spatial
configuration of rain gauges.

This paper is essentially a feasibility study and is orga-
nized as follows. The methodologies implemented in this
study are presented after this introduction. Section 3 provides
detailed information regarding the study area and data used
in this study. The results and corresponding discussions are
provided in Sect. 4. Thereafter, a summary of the work and
comparison of the results is presented with a more general
conclusion.

2 Methods

Since there are not enough observed data from the few oper-
ating RCs and lack of a reliable reference for them, this study
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uses computer simulation. In order to carry out the analyses,
rainfall fields as reference data are required. The point data
from stations and hypothetical RCs are extracted from the
reference data and compared accordingly. There are essen-
tially two possibilities to obtain reference data: (1) simulat-
ing the rainfall field or (2) using an available data source such
as radar data. The latter choice has the advantage of being
closer to reality and avoiding additional rainfall modeling.
As a result, it is decided to consider radar data as reference
and to extract the point data from the radar data. As radar data
has its deficiencies, the mean field bias method is applied to
correct the error in a straightforward way. The positions of
RCs are provided by a traffic model and rainfall data are ex-
tracted from the reference data accordingly. The results are
compared with what occurs in practice, i.e., using only the
rain gauge network. The uncertainties for the rainfall mea-
surement by RCs are taken from the results of the laboratory
experiments (Rabiei et al., 2013). For a more general conclu-
sion, larger uncertainties are also investigated.

2.1 Mean field bias correction

The mean field bias (MFB) correction adjusts the radar data
with the observed rain gauge data. Assuming that the rain
gauge network provides accurate point precipitation data, the
radar images could be corrected by

> > G
Bty ="
> 2 R
i=1j=1
R*(j) = B(t) x R(j), (n

where G(t; ;) is the precipitation amount from rain gauge
i. j is the time step within a time interval ¢. R(#; ;) repre-
sents the precipitation amount on the radar pixel where rain
gauge i is located at the time j. In fact, the B coefficient
represents the relationship between observation data G(#; ;)
and the corresponding extracted radar-point data R(#; ;). R
and R* are the original and corrected radar rainfall, respec-
tively. In this study, a daily time interval is considered for
estimating the coefficient B for each time step, which results
in having a constant correction factor for each day, individ-
ually. This means that m is 288 as the data are provided at a
5 min temporal resolution. For the days on which Eq. (1) has
an indeterminate form, i.e., when no rainfall is recorded by
the rain gauge network, the B coefficient is set to 1.

Applying MFB does not have any smoothing effect, or, in
other words, the structure of images after using MFB is very
similar to that in the original radar data. Applying MFB to
radar data was considered here to prevent unrealistic radar
data values, whereas using radar data directly would also be
possible since the relative errors obtained in the end would
not change significantly.
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2.2 Traffic model

The traffic model used in this study is similar to the one used
by Haberlandt and Sester (2010). It is based on the road data
derived from the OpenStreetMap (OSM) Foundation. The
traffic density is estimated using the data from the Federal
Highway Research Institute (BASt) which provides the num-
ber of cars per day for certain points along federal roads and
highways. For each particular catchment, those traffic count
points within and close to the catchment, concerning fed-
eral roads (corresponding to the OSM road type “primary”),
are selected. The traffic count number per catchment is esti-
mated therefrom. Based on this number, cars are generated
applying the methodology described in the following. The
assumptions underlying the traffic model are always conser-
vative assumptions concerning the number and distribution
of cars. This means that the number and spatial distribution
of the cars is deliberately considered lower and less dense in
the model than in reality:

1. Only larger roads on/and surrounding the study area
are considered which includes the “primary” and “sec-
ondary” OSM road types (corresponding to the German
Bundesstrafien and Landstraflen road types). Because
of the relatively high practical uncertainties related to
the RCs on highways, these road types are excluded.
Smaller roads are also neglected due to the low traffic.

2. An average speed of 80kmh~! is considered to cal-
culate the number of cars for each catchment. The as-
sumed average speed is higher than in practice, which
results in a lower number of cars than in reality (see
Eq. 2). This follows the conservative assumption men-
tioned earlier.

3. Due to the lack of traffic count data for the secondary
OSM road type, the traffic count for this road type is
calculated using half the federal roads (OSM primary
roads) traffic count data. This also follows the conser-
vative considerations for the traffic model assumptions.

In order to estimate the number of cars driving simultane-
ously within and around a catchment, the following equation
is used for each catchment and each of the two road types
separately:

X
t=—
h
z=t"'7 )
l
n=-,
Z

where X is the number of cars from the traffic data over a
certain time period h, v is the assumed average car speed
and z is the space between two cars. The number of cars
driving simultaneously in and around the catchment area n
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is then estimated using the total roads length / on a catch-
ment. Due to the long period of time considered in this study,
the day—night variation in traffic count is considered insignif-
icant. However, different RC density scenarios address the
possible change in the number of RCs. Therefore, the daily
average number is used in this study. This number is subse-
quently used for generating cars randomly on the OSM road
network at each time step. This means that the points repre-
senting RCs are not dependent in successive time steps, i.e.,
no car identities are modeled.

It is important to notice that car speed, wind speed and
wind direction influence the performance of RainCars in
practice. Rabiei et al. (2013) proposed to use a linear rela-
tionship for taking the effect of the car speed for RainCars
into consideration. A similar approach could be applied for
compensating the effect of wind speed, knowing the wind
direction.

2.3 Network density of rain stations

In order to compare the network densities for rain gauges and
RC scenarios, the network density of each subcatchment for
each scenario is calculated in a similar way to that used by
Haberlandt and Sester (2010). The network density is calcu-
lated using the kernel density estimator (Silverman, 1986):

| o Ry
. N1—-— ford; <
Di:mizglkjwﬂhkj: (r)) or -/_rv (3)

0 fordj > r

where n is the number of observation points (either stations
or RCs) within the search radius r =20000m and d; is the
distance to subcatchment cells (the ones for which the den-
sity is being calculated from the cell center). D; is calculated
for each subcatchment cell and averaged over all subcatch-
ment cells. The kernel density estimator considers not only
the observation points in the subcatchment but also the ones
within the search radius.

