Articles | Volume 20, issue 5
https://doi.org/10.5194/hess-20-1809-2016
https://doi.org/10.5194/hess-20-1809-2016
Research article
 | 
10 May 2016
Research article |  | 10 May 2016

Accounting for three sources of uncertainty in ensemble hydrological forecasting

Antoine Thiboult, François Anctil, and Marie-Amélie Boucher

Related authors

Producing reliable hydrologic scenarios from raw climate model outputs without resorting to meteorological observations
Simon Ricard, Philippe Lucas-Picher, Antoine Thiboult, and François Anctil
Hydrol. Earth Syst. Sci., 27, 2375–2395, https://doi.org/10.5194/hess-27-2375-2023,https://doi.org/10.5194/hess-27-2375-2023, 2023
Short summary
The HOOPLA toolbox: a HydrOlOgical Prediction LAboratory to explore ensemble rainfall-runoff modeling
Antoine Thiboult, Gregory Seiller, Carine Poncelet, and François Anctil
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-6,https://doi.org/10.5194/hess-2020-6, 2020
Preprint withdrawn
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Potential for historically unprecedented Australian droughts from natural variability and climate change
Georgina M. Falster, Nicky M. Wright, Nerilie J. Abram, Anna M. Ukkola, and Benjamin J. Henley
Hydrol. Earth Syst. Sci., 28, 1383–1401, https://doi.org/10.5194/hess-28-1383-2024,https://doi.org/10.5194/hess-28-1383-2024, 2024
Short summary
Flood risk assessment for Indian sub-continental river basins
Urmin Vegad, Yadu Pokhrel, and Vimal Mishra
Hydrol. Earth Syst. Sci., 28, 1107–1126, https://doi.org/10.5194/hess-28-1107-2024,https://doi.org/10.5194/hess-28-1107-2024, 2024
Short summary
Key ingredients in regional climate modelling for improving the representation of typhoon tracks and intensities
Qi Sun, Patrick Olschewski, Jianhui Wei, Zhan Tian, Laixiang Sun, Harald Kunstmann, and Patrick Laux
Hydrol. Earth Syst. Sci., 28, 761–780, https://doi.org/10.5194/hess-28-761-2024,https://doi.org/10.5194/hess-28-761-2024, 2024
Short summary
Divergent future drought projections in UK river flows and groundwater levels
Simon Parry, Jonathan D. Mackay, Thomas Chitson, Jamie Hannaford, Eugene Magee, Maliko Tanguy, Victoria A. Bell, Katie Facer-Childs, Alison Kay, Rosanna Lane, Robert J. Moore, Stephen Turner, and John Wallbank
Hydrol. Earth Syst. Sci., 28, 417–440, https://doi.org/10.5194/hess-28-417-2024,https://doi.org/10.5194/hess-28-417-2024, 2024
Short summary
Predicting extreme sub-hourly precipitation intensification based on temperature shifts
Francesco Marra, Marika Koukoula, Antonio Canale, and Nadav Peleg
Hydrol. Earth Syst. Sci., 28, 375–389, https://doi.org/10.5194/hess-28-375-2024,https://doi.org/10.5194/hess-28-375-2024, 2024
Short summary

Cited articles

Abaza, M., Anctil, F., Fortin, V., and Turcotte, R.: A comparison of the Canadian global and regional meteorological ensemble prediction systems for short-term hydrological forecasting (vol 141, pg 3462, 2013), Mon. Weather Rev., 142, 2561–2562, https://doi.org/10.1175/mwr-d-14-00018.1, 2014.
Abaza, M., Anctil, F., Fortin, V., and Turcotte, R.: Exploration of sequential streamflow assimilation in snow dominated watersheds, Adv. Water Resour., 80, 79–89, https://doi.org/10.1016/j.advwatres.2015.03.011, 2015.
Ajami, N. K., Duan, Q., Gao, X., and Sorooshian, S.: Multimodel combination techniques for analysis of hydrological simulations: Application to Distributed Model Intercomparison Project results, J. Hydrometeorol., 7, 755–768, https://doi.org/10.1175/jhm519.1, 2006.
Ajami, N. K., Duan, Q. Y., and Sorooshian, S.: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, https://doi.org/10.1029/2005wr004745, 2007.
Bartholmes, J. C., Thielen, J., Ramos, M. H., and Gentilini, S.: The european flood alert system EFAS – Part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts, Hydrol. Earth Syst. Sci., 13, 141–153, https://doi.org/10.5194/hess-13-141-2009, 2009.
Download
Short summary
Issuing a good hydrological forecast is challenging because of the numerous sources of uncertainty that lay in the description of the hydrometeorological processes. Several modeling techniques are investigated in this paper to assess how they contribute to the forecast quality. It is shown that the best modeling approach uses several dissimilar techniques that each tackle one source of uncertainty.