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Abstract. Seeking more accuracy and reliability, the hy-

drometeorological community has developed several tools

to decipher the different sources of uncertainty in relevant

modeling processes. Among them, the ensemble Kalman fil-

ter (EnKF), multimodel approaches and meteorological en-

semble forecasting proved to have the capability to improve

upon deterministic hydrological forecast. This study aims to

untangle the sources of uncertainty by studying the combina-

tion of these tools and assessing their respective contribution

to the overall forecast quality. Each of these components is

able to capture a certain aspect of the total uncertainty and

improve the forecast at different stages in the forecasting

process by using different means. Their combination outper-

forms any of the tools used solely. The EnKF is shown to

contribute largely to the ensemble accuracy and dispersion,

indicating that the initial conditions uncertainty is dominant.

However, it fails to maintain the required dispersion through-

out the entire forecast horizon and needs to be supported by

a multimodel approach to take into account structural un-

certainty. Moreover, the multimodel approach contributes to

improving the general forecasting performance and prevents

this performance from falling into the model selection pitfall

since models differ strongly in their ability. Finally, the use of

probabilistic meteorological forcing was found to contribute

mostly to long lead time reliability. Particular attention needs

to be paid to the combination of the tools, especially in the

EnKF tuning to avoid overlapping in error deciphering.

1 Introduction

The complexity of hydrometeorological systems is such that

it is not possible to perfectly represent their “true” descriptive

physical processes, and even less to integrate them forward

in time with mathematical models. These models are only

an approximation of varying quality to represent and predict

variables of interest, yet they proved to be skillful and useful

for water resource management and hazard prevention (e.g.,

Bartholmes et al., 2009; Pagano et al., 2014; Demargne et al.,

2014).

Inadequacies between simulation or predictions and ob-

servations can be largely attributed to the many sources of

uncertainty that are located along the hydrometeorological

chain (e.g., Walker et al., 2003; Beven and Binley, 2014).

Hence, it is admitted that improvement of the forecast ought

to go through understanding and reducing the sources of un-

certainty (e.g., Liu and Gupta, 2007). These sources have a

different nature that ranges from epistemic uncertainty due to

the imperfection of our knowledge to variability uncertainty

where the imperfections are due to the inherent system vari-

ability (e.g., Walker et al., 2003; Beven, 2008). They also

differ in location, i.e., where they lay in the hydrometeoro-

logical modeling chain: meteorological forcing, model pa-

rameters and structure, hydrological initial conditions, and,

to a lesser extent, observations (Walker et al., 2003; Vrugt

and Robinson, 2007; Ajami et al., 2007; Salamon and Feyen,

2010).

As all models are exposed to these sources of uncertainty,

they necessarily lead to forecasts with imperfections. It is

thus possible – and frequent – that several models can sim-

ulate the process of interest with the same accuracy. These
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simulations are equally likely in the mathematical sense; it is

referred to as the principle of equifinality (Beven and Binley,

1992).

Ensembles provide a probabilistic answer to the equifinal-

ity problem. They are a collection of deterministic predic-

tions issued by different models to simulate the same event

and attempt to produce a representative sample of the future.

They can be built by a suitable method wherever a source of

uncertainty needs to be put under scrutiny. Additionally, in

general, the ensemble mean is more skillful than determin-

istic systems and offers a better ability to forecast extreme

events (e.g., Wetterhall et al., 2013).

As the sources of uncertainty differ in their location, na-

ture, and statistical properties, they need specific tools to be

deciphered efficiently (Liu and Gupta, 2007). A wide range

of methods have been developed in the past year to cater hy-

drological forecast needs.

At the beginning of the 1990s, meteorologists pioneered

the operational use of ensembles by constructing meteoro-

logical ensemble prediction systems (MEPSs), mostly to take

into account imperfect initial conditions that are a prime im-

portance uncertainty source in view of the chaotic nature of

the atmospheric physics. Several methods have been pro-

posed to tackle this issue. For instance, to define the ini-

tial condition uncertainty, the European Center for Medium-

Range Weather Forecasts (ECMWF) generates an ensemble

by initiating their model with singular vectors (Molteni et al.,

1996) to which a stochastic scheme is added to deal with the

model physical parametrization uncertainty (Buizza et al.,

1999).

The increasing accessibility of MEPS benefited the

hydrology community in issuing probabilistic hydrologi-

cal forecasts that take into account meteorological uncer-

tainty forcing with hydrological ensemble prediction sys-

tems (HEPSs; e.g., Cloke and Pappenberger, 2009; Brochero

et al., 2011; Boucher et al., 2012; Abaza et al., 2014).