2.4 Uncertainties for RainCars

In order to consider the uncertainties in rainfall measurement
using RCs, the results of laboratory experiments (Rabiei et
al., 2013) are utilized. The relationship between sensor read-
ing (W) and rainfall intensity (R) is named W-R relationship
in Eq. (4), whereas signal lengths from the optical sensors
are considered as sensor readings:

R=a+bW +s, “

where R is the rainfall intensity, W is the sensor reading,
a and b are the linear regression coefficients and ¢ repre-
sents the random error. The assumption behind the linear re-
gression model is that the error is normally distributed, with
mean =0 and variance = o2. This provides a simple error
model for the measured uncertainties from RCs.
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Three different linear W—R relationships between sensor
readings and rain rate are discussed by Rabiei et al. (2013).
The first relationship considers wiper frequency as a sensor.
As wiper activity is influenced by several factors, such as
driver preferences, car speed, number of wiper speed levels
defined for each car type, etc., this alternative is considered
impractical. The two other remaining alternatives are the W—
R relationships derived from the optical sensors. Two optical
sensors, Hydreon and Xanonex, with promising results were
investigated by Rabiei et al. (2013) and suggested for fur-
ther use. The two sensors performed similarly, whereas the
Hydreon performed slightly better. Nevertheless, because of
the Xanonex shape and its ease of installation on cars, it was
decided to investigate the Xanonex W-R relationship. The
device bounces infrared beams through its lens. Rain drops
allow beams to escape, and consequently, drops could be
sensed when there is a change in beam intensity. This change
in beam intensity is interpreted as rain rate which is observed
by the sensor. More detailed information about the function-
ality of the device could be found in Rabiei et al. (2013).

Although a relatively strong relationship between the two
variables exists, one encounters difficulties for smaller rain
rates. According to the estimated regression line by Rabiei et
al. (2013) (see Fig. 2), negative rainfall could be obtained us-
ing Eq. (4), which is not possible. By neglecting the negative
values, a systematic positive bias would enter the data. In ad-
dition, the uncertainties of the devices on the market are usu-
ally expressed as a percentage, which illustrates a smaller ab-
solute error when smaller values are measured. Implement-
ing Eq. (4) does not resolve those two problems. Therefore,
in order to investigate the uncertainties for the sensor read-
ings, a power regression model is used to describe the W-R
relationship:

Ii’:a-Wb-s, )]

where R is the rainfall intensity, W is the sensor reading,
a and b are the regression coefficients and ¢ is the random
error. Taking the logarithm of both sides of Eq. (5) gives

log(R) =log(a) + b - log(W) + log(e). (6)

As is assumed for simple linear regression, a constant ran-
dom error, here log(e), is considered. It should be noticed
that the error variance is constant in log-transformed space
and variable in original space. The parameters of the linear
regression in Eq. (6) are optimal in the log space, but not after
back transformation, i.e., in the original space. Negative rain
rates can no longer be obtained because of the log—log trans-
formation to the data. Implementing this data transformation
also leads to a more accurate performance for smaller rainfall
values, which is different to the constant value considered by
Rabiei et al. (2013).

The traffic model provides coordinates of the RCs for each
time step. The rain rate for each RC is extracted from the ref-
erence data set, i.e., radar data. The device outputs are signal
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lengths related to rain intensities (Rabiei et al., 2013). In or-
der to consider the uncertainties for RCs, the corresponding
signal length of each extracted value would be estimated us-
ing the W—R relationship. A normally distributed error log(e)
with mean =0 and variance = 0% is randomly selected and
added to log(R) before re-transformation.

2.5 Areal rainfall estimation

Ordinary Kriging (OK) is an interpolation method which is
widely used for several hydrological variables such as tem-
perature, rainfall, wind, etc. OK is implemented here for in-
terpolating data from both RCs and rain gauges. It is worth
noticing the fact that OK is only optimal when the data are
Gaussian. However, the benefit of using RCs can be explored
by comparing the quality of areal rainfall estimated by rain
gauges with situations when only RCs are used instead. A
relative comparison is carried out, resulting in trivializing the
non-Gaussianity of the data. In order to satisfy the assump-
tions behind OK (stationary), only the neighboring extracted
values for either rain gauges or RCs are used. However, in
rare situations when facing negative values, they were set to
zero. For a detailed description of the method, please refer to
geostatistical textbooks such as Isaaks and Srivastava (1990).

The experimental variogram is estimated using the follow-
ing equation:

) ,
vi(h) = [m ;(Z(xi)—Z(x,-+h)) i|, (7

where N (h) represents the number of data pairs, A is the sep-
arating vector, x the location and m the number of points.
As in Rabiei and Haberlandt (2015), a seasonal average vari-
ogram is used here. The experimental variogram is estimated
using radar data when 1000 random radar cells are taken.
Only the time steps with an average rainfall above a defined
threshold are selected for variogram estimation. The follow-
ing equation is used for estimating climatological variograms
over n time steps:

1 <& h,i
yaty = 3 V0D ®)

where y (h,1) is the variogram for the A distance class and
var(i) represents the variance in time step i. An exponential
variogram is considered as the theoretical variogram model:

yhzco+c|:1—exp(—g)], )

where a, ¢ and ¢y are the range, the sill and the nugget effect,
respectively.

The variograms are fitted using radar data with 5 min tem-
poral resolution as the goal is to interpolate rain gauges as
well as RCs on 5 min temporal resolution.
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2.6 The HBV hydrological model

The hydrological model used in this study, HBV-IWW, is a
modified semi-distributed version of the HBV model (Lind-
strom et al., 1997). The model has a horizontal spatial dis-
cretization in subcatchments, which are linked to each other
by river reaches. For each of the subcatchments, a snow rou-
tine, a soil routine, a response routine and a transformation
routine are applied. The snow routine classifies precipita-
tion as rainfall or snowfall and also takes snowmelt into ac-
count. After that, the sum of the rainfall and snowmelt passes
through the soil routine which consists of two modules. The
first module calculates the actual evapotranspiration, while
the second module calculates the contributing runoff depend-
ing on precipitation and actual soil water content. The con-
tributing runoff is then directly linked to the upper ground-
water layer of the response routine, where surface runoff, in-
terflow, percolation and the actual water content of the upper
groundwater layer are calculated. Percolation contributes to
the lower groundwater layer wherefrom the base flow is cal-
culated. Surface runoff, interflow and base flow are finally
added together and transformed with a simple triangular unit
hydrograph. If more subcatchments are connected to each
other, the Muskingum method is used for river routing.

The model is calibrated using the simulated annealing al-
gorithm (Kirkpatrick, 1984) for which 1000 iterations are
considered. The objective function is

OF = (1 —NSE) + (1 — NSELog) — min, (10)

where NSE is the Nash—Sutcliffe coefficient after Nash and
Sutcliffe (1970), and NSE, is the NSE with logarithm of
discharges. A more detailed description of the parameter cal-
ibration procedure as well as further details of the HBV-IWW
model can be found in Wallner and Haberlandt (2015). Un-
like the common procedure of calibrating the parameters of
a hydrological model and validating them afterwards, when
two separate time periods are defined in this study ,the whole
time period is considered for calibrating the model parame-
ters. The HBV parameters are calibrated lumped as only the
rainfall data are to be investigated. This means that all the
subcatchments of each catchment have the same model pa-
rameter set. For all the scenarios in the following, the same
parameter sets are used for an explicit comparison of the
results. As the main purpose of the study is to investigate
the influence of different means of rainfall measurement, the
model calibration is less important than in studies dealing
with observation data.

