Articles | Volume 20, issue 5
https://doi.org/10.5194/hess-20-1809-2016
https://doi.org/10.5194/hess-20-1809-2016
Research article
 | 
10 May 2016
Research article |  | 10 May 2016

Accounting for three sources of uncertainty in ensemble hydrological forecasting

Antoine Thiboult, François Anctil, and Marie-Amélie Boucher

Related authors

Temporal patterns of greenhouse gas emissions from two small thermokarst lakes in Nunavik, Canada
Amélie Pouliot, Isabelle Laurion, Antoine Thiboult, and Daniel F. Nadeau
EGUsphere, https://doi.org/10.5194/egusphere-2025-1497,https://doi.org/10.5194/egusphere-2025-1497, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Producing reliable hydrologic scenarios from raw climate model outputs without resorting to meteorological observations
Simon Ricard, Philippe Lucas-Picher, Antoine Thiboult, and François Anctil
Hydrol. Earth Syst. Sci., 27, 2375–2395, https://doi.org/10.5194/hess-27-2375-2023,https://doi.org/10.5194/hess-27-2375-2023, 2023
Short summary
The HOOPLA toolbox: a HydrOlOgical Prediction LAboratory to explore ensemble rainfall-runoff modeling
Antoine Thiboult, Gregory Seiller, Carine Poncelet, and François Anctil
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-6,https://doi.org/10.5194/hess-2020-6, 2020
Preprint withdrawn
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
High-resolution land surface modelling over Africa: the role of uncertain soil properties in combination with forcing temporal resolution
Bamidele Oloruntoba, Stefan Kollet, Carsten Montzka, Harry Vereecken, and Harrie-Jan Hendricks Franssen
Hydrol. Earth Syst. Sci., 29, 1659–1683, https://doi.org/10.5194/hess-29-1659-2025,https://doi.org/10.5194/hess-29-1659-2025, 2025
Short summary
Investigating the global and regional response of drought to idealized deforestation using multiple global climate models
Yan Li, Bo Huang, Chunping Tan, Xia Zhang, Francesco Cherubini, and Henning W. Rust
Hydrol. Earth Syst. Sci., 29, 1637–1658, https://doi.org/10.5194/hess-29-1637-2025,https://doi.org/10.5194/hess-29-1637-2025, 2025
Short summary
Distribution, trends, and drivers of flash droughts in the United Kingdom
Iván Noguera, Jamie Hannaford, and Maliko Tanguy
Hydrol. Earth Syst. Sci., 29, 1295–1317, https://doi.org/10.5194/hess-29-1295-2025,https://doi.org/10.5194/hess-29-1295-2025, 2025
Short summary
Are dependencies of extreme rainfall on humidity more reliable in convection-permitting climate models?
Geert Lenderink, Nikolina Ban, Erwan Brisson, Ségolène Berthou, Virginia Edith Cortés-Hernández, Elizabeth Kendon, Hayley J. Fowler, and Hylke de Vries
Hydrol. Earth Syst. Sci., 29, 1201–1220, https://doi.org/10.5194/hess-29-1201-2025,https://doi.org/10.5194/hess-29-1201-2025, 2025
Short summary
Leveraging a radar-based disdrometer network to develop a probabilistic precipitation phase model in eastern Canada
Alexis Bédard-Therrien, François Anctil, Julie M. Thériault, Olivier Chalifour, Fanny Payette, Alexandre Vidal, and Daniel F. Nadeau
Hydrol. Earth Syst. Sci., 29, 1135–1158, https://doi.org/10.5194/hess-29-1135-2025,https://doi.org/10.5194/hess-29-1135-2025, 2025
Short summary

Cited articles

Abaza, M., Anctil, F., Fortin, V., and Turcotte, R.: A comparison of the Canadian global and regional meteorological ensemble prediction systems for short-term hydrological forecasting (vol 141, pg 3462, 2013), Mon. Weather Rev., 142, 2561–2562, https://doi.org/10.1175/mwr-d-14-00018.1, 2014.
Abaza, M., Anctil, F., Fortin, V., and Turcotte, R.: Exploration of sequential streamflow assimilation in snow dominated watersheds, Adv. Water Resour., 80, 79–89, https://doi.org/10.1016/j.advwatres.2015.03.011, 2015.
Ajami, N. K., Duan, Q., Gao, X., and Sorooshian, S.: Multimodel combination techniques for analysis of hydrological simulations: Application to Distributed Model Intercomparison Project results, J. Hydrometeorol., 7, 755–768, https://doi.org/10.1175/jhm519.1, 2006.
Ajami, N. K., Duan, Q. Y., and Sorooshian, S.: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, https://doi.org/10.1029/2005wr004745, 2007.
Bartholmes, J. C., Thielen, J., Ramos, M. H., and Gentilini, S.: The european flood alert system EFAS – Part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts, Hydrol. Earth Syst. Sci., 13, 141–153, https://doi.org/10.5194/hess-13-141-2009, 2009.
Download
Short summary
Issuing a good hydrological forecast is challenging because of the numerous sources of uncertainty that lay in the description of the hydrometeorological processes. Several modeling techniques are investigated in this paper to assess how they contribute to the forecast quality. It is shown that the best modeling approach uses several dissimilar techniques that each tackle one source of uncertainty.
Share