Since 2007, the Observing System Research and Predictabil-

ity Experiment (THORPEX) Interactive Grand Global En-

semble (TIGGE) allows for free access to meteorological en-

semble forecasts for hydrologists and other researchers. This

database regroups the outputs from nine operational atmo-

spheric models around the world, which can be downloaded

in grib2 format.

A lot of attention has been paid to the identification of

hydrological model parameters and the non-uniqueness of

the solutions. Among other techniques, Vrugt et al. (2003)

proposed the shuffled complex evolution metropolis algo-

rithm (SCEM-UA), a calibration technique that retains sev-

eral sets of parameters instead of a single one for a more real-

istic assessment of parameter uncertainty. Beven and Binley

(1992) suggested a more comprehensive approach for model

acceptance or rejection with the generalized likelihood un-

certainty estimation (GLUE) that allows one to include dif-

ferent forms of competing models.

Gourley and Vieux (2006) asserted that dealing only with

input and parameter uncertainty is likely to issue unreliable

forecasts and that hydrological model structural uncertainty

should be deciphered explicitly. This statement is substanti-

ated by Clark et al. (2008), who compared 79 unique model

structures and concludes that a single structure is unlikely

to perform better than the others in all situations. Poulin

et al. (2011) added that the structural uncertainty is larger

than the parameter estimation uncertainty and provides more

diverse outputs. Combining dissimilar hydrological model

structures proved to possess a great potential (Breuer et al.,

2009) even with simple combination patterns (Ajami et al.,

2006; Velázquez et al., 2011; Seiller et al., 2012).

Initial condition uncertainty has also aroused scientific in-

terest. Many studies using various data assimilation tech-

niques to incorporate observations within the simulation pro-

cesses demonstrated that the specification of catchment de-

scriptive states is a crucial aspect of short and medium range

forecasting (DeChant and Moradkhani, 2011; Lee et al.,

2011). Among them, sequential data assimilation techniques

such as the particle filter (e.g., DeChant and Moradkhani,

2012; Thirel et al., 2013), the ensemble Kalman filter (EnKF)

(e.g., Weerts and El Serafy, 2006; Rakovec et al., 2012), and

variants (Noh et al., 2013, 2014; Chen et al., 2013; McMil-

lan et al., 2013) can substantially improve forecasting skills

over the open-loop scheme (i.e., no data assimilation is per-

formed), by reducing and characterizing the uncertainty in

initial conditions.

Considerable efforts have been made in the development

of these sophisticated techniques and this gave rise to many

tools that have been individually tested useful. As Bourdin

et al. (2012) pointed out, “to date, applications of ensemble

methods in streamflow forecasting have typically focused on

only one or two error sources [. . . ] A challenge will be to

develop ensemble streamflow forecasts that sample a wider

range of predictive uncertainty”. As underlined, the forecast-

ing tools frequently tackle different sources of uncertainty

and therefore do not exclude each other but can be seen as

complementary, combining their assets to compose an over-

all better system.

The present study identifies three efficient tools, namely a

hydrological multimodel approach, EnKF, and MEPS forc-

ing that are used together to decipher the traditional hydrom-

eteorological sources of uncertainty. The paper scope is to

identify how they complement each other, to assess their in-

dividual contribution to the hydrological forecast reliability

and accuracy, and to eventually evaluate the possibility of

achieving reliability without resorting to post-processing.

This is achieved by issuing hindcasts on 20 catchments

using the aforementioned techniques, either individually or

combined, to investigate their specific role in the forecasting

process. Each of them produces an ensemble that can be cas-

caded through the next ensemble technique in order to pro-

duce a larger ensemble that possesses a more comprehensive

error handling. Finally, if all sources of error are accounted
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Figure 1. Spatial distribution of the catchments.

for, the ensemble should generate a forecast that is reliable

(Bourdin et al., 2012).

This paper is organized as follows: Sect. 2 presents the

catchments, models, the EnKF basics and scores, and Sect. 3

sums up the systems specificities and their respective perfor-

mances followed by a conclusion in Sect. 4

2 Material and methodology

2.1 Catchments and hydrometeorological data

The 20 catchments located in the south of the province of

Québec have been selected for this study (Fig. 1). The catch-

ments experience a mixed hydrological regime with a spring

freshet resulting from the important winter snow cover and

a lesser second peak in autumn. There is little or no human

intervention on the catchments.