2.7 Performance measures

A common way to evaluate the performance of interpolation
is cross validation, i.e., the leave-one-out approach. The re-
semblance of the estimations to the observations illustrates
the quality of the interpolation technique. Since reference
radar data are considered as the truth in this study, the areal
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rainfall estimated by each scenario is directly compared with
the reference areal rainfall. The following criteria are used
for evaluation.

The root mean square error is estimated by

J
;(ij - Zij)?
RMSE(i) = % (11)
the Nash—Sutcliffe coefficient by
J 2
ZI(Z;]- —Zij)
NSE(i) =1 — "J— (12)
Zl(zi,j -Z)?
j:

and the percent bias (Pbias) is estimated by

J

> (Zi;=Zi))
Pbias(i) = 100 x ’zlj— (13)
> (Zij)
j=1

where Z* is the estimated areal rainfall and Z is the cor-
responding reference areal rainfall and j is the number of
time steps considered for the subcatchment i. These statisti-
cal measures are used also for evaluating the performance of
the hydrological model where Z* and Z are then the simu-
lated discharges and reference discharges, respectively.

A positive Pbias indicates overestimation, whereas a neg-
ative value indicates underestimation.

3 Study area and data

A part of the state of Lower Saxony covered by the weather
radar located at Hanover airport and the three catchments in
Fig. 1 encompass the study area. As mentioned, the bene-
fit of RCs is investigated by comparing with what occurs in
practice, i.e., when only rain gauges are considered. In this
study, it is assumed that the coordinates of rain gauges and
the coordinates of 53 rain stations provided by the German
Weather Service (DWD) are identical.

The transparent blue circle in Fig. 1 with a 128 km ra-
dius is the area being scanned by the Hanover weather radar,
whereas the points represent the 53 rain gauges considered in
this study. The digital elevation model shows that the north-
ern part of the study area is relatively flat and a region with
mountainous characteristics is in the southeastern part. The
precipitation amount also varies within the study area from
around 500mmyr~! in the north to 1700 mmyr~! in the
mountains (Berndt et al., 2014). The mean annual rainfall in
Fig. 1 for each subcatchment shows also the spatial rainfall
variation over the study area. Those values are derived from
radar data from 2006 to 2010. This is more evident for the
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) Yearly avg.
rain [mm]
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Radar range 930-968
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Value I 10091047
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I 1083-1126
- 0 3 70 140
Low: 0 Km B 11271165

Figure 1. Study area, catchments, station network and mean annual
precipitation (MAP) from 2006 to 2010 from radar data. From north
to south: Bohme, Nette and Sieber catchments.

Nette catchment as the southeastern subcatchment receives a
larger amount of rainfall than the other subcatchments. Al-
though the Sieber catchment is located in the mountainous
area, the mean annual rainfall is relatively low. This could
be explained by the fact that the catchment is located at the
leeward side of the mountains considering the usual west-to-
east weather front moving direction.

3.1 Catchments

Three catchments of the Aller—Leine River basin, which have
different characteristics, are considered in this study, Fig. 1.
Not only are the characteristics of the catchments important
but also the locations of the rain gauges. The Béhme catch-
ment located in the northern part (with a relatively flat ter-
rain) contains eight subcatchments and covers 285 km?. This
catchment varies between 50 and 150 m in elevation and con-
tains one rainfall station. The Nette catchment has 10 sub-
catchments covering 309 km? and is partly located in the
mountainous area, where the elevation reaches up to 550 m.
In contrast, the northern part of this catchment is mostly flat.
An important point worth mentioning here is that the only
station available in this catchment is located in front of the
hillside in the southern part. The Sieber catchment is located
completely in the mountainous area and has two subcatch-
ments covering 45 km?2. There are some stations close to the
catchment, but no stations are available within it.

3.2 Radar rainfall
The C-band Hanover weather radar provides radar data with
a 5 min temporal resolution and an azimuth resolution of 1°.

The spatial resolution along each beam is 1 km. The time pe-
riod from 2006 to 2010 is considered in this study. The dx-
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Figure 2. Xanonex W-R relationship (Rabiei et al., 2013).

radar product provided by the DWD is used and processed
as following. First, the reflectivity (Z in mm® m~3) is trans-
formed to rain intensity (R in mmh~!) by the following re-
lationship:

Z=a-R". (14)

Standard DWD parameters (Riedl, 1986; Seltmann, 1997)
are used, where a =256 and b = 1.42. A straightforward
clutter detection similar to that of Berndt et al. (2014)
is applied thereafter. The final step is to interpolate the
rain intensities on rectangular grids using the inverse dis-
tance weighted (IDW) technique. This produces rainfall of
1km x 1 km spatial resolution. Afterwards, the mean field
bias method (see Sect. 2.1) is implemented to adjust radar
data with the observed rain gauge data.

As the observed data are not used directly for the objec-
tives of this study, it is decided not to describe them here to
avoid any confusion.

3.3 W-R relationship

Rabiei et al. (2013) used a linear regression model to describe
the W-R relationship between the Xanonex sensor readings
and rain intensity. Figure 2 illustrates this linear relationship
with a = 0.2408 and b = —5.4915 (Eq. 4). The dots repre-
sent the observations in the laboratory, whereas the dashed
lines show the 95 % prediction limits. A detailed descrip-
tion of the laboratory experiments is provided in Rabiei et
al. (2013). The main disadvantage is when facing small rain-
fall values. As mentioned, by considering this relationship
and the error distribution for linear regression, negative rain
rates can be estimated.

4 Results and discussion

In the following, the results of the steps taken for investigat-
ing the benefit of using RCs for areal rainfall estimation as
well as discharge simulation are presented and discussed.

www.hydrol-earth-syst-sci.net/20/3907/2016/
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Figure 3. The road network on which the RCs are modeled.

Table 1. Number of cars driving at the same time for each RC sce-
nario in each catchment.

5% 4% 3% 2% 1%

Bohme 38 30 23 15 8
Nette 138 110 83 55 28
Sieber 14 11 8 6 3

4.1 Traffic model

The number of cars is estimated using Eq. (2). It is assumed
that only a small portion of cars is equipped with sensors
measuring rainfall. In this study, from 1 to 5 % of all cars on
the roads are considered to measure rainfall which describes
all the RC scenarios. For each 5 min time step, the number
of cars is calculated for the 5 % scenario. The other scenar-
ios are generated therefrom. Table 1 depicts different RCs’
scenarios considered in this study.

Figure 3 shows the road network considered for the three
catchments. As seen in Table 1, a denser network than for the
other catchments is available for the Nette catchment. As the
Nette catchment is partly located in mountainous area, even
this denser network might not provide enough information.
This is due to the fact that the RCs are not available overall
because of the road network. For that reason, in subcatch-
ments such as the southeastern subcatchment, the number of
available RCs is lower than in the other subcatchments.

4.2 Network density

Before illustrating the results of the simulations, i.e., areal
rainfall as well as runoff simulation comparison, the network
densities using Eq. (3) for different scenarios are presented.
This helps to determine whether the network density influ-
ences the results.

Figure 4 shows the network densities estimated for the sce-
narios being investigated in this study. Although the density
varies among the catchments, Fig. 4 shows that all the RC

Hydrol. Earth Syst. Sci., 20, 3907-3922, 2016
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Figure 4. Network density of the catchments for different scenarios.

scenarios have a higher density than the rain gauge network.
Depending on the accuracy of the measurement devices, i.e.,
RC:s or rain gauges, the network density has a variable influ-
ence. A more detailed investigation is provided in Sect. 4.6.2.

4.3 RainCars uncertainty

The uncertainty related to rainfall estimation by RCs is de-
scribed by Egs. (4) to (6), where ¢ represents the random
error. The normal distribution that defines the random error
for each signal reading (signal length) corresponding to each
rain rate has the residual variance estimated by the vertical
distances between the observations and the regression line.
The random error, log(¢), is then simulated using the normal
distribution. As discussed earlier, a power regression model
describes the W—R relationship in this study.

Figure 5a shows the W-R relationship after log—log trans-
formation. The same assumption as before is valid, namely
that the random error is normally distributed and derived
from the deviation between observation points and the lin-
ear regression model. Figure 5b illustrates the W-R relation-
ship implemented in this study. It is derived using the fol-
lowing steps: (1) applying log—log transformation on both
axes, (2) applying linear regression on the transformed data
(Fig. 5a), (3) estimating the residual variance for the normal
distribution describing the random error for the linear regres-
sion model and (4) transferring the data back for practical use
(Fig. 5b). The coefficient of determination given in Fig. 5b is
estimated using the transformed log—log regression model in
Fig. 5a.

The data transformation has, in general, two important ef-
fects on the W-R relationship: (1) preventing the derivation
of unrealistic rain rates and (2) skewing the distribution of
random error. The latter aspect affects also the prediction
limit in Fig. 5. As can be seen in Fig. 5b, the upper and lower
limits bend when they are further from the origin, which re-
sults in larger inaccuracy for the rain rate estimated by RCs
for higher rainfall intensities. On the other hand, the positive
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skewness introduces a positive bias that causes overestima-
tion when estimating rain rate by RCs. This can be seen when
comparing the distances from the model line to the upper and
lower prediction limits. Although the W-R relationship has
this deficiency, a larger number of RCs and more accurate
optical sensors can help compensate this problem. These two
aspects are addressed in Sect. 4.6.2. and 4.6.3, respectively.

4.4 Variogram properties used in this study

The properties of the variograms used in this study are pro-
vided in Table 2.

The variograms are fitted using radar data in 11 differ-
ent (mostly 6-month intervals) over the 5 years with 5 min
temporal resolution. The goal is to interpolate rain gauges
as well as rainfall from RCs on a 5 min temporal resolution.
A large relative range is estimated in wintertime, which il-
lustrates different seasonal rainfall patterns. It supports the
seasonal separation for interpolating the data which were
discussed earlier. As can be seen, the properties of the var-
iograms change even among the same seasons in different
years. Therefore, it was decided to use the variable vari-
ograms provided in Table 2. It was mentioned earlier that
negative estimated values were set to zero. However, the
nugget values provided in Table 2 illustrate the low possi-
bility of facing negative estimation values.

4.5 Reference discharge

As mentioned earlier, the simulated discharge for different
scenarios will be compared with the reference discharge. The
reference discharge, the benchmark, is simulated using radar
data after applying mean field bias correction (creating the
reference rainfall data) as input to the HBV-IWW model us-
ing pre-calibrated model parameters. Because of the lumped
approach for calibrating the model parameters and the sub-
catchments with relatively small size, the rainfall characteris-
tics, especially the spatial pattern, are the highest influencing
factors in discharge simulation.

The performance of the HBV-IWW model is evaluated on
an hourly temporal resolution. Therefore, an aggregation of
5 min interpolation data to hourly data is carried out before
using it in the hydrological model.

4.6 Comparing areal rainfall and simulated discharge
for different sources

The value of the RCs in comparison to the rain gauge net-
work is assessed by comparing areal rainfall estimations as
well as the simulated discharges using these data. First, the
results of using only the rain gauge network are presented.
Thereafter, the results of using RCs for rainfall observations
are provided and compared with when only the rain gauge
network is used.
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Figure 5. (a) Xanonex log-transformed W-R relationship after Eq. (6). (b) Xanonex W-R relationship after Eq. (5); the red lines illustrate

the 95 % prediction limits.

Table 2. Theoretical variogram model parameters used in this study; aefr is the effective range c the sill and ¢ the nugget effect.

Time 2006 2006 2006-2007 2007 2007-2008 2008 2008-2009 2009 2009-2010 2010 2010
period (01-03)  (04-09) (10-03) (04-09) (10-03) (04-09) (10-03) (04-09) (10-03) (04-09) (10-12)
co (=) 0.2 0.1 0.17 0.1 0.13 0.3 0.1 0.1 0.1 0.1 0.1

cc (5) 1 0.9 0.9 0.85 1 0.7 1 0.85 1 0.87 1

defr (m) 60000 24000 42000 24000 42000 36000 48000 22500 45000 27000 48000

4.6.1 Rain gauge network
Areal rainfall estimation

The areal rainfall estimations corresponding to the three
catchments shown in Fig. 1 are compared with the reference
data. It should be noticed again that the comparison is carried
out after interpolating the data with 5 min temporal resolu-
tion and aggregating the data to hourly temporal resolution
because of the required temporal resolution for the hydro-
logical model.

Figure 6 provides the statistical measures for the three
catchments under investigation when evaluating the quality
of areal rainfall estimation using only rain gauges. This is
carried out by comparing the estimated areal rainfall using
rain gauges and implementing OK with the reference data.