The climatology of the catchments is varied (Table 1), par-

ticularly in terms of annual snowfall and annual total precipi-

tation. The differences in the catchments’ physical character-

istics (area, length, slope, etc.) and climatology are reflected

in their streamflow statistics (e.g., average streamflow, coef-

ficient of variation).

Daily total precipitation, maximum and minimum tem-

perature, and streamflows were provided by the Centre

d’Expertise Hydrique du Québec. They performed Krig-

ing on the observations over a 0.1◦ resolution grid to

which a temperature correction with an elevation gradient

of −0.005 ◦C m−1 is added. The database is split into three

periods: 1990–2000 for the calibration of the models, Oc-

tober 2005–October 2008 for the spin up, while Novem-

ber 2008–December 2010 is committed to the hydrological

forecast assessment.

The MEPSs used as inputs to the hydrological model were

retrieved from the TIGGE database. The temperatures and

precipitation forecasts from the ECMWF were chosen for

this study. They are formed by 50 exchangeable members

(Fraley et al., 2010) with a 6 h time step and a 10-day hori-

zon. However, after conversion from Greenwich time to local

Québec time, the horizon reduces to 9 days. For the sake of

the study and to match the common framework of the hydro-

logical models, weather forecasts are aggregated at a daily

time step starting at 06:00 EST (12:00 UTC). The ECMWF

raw forecasts are provided on a regular grid with a 0.5◦ hor-

izontal resolution (N200 Gaussian grid), which is too coarse

for this application, especially for the smallest catchments.

To ensure that several representative grid points are situated

within each catchment boundary, meteorological forecasts

are downscaled to a 0.1◦ resolution during data retrieval by

using bilinear interpolation (e.g., Gaborit et al., 2013). Also,

the interpolation allows one to take into account the contribu-

tion of the grid points that are close but not directly situated

within catchment boundaries and thus allows for a better de-

scription of each catchments’ meteorological conditions. As

the rainfall–runoff models are lumped, a single representative

point forecast is obtained for each MEPS member by averag-

ing the downscaled grid points situated within the catchment

boundaries.

The weather forecasts display acceptable performance

over the 20 selected catchments. In fact, in the initial group

of 38 catchments, 18 displayed unsatisfactory performances

www.hydrol-earth-syst-sci.net/20/1809/2016/ Hydrol. Earth Syst. Sci., 20, 1809–1825, 2016



1812 A. Thiboult et al.: Accounting for three sources of uncertainty

Table 1. Main characteristics of the 20 catchments. Q and P are, respectively, the observed streamflow and precpitation.

River name Area River Average Mean Coeff. of Mean Mean

(km2) length slope ann. Q variation ann. P ann.

(km) (%) (m3 s−1) of Q (mm) snow

(cm)

Trois Pistoles 923 52 0.52 18 1.81 1109 382

Du Loup 512 45 0.78 10 1.47 1050 378

Gatineau 6796 190 0.12 127 1.08 1023 332

Dumoine 3743 145 0.13 50 0.81 968 297

Kinojévis 2572 83 0.12 39 1.12 921 324

Matawin 1383 68 0.29 24 1.11 1025 328

Croche 1551 102 0.33 29 1.24 996 360

Vermillon 2650 145 0.20 39 1.10 957 312

Batiscan 4483 167 0.45 96 1.03 1162 381

Saint-Anne 1539 84 0.81 51 1.20 1412 502

Bras du Nord 643 77 0.82 19 1.21 1385 499

Du loup 767 57 0.78 12 1.27 1020 332

Aux Ecorces 1107 54 1.04 28 1.09 1236 450

Métabetchouane 2202 155 0.43 48 1.19 1168 420

Péribonka 1010 101 0.50 19 1.16 1000 376

Ashuapmushuan 15 342 342 0.16 300 0.92 984 379

Ashuapmushuan 11 200 232 0.12 227 0.88 1001 394

Au Saumon 586 69 0.65 8 1.36 877 334

Mistassini 9534 278 0.20 200 1.08 1004 409

Valin 761 59 1.06 24 1.13 1123 453

so they were withdrawn from the experiment from the begin-

ning, as pre-processing the meteorological inputs falls out-

side the scope of the project. When compared to the meteoro-

logical observations, precipitation and temperature MCRPS

(Mean Continuous Ranked Probability Score) over the 9 days

(see Sect. 2.4) remain below 3 mm and 3 ◦C, respectively,

for the remaining 20 catchments. Other scores have been

evaluated (Nash–Sutcliffe efficiency, root-mean-square error,

mean absolute error, normalized root-mean-square error ra-

tio) and are in agreement with the MCRPS values, confirm-

ing the exclusion of the aforementioned 18 catchments.