For the Bohme catchment, having one station in the catch-
ment and one close by provides sufficient rainfall informa-
tion. As expected, the closer the subcatchments to the sta-
tions, the better the quality of areal rainfall estimation. The
areal rainfall estimated for the northernmost subcatchment
is not as good as for the other subcatchments because there
is no station nearby. Although the potential for improving
RMSE and NSE values exists, the Pbias criterion is in gen-
eral relatively low. This means that the total water volume is
estimated relatively well, and therefore for purposes such as
hydrological modeling the quality of areal rainfall estimation
might be sufficient. In all cases, polygons with green color
represent better results than the red ones.

www.hydrol-earth-syst-sci.net/20/3907/2016/

The Nette catchment, the subcatchment that includes a sta-
tion, as expected, has a superior rainfall estimation quality to
the other subcatchments. Unpredictably, the quality of areal
rainfall estimation for the other subcatchments close to the
station is weak. For example, although the two southern sub-
catchments are in the vicinity of a station, the statistical mea-
sures are relatively poor. A rapid change in elevation is ev-
ident when considering the DEM map in Fig. 1. Assuming
that rainfall characteristics change along the elevation gradi-
ent, a change in the spatial rainfall pattern is expected. The
single station is no longer able to provide the actual rainfall
even for the surrounding subcatchments. This is in contrast
to the Bohme catchment where the DEM map shows a flat
catchment and the only station on the Bohme catchment is
sufficient for areal rainfall estimation.

Although the Sieber catchment is smaller than the other
two catchments and is expected to be more easily modeled,
the catchment is located in a mountainous region and suffers
from the fact that no rain gauge is available directly within
the catchment. Due to these facts, the areal rainfall estimation
is rather poor, especially when the Pbias is of concern. For
such conditions, additional means of rainfall measurement
would be beneficial.

Discharge simulation
The same statistical measures are used for evaluating the per-

formance of the hydrological model. Depending on the loca-
tion of stations, catchment characteristics and spatial rainfall
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Figure 6. Areal rainfall estimation using rain gauges compared with the reference data in, from left to right, the Bohme, Nette and Sieber
catchments. Locations of the rain gauges are marked by black dots. The polygons near the green color present better results than the ones

near the red color.

Table 3. Simulated discharge by rain gauges compared with the ref-
erence data.

Bohme  Nette Sieber

RMSE (m3s1) 0.98 238 0.51
NSE (-) 095 076  0.86
Pbias (%) —-62 —225 -—1538

pattern, each catchment responds differently when only rain
gauges are used. The reference discharge, the benchmark, is
simulated using reference areal rainfall, i.e., radar data after
MEB, and the pre-calibrated model parameters.

Table 3 provides the statistical measures of simulated dis-
charges when only rain gauges are implemented. Although
both the Bohme and Nette catchments benefit from having

Hydrol. Earth Syst. Sci., 20, 3907-3922, 2016

a station in the catchment, the two catchments responded
differently. The Bohme catchment performs better than the
other two catchments. From Fig. 7, it can be seen that the
quality of the areal rainfall estimation for the Bohme catch-
ment is the best. As discussed in the study area and data
section (Fig. 1), the mountainous area receives more rain-
fall than the other parts of the catchment. The mountainous
part of the catchment can cause a change in the spatial rain-
fall pattern. In other words, a fast elevation change (when the
contour lines are tightly spaced together) can draw the iso-
hyetal lines close together. This can explain the reason that
the model performance in the Nette catchment is relatively
poor. From the mean annual rainfall for each subcatchment
provided in Fig. 1, it may also be concluded that the two
southern subcatchments in the mountainous area produce a
big share of the discharge. It is observed that one station can
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Figure 7. Areal rainfall estimation evaluation using RCs for the Béhme catchment. The blue color for RMSEy;¢r and NSEq¢r illustrates the

improvement of the areal rainfall estimation quality when RCs are used compared with when only rain gauges are considered.
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Figure 8. Areal rainfall estimation evaluation using RCs for the Nette and Sieber catchment. The blue color for RMSE ;s and NSEg;sr
illustrates the improvement of the areal rainfall estimation quality when RCs are used compared with when only rain gauges are considered.

be sufficient for areal rainfall estimation for a flat catchment
such as the Bohme catchment and would not be sufficient
for a catchment such as the Nette catchment, which is partly
located in the mountainous area. There is no station located
in the Sieber catchment, which explains the poor Pbias in
Table 3, although the other two criteria are rather good. In
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the Sieber catchment, not only are the characteristics of the
two subcatchments similar but also the spatial rainfall pattern
over the two subcatchments, which could explain the rela-
tively good NSE values.
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4.6.2 RCs against rain gauges using errors from
laboratory experiments

Areal rainfall estimation

A similar strategy is pursued for the moving cars measuring
rainfall. As before, the evaluation involves two parts. First,
the areal rainfall estimation by implementing RCs is com-
pared with the reference rainfall. Thereafter, the simulated
discharges are compared after using the data in the HBV-
IWW hydrological model.

The benefit of using RCs for areal rainfall estimation can
be assessed when their performance is compared with the
standard approach, i.e., using only the rain gauges. To this
end, after estimating the statistical measures by comparing
with reference data, the difference between the statistical
measures is addressed. This means that, for example, for the
root mean square error RMSEgiff = RMSErcs — RMSEg;.
As a result, negative RMSEyisr values as well as positive
NSEifr values represent better areal rainfall estimation when
using RCs compared to stations. For Pbias, the specific val-
ues are compared without building differences.

Figure 7 illustrates the statistical measures for the Béhme
catchment when the RCs are used for areal rainfall estima-
tion. Implementing RCs in general results in better areal rain-
fall estimation. As expected, the improvement in subcatch-
ments away from the stations is more significant than the
ones close to them. Also, the number of cars plays an im-
portant role. If the number of RCs increases, the quality of
areal rainfall estimation improves. Considering only the two
mentioned criteria, using RCs for areal rainfall estimation is
always superior to using stations in this catchment. The im-
provement for each subcatchment varies depending on the
number of RCs as well as the location of the station. Pbiasgcs
values show an overestimation of areal rainfall because of
the positive skew of the error distribution as explained ear-
lier (see Fig. 5b).

Figure 8 illustrates the statistical measures for different RC
scenarios in the Nette and Sieber catchments.

The use of RCs for rainfall estimation in the Nette catch-
ment has similar advantages as for the Bohme catchment. In
contrast to that, RCs are not always beneficiary in the Nette
catchment. A detailed investigation shows that the rainfall es-
timation for the subcatchment in which the station is located
is hard to beat by using RCs. In contrast to all the subcatch-
ments where an overestimation is observed, for the Nette
basin, the subcatchment with red color in Pbias responds dif-
ferently. This can be explained by the RC network density.
This part of the catchment suffers from the fact that RCs are
rarely available because there are fewer roads, as it is located
in the mountainous part.

For the Sieber catchment, using RCs also results in better
areal rainfall estimation. Increasing the number of RCs has
again advantages. The improvement in areal rainfall estima-
tion is not as strong as in the other catchments because of the
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existing stations in the vicinity of the catchment. Although
RMSE and NSE do not vary significantly, comparing with
Fig. 6, the Pbias criterion improves meaningfully.

It should be noted that although the Nette catchment bene-
fits from a denser RC network (Fig. 4), because of the spatial
rainfall pattern, the need for a higher number of RCs or a
better location for the only station is evident.

4.6.3 Discharge simulation

Table 4 provides the statistical measures of simulated dis-
charges when RCs are implemented. The first column, titled
“St.”, refers to when only rain gauges are considered, which
is included here again to facilitate easy comparison.

Although the Béhme catchment performs the best among
the three catchments when only rain gauges are considered,
using RCs is still useful. Figure 8 shows that the areal rain-
fall estimation improves slightly when using RCs. For anal-
yses requiring fine temporal and spatial resolution data, e.g.,
urban hydrology, using RCs may improve the simulation re-
sults more evidently. Due to the fact that the improvement
in discharge simulation is not very strong in this catchment,
with the given temporal and spatial resolution, for such stud-
ies the need for using RCs can be considered inessential.

As discussed earlier, because of the characteristics of the
Nette catchment, this catchment has the highest potential for
improvement by RCs. Implementing even a small number of
RCs improves the results significantly. As seen in Fig. 4, the
Nette catchment has the highest RC network density among
the three catchments. This explains the better performance in
this catchment. As expected, positive Pbias in the simulated
discharge indicates overestimation, which follows the areal
rainfall overestimation observed earlier.

Unlike the other catchments, the Sieber catchment is lo-
cated in the mountainous area. The NSE and RMSE crite-
ria do not improve significantly when using RCs. Taking a
deeper look at the traffic model data, from 1 % scenario to
5 % scenario, the number of cars measuring rainfall is 3, 6,
8, 11 and 14, respectively (see Table 1). Only two scenarios
can result in better discharge simulation (4 and 5 %) indicat-
ing the least required RC network density for this catchment.
As with the other two catchments, using RCs results in the
overestimation of the discharge.

The network density of the 1 % RC scenario for the Nette
catchment is similar to those of the Bohme and Sieber with
2 % RC scenarios (Fig. 4). Taking the similarity of the net-
work densities into account, the improvement of the hydro-
logical model performance in the Nette catchment is more
evident than for the other two catchments. It shows that the
RCs are more valuable in the catchments such as the Nette
when the spatial rainfall pattern varies within the study area
(see Sect. 3). Improving the discharge simulation perfor-
mance for bigger catchments such as the Nette and Bohme
seems to be more easily achievable with a lower density of
RCs than for smaller catchments such as the Sieber. Addi-
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Table 4. Simulated discharge by RCs compared with the reference data.

3919

Catchment Stt. 1%RCs 2%RCs 3%RCs 4%RCs 5% RCs
RMSE (m3s~1) 098 0.66 0.6 0.61 0.6 0.57
Bohme NSE (-) 0.95 0.98 0.98 0.98 0.98 0.98
Pbias (%) -6.2 6.4 6.1 7.4 7.6 7.4
RMSE (m3s~1) 2.8 1.01 0.84 0.67 0.73 0.76
Nette NSE (-) 0.76 0.97 0.98 0.99 0.98 0.98
Pbias -225 4.8 6.8 5 6.7 72
RMSE (m3s™1) 0.51 0.55 0.58 0.53 0.48 0.37
Sieber NSE () 0.86 0.83 0.81 0.84 0.88 0.92
Pbias (%) —15.8 75 6 4.7 32 2.6

Table 5. Uncertainties for RCs when estimating areal rainfall and averaging over all subcatchments; the 5 % traffic model is considered.

62=00 02=001 02=004 02=009 o2=0.021 St.

RMSE (mmh~1) 0.27 0.27 0.30 0.38 0.28 0.44

Boshme NSE () 0.85 0.85 0.81 0.70 0.84 0.58
Pbias (%) —0.49 2.19 10.56 26.26 519 —322

RMSE (mmh~1) 0.28 0.29 0.32 0.42 0.30 0.53

Nette  NSE (-) 0.84 0.83 0.80 0.65 0.82 0.43
Pbias (%) -2.8 0.09 8.5 24.07 3.11  —1021

RMSE (mmh~1) 0.37 0.37 0.38 0.43 0.37 0.46

Sieber  NSE () 0.69 0.69 0.68 0.6 0.69 0.53
Pbias (%) —4.55 -1.7 6.4 21.5 12 —1445

tionally, even a small number of RCs can improve the dis-
charge simulation significantly. Depending on the quality of
the required hydrological analyses, the need for the use of
RCs is open to discussion. Basically, a higher number of
equipped cars are needed for mountainous catchments in this
study area than for flat catchments. In other words, the need
for increasing the number of observations is evident when the
spatiotemporal variation of rainfall is high.

4.6.4 RCs against rain gauges using hypothetical errors
Areal rainfall estimation

The minimum rainfall measurement accuracy required for
the RCs to be useful is investigated in this section. All the
different accuracies are addressed for the 5% RC scenario
specifically. The error for the linear model is estimated on the
log—log transformed data (Fig. 5). The normal distribution
was defined by the variance (02), equal to 0.021, from lab-
oratory experiment results. In order to investigate the impor-
tance of the error on the results, four other variances of 0.0,
0.01, 0.04 and 0.09 are considered. At the end, the areal rain-
fall estimation quality as well as the performance of the hy-
drological model was compared with that of using the orig-
inal variance from the laboratory. Table 5 provides the aver-
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aged statistical measures for each catchment. The areal rain-
fall estimation considering different errors for RCs is com-
pared with the reference data. The same assumptions as ear-
lier (see Sect. 4.3) are taken with different variances for the
distribution function representing the error range. St. repre-
sents the areal rainfall estimation performance when only the
rain gauges are implemented.

The rainfall overestimation by implementing higher o>
values is evident. For all catchments even assuming a rela-
tively large uncertainty of o> = 0.09, NSE and RMSE values
improve compared with when only rain gauges are consid-
ered. As the Pbias is quite large for 6> = 0.04 and o2 = 0.09,
the use of RCs for areal rainfall estimation is questionable.
In fact, for such cases, using rainfall data observed by RCs
could be considered as additional information for areal rain-
fall estimation, e.g., Kriging with external drift or Kriging
with uncertain data.

Assuming no inaccuracy for the measurement devices, i.e.,
St. and o = 0.0, a negative Pbias still exists, representing an
underestimation of areal rainfall. Although OK is an unbi-
ased interpolation technique, its performance is strongly de-
pendent on the measurement locations. In an ideal situation,
measurements should take place in regard to the variation in
spatial rainfall patterns. This can not be fulfilled in practice
due to the dynamic nature of rainfall. Missing the minima
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Table 6. Investigating different uncertainties for RCs when simulating discharge compared with the reference discharge; the 5 % traffic model

is considered.

02=00 02=001 02=004 02=0.09 o%=0.021 St.
RMSE (m3 S_l) 0.34 0.38 1.05 2.64 0.57 0.98
Bohme NSE (-) 0.99 0.99 0.94 0.65 0.98 0.95
Pbias (%) -1 15.5 40 7.4 —6.2
RMSE (m3 s_l) 0.65 0.52 1.56 4.19 0.76 2.8
Nette NSE (-) 0.99 0.99 0.92 0.45 0.98 0.76
Pbias (%) —49 18.6 52.6 72 =225
RMSE (m3 s~ 1) 0.37 0.36 0.43 0.71 037 051
Sieber NSE (-) 0.93 0.93 0.9 0.72 0.92 0.86
Pbias (%) —4.5 9.1 28 26 —15.8
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Figure 9. Discharge simulation using different sources of data for the Nette catchment between November 2007 and March 2008. For RCs,

only the 5 % scenario is considered.

and maxima over the study area can lead to overestimation
and underestimation, respectively. It is more probable to miss
maxima than minima due to the fact that high rainfall inten-
sities may occur in places where no RCs or rain gauge ob-
servations are available. Minima can be captured easier than
maxima as it covers a larger area, illustrating the positive
skewness of the rain rate distribution. This might explain the
minor negative Pbias derived by RCs even when o = 0.0.

4.6.5 Discharge simulation
Table 6 provides the averaged statistical measures of the sim-
ulated discharges for each catchment when the 5 % RC sce-

nario is considered. As expected, the best performance be-
longs to the RCs scenario for which the measurement error
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is assumed to be zero (0> = 0.0). The quality of the simu-
lated discharge lowers by increasing the error of the mea-
surement devices (RCs). A similar trend can be found as
with areal rainfall estimation, in that the discharge overes-
timation becomes meaningful by increasing the uncertainty
of the RCs. Implementing RCs with large uncertainty for
the measurement values leads to a relatively weak discharge
simulation. On the other hand, even though using RCs re-
sults in discharge overestimation (Pbias criterion), the qual-
ity of simulated discharges for variances (¢%) smaller than
0.04 improves in terms of RMSE and NSE, compared with
when only rain gauges are considered (St.). As discussed be-
fore, in order to overcome the overestimation caused by RCs,
one may consider RCs as additional information in interpola-
tion techniques. RCs could be corrected in practice by imple-
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menting quantile mapping like the one introduced by Rabiei
and Haberlandt (2015).

As observed, the improvement of model performance in
the Nette catchment when using RCs is more evident than
for the other two catchments. Therefore, it is decided to in-
vestigate the Nette catchment in more detail by analyzing the
hydrographs for all the scenarios given in Table 6.

Figure 9 shows the simulated discharge between Novem-
ber 2006 and March 2007. It can be observed that when only
rain gauges (St.) are used, the model misses some peaks and
performs poorly. This illustrates that the local rainfall is often
not captured. The model performance improves significantly
when using RCs. By increasing the uncertainties, i.e., enlarg-
ing o2, the overestimation of rainfall affects the model per-
formance as well. Considering the uncertainties larger than
the uncertainty derived from laboratory experiments could in
fact illustrate situations that we may encounter in practice
and we did not consider here.

5 Summary and conclusion

The value of using moving cars for rainfall measurement pur-
poses (RCs) was investigated with laboratory experiments
by Rabiei et al. (2013). They analyzed the Hydreon and
Xanonex optical sensors against different rainfall intensities.
The optical sensors showed promising results when used for
point rainfall measurement. Because of the low number of
real RCs available on roads, the main objective of this study
was to implement and investigate the errors derived from the
laboratory experiments for areal rainfall estimation in a com-
puter simulation. The errors were considered for the theoret-
ical RCs, provided by a traffic model, and OK was imple-
mented for areal rainfall estimation. Thereafter, the data are
also used for discharge simulations in the HBV hydrological
model. The value of the RCs is compared with when only
rain gauges are implemented. Radar data were considered as
the reference data to directly evaluate the areal rainfall esti-
mation rather than following the common approach for eval-
uating an interpolation technique, i.e., cross validation. The
other sources of data, i.e., RCs and rain gauges, were ex-
tracted from the reference data source, accordingly. A period
of 5 years from 2006 to 2010 and three catchments with dif-
ferent characteristics are considered.
The results of the study are as follows:

1. Implementing RCs with the uncertainties derived from
the laboratory experiments improves the quality of mod-
eled areal rainfall estimation compared with when only
rain gauges are used. The same is valid for discharge
simulation when the estimated areal rainfall is imple-
mented in hydrological modeling. However, the im-
provement is observed to be strongly dependent on the
catchment characteristics, RC network density and spa-
tial variability of rainfall.
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2. Because of the positive bias of the error distribution
when using a log-transformed W-R relationship, areal
rainfall overestimation is observed, in general, which re-
sulted in an overestimation of discharges as well. This
can be compensated by either increasing the RC net-
work density or implementing more accurate optical
Sensors.

3. By increasing the rainfall measurement uncertainty by
RCs, i.e., assuming larger variances for the random er-
ror, rainfall overestimation increases significantly. Im-
plementing errors up to a certain level is worthwhile,
whereas larger uncertainties resulted in deterioration of
results. Although the RCs with large errors should not
be considered directly for rainfall measurement, rela-
tively good NSE values show the potential of RCs to be
regarded as additional information in interpolation tech-
niques.

4. It is observed that applying OK for the interpolation of
point values for areal rainfall estimation results in un-
derestimation of rainfall. This was seen when no un-
certainty was considered for RCs as well as for the
case when only rain gauges were involved. The non-
Gaussianity of data and missing the rainfall maxima by
ground observations (RCs or rain gauges) over the study
area may explain this phenomenon.

The hydrological simulations are carried out on hourly tem-
poral resolution data with a lumped model parameter ap-
proach where the areal rainfall for each subcatchment is es-
timated separately. The conclusion of this study may not be
valid for other cases when, for example, a distributed model
or a different temporal resolution is being investigated. De-
pending on the target of each study, higher levels of data
quality may be required. For instance, following the conclu-
sions by Schilling (1991), in which he discussed implement-
ing high spatial (1 km?) and temporal (1 min) resolution data
for urban hydrology, the quality of rainfall measurement by
RCs might be insufficient. Furthermore, Berne et al. (2004)
also concluded that a temporal resolution of about 5 min
and a spatial resolution of about 3 km are required for ur-
ban catchments with an area about 1000 ha. They also stated
that for smaller catchments with an area about 100 ha, higher
resolution of about 3 min and 2 km are needed.

This study only shows the required accuracy that could be
considered for RainCars as a future potential of crowdsourc-
ing. Environmental factors such as road spray, car speed,
wind direction, snow, night—day variations, etc. can influ-
ence the performance of RCs in practice. Although this study
showed that the RCs are beneficiary, field experiments are
necessary to better assess the measurement uncertainty.
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3922

Acknowledgements. The study was funded by the German Re-
search Foundation (DFG, 3504/5-2). The authors thank the German
Weather Service (DWD) for the meteorological data. Moreover, the
authors wish to thank Anne Fangmann and Sarah Louise Collins
for their comments on an earlier draft of the paper. The authors
are very thankful to the associated editor, G. Pegram and one
anonymous referee for their critical remarks on the manuscript to
improve the paper.

The publication of this article was funded by the open-access
fund of Leibniz Universitit Hannover.

Edited by: R. Uijlenhoet
Reviewed by: G. Pegram and one anonymous referee

References

Berndt, C., Rabiei, E., and Haberlandt, U.: Geostatistical merging
of rain gauge and radar data for high temporal resolutions and
various station density scenarios, J. Hydrol., 508, 88-101, 2014.

Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and
spatial resolution of rainfall measurements required for urban hy-
drology, J. Hydrol., 299, 166179, 2004.

de Jong, S.: Low cost disdrometer, master thesis report, TU Dellft,
2010.

Haberlandt, U. and Sester, M.: Areal rainfall estimation using mov-
ing cars as rain gauges — a modelling study, Hydrol. Earth Syst.
Sci., 14, 1139-1151, doi:10.5194/hess-14-1139-2010, 2010.

Hydreon: Rain Gauge Model RG-11 Instructions, available at: http:
/Iwww.rainsensors.com/ (last access: 19 September 2016), 2015.

Isaaks, E. H. and Srivastava, R. M.: An Introduction to Applied
Geostatistics, Oxford Univ. Press, New York, 278-322, 1990.

Kidd, C. and Huffman, G.: Global precipitation measurement, Me-
teorol. Appl., 18, 334-353, 2011.

Kidd, C. and Levizzani, V.. Status of satellite precipita-
tion retrievals, Hydrol. Earth Syst. Sci., 15, 1109-1116,
doi:10.5194/hess-15-1109-2011, 2011.

Kirkpatrick, S.: Optimization by simulated annealing: Quantitative
studies, J. Stat. Phys., 34, 975-986, 1984.

Lindstrom, G., Johansson, B., Persson, M., Gardelin, M., and
Bergstrom, S.: Development and test of the distributed HBV-96
hydrological model, J. Hydrol., 201, 272-288, 1997.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
ceptual models part I — A discussion of principles, J. Hydrol., 10,
282-290, 1970.

Hydrol. Earth Syst. Sci., 20, 3907-3922, 2016

E. Rabiei et al.: Areal rainfall estimation using moving cars

Overeem, A., Leijnse, H., and Uijlenhoet R.: Country-wide rainfall
maps from cellular communication networks, P. Natl. Acad. Sci.,
11,2741-2745, 2013.

Prakash, S., Mitra, A. K., Pai, D. S., and AghaKouchak, A.: From
TRMM to GPM: How well can heavy rainfall be detected from
space?, Adv. Water Resour., 88, 1-7, 2016.

Rabiei, E. and Haberlandt, U.: Applying bias correction for merging
rain gauge and radar data, J. Hydrol., 522, 544-557, 2015.

Rabiei, E., Haberlandt, U., Sester, M., and Fitzner, D.: Rain-
fall estimation using moving cars as rain gauges — labora-
tory experiments, Hydrol. Earth Syst. Sci., 17, 47014712,
doi:10.5194/hess-17-4701-2013, 2013.

Rahimi, A. R., Holt, A. R., Upton, G. J. G., Krdmer, S., Redder,
A., and Verworn, H. R.: Attenuation Calibration of an X-Band
Weather Radar Using a Microwave Link, J. Atmos. Ocean. Tech-
nol., 23, 395-405, 2006.

Riedl, J.: Radar-Flichenniederschlagsmessung, Promet, 20-23,
1986.

Schilling, W.: Rainfall data for urban hydrology: what do we need?,
Atmos. Res., 27, 5-21, 1991.

Seltmann, J.: Radarforschung im DWD: Vom Scan zum Produkt,
Promet, 3242, 1997.

Shrestha, R., Tachikawa, Y., and Takara, K.: Input data resolution
analysis for distributed hydrological modeling, J. Hydrol., 319,
36-50, 2006.

Silverman, B. W.: Density Estimation for Statistics and Data Anal-
ysis, 26, RC Press, 1986.

Upton, G. J. G, Holt, A. R., Cummings, R. J., Rahimi, A. R., and
Goddard, J. W. F.: Microwave links: The future for urban rainfall
measurement?, Atmos. Res., 77, 300-312, 2005.

Wallner, M. and Haberlandt, U.: Non-stationary hydrological model
parameters: a framework based on SOM-B, Hydrol. Process., 29,
3145-3161, 2015.

Xanonex: Xanonex Funktionsweise, available at: http://www.
xanonex.de/ (last access: 19 September 2016), 2015.

Xu, H., Xu, C.-Y., Chen, H., Zhang, Z., and Li, L.: Assessing the
influence of rain gauge density and distribution on hydrological
model performance in a humid region of China, J. Hydrol., 505,
1-12, 2013.

Zinevich, A., Messer, H., and Alpert, P.: Frontal Rainfall Observa-
tion by a Commercial Microwave Communication Network, J.
Appl. Meteorol. Climatol., 48, 1317-1334, 2009.

www.hydrol-earth-syst-sci.net/20/3907/2016/


http://dx.doi.org/10.5194/hess-14-1139-2010
http://www.rainsensors.com/
http://www.rainsensors.com/
http://dx.doi.org/10.5194/hess-15-1109-2011
http://dx.doi.org/10.5194/hess-17-4701-2013
http://www.xanonex.de/
http://www.xanonex.de/

	Abstract
	Introduction
	Methods
	Mean field bias correction
	Traffic model 
	Network density of rain stations
	Uncertainties for RainCars
	Areal rainfall estimation
	The HBV hydrological model
	Performance measures

	Study area and data
	Catchments
	Radar rainfall
	W--R relationship

	Results and discussion
	Traffic model
	Network density
	RainCars uncertainty
	Variogram properties used in this study
	Reference discharge
	Comparing areal rainfall and simulated discharge for different sources
	Rain gauge network
	RCs against rain gauges using errors from laboratory experiments
	Discharge simulation
	RCs against rain gauges using hypothetical errors 
	Discharge simulation


	Summary and conclusion
	Acknowledgements
	References