An alternative to the ECMWF ensemble forecasts is

used to simulate a deterministic meteorological forcing with

equivalent theoretical skill. For this purpose, a single mem-

ber is drawn randomly among the 50 exchangeable members.

2.2 Models, snow module, and evapotranspiration

The multimodel ensemble is composed of 20 conceptual

lumped models. In this study, their outputs are pooled to-

gether with equal weights or studied individually. Models

have been initially selected by Perrin (2000) for their con-

ceptual and structural diversity and revised by Seiller et al.

(2012). They present various degrees of complexity: 4 to

10 calibrated parameters and 2 to 7 reservoirs to describe

the main hydrological processes (Table 2). Model selection

is a key element for an efficient multimodel ensemble as the

diversity among them contributes to encompassing the error

in model conceptualization and structure (Viney et al., 2009).

Close attention has been paid to the diversity of the different

components of the models, especially regarding the represen-

tation of the different storages and flows. This maximizes the

chance to encompass the most effective way to describe stor-

age and routing by providing an ensemble of likely descrip-

tions of the processes. All models were derived from exist-

ing ones, keeping their main specificities but adapting them

to match a common framework where every snow module-

model sets share the same inputs, namely precipitation and

potential evapotranspiration. The models, in their original

form, are either lumped (GR4J, GARDENIA, HBV, MO-

HYSE, etc.) or use a spatial discretization of the catchment

(CEQUEAU, TOPMODEL, SACRAMENTO, etc.). For the

models that were initially semi-distributed, they have been

converted into lumped models (Perrin, 2000). This has been

done in order to facilitate their integration in the common

framework used in this study and for computational require-

ments.

The 20 conceptual lumped models are applied in a tradi-

tional way; i.e., no subsequent spatial discretization has been

performed, hydrological processes are computed at the catch-

ment scale, and the parametrization is uniform over the entire

catchment. Despite their simplicity and the approximations

they rely on, they have shown to perform well and are com-

petitive with more complex ones, especially when combined

(Thiboult and Anctil, 2015b).
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Table 2. Main characteristics of the 20 lumped models (Seiller et al., 2012).

Model Number of Number of Derived from

acronym optimized. reservoirs

parameters

M01 6 3 BUCKET (Thornthwaite and Mather, 1955)

M02 9 2 CEQUEAU (Girard et al., 1972)

M03 6 3 CREC (Cormary and Guilbot, 1973)

M04 6 3 GARDENIA (Thiery, 1982)

M05 4 2 GR4J (Perrin et al., 2003)

M06 9 3 HBV (Bergström and Forsman, 1973)

M07 6 5 HYMOD (Wagener et al., 2001)

M08 7 3 IHACRES (Jakeman et al., 1990)

M09 7 4 MARTINE (Mazenc et al., 1984)

M10 7 2 MOHYSE (Fortin and Turcotte, 2007)

M11 6 4 MORDOR (Garçon, 1999)

M12 10 7 NAM (Nielsen and Hansen, 1973)

M13 8 4 PDM (Moore and Clarke, 1981)

M14 9 5 SACRAMENTO (Burnash et al., 1973)

M15 8 3 SIMHYD (Chiew et al., 2002)

M16 8 3 SMAR (O’Connell et al., 1970)

M17 7 4 TANK (Sugawara, 1979)

M18 7 3 TOPMODEL (Beven et al., 1984)

M19 8 3 WAGENINGEN (Warmerdam et al., 1997)

M20 8 4 XINANJIANG (Zhao et al., 1980)

The snow accumulation and melt module, as well as the

evapotranspiration formulation, have also been omitted in the

case the hydrological models had their own to be replaced

by Cemaneige and Oudin’s potential evapotranspiration for-

mulation, respectively. Thus, for all hydrological models the

same snow accumulation, melting module, and evapotranspi-

ration formulation have been used. A detailed description of

the models’ structure can be found in Perrin (2000).

Cemaneige, a degree-day snow accounting routine, is used

to model the catchment snow processes (Valery et al., 2014).

It divides the catchment into five elevation bands and re-

quires two parameters to be calibrated: a snowmelt and a

cold-content factor. As it is calibrated conjointly with indi-

vidual models and according to an objective function based

on streamflow observations, its parameter values depend on

the hydrological model with which it is coupled. The 20 hy-

drological models have therefore precipitation inputs that are

driven by the same snow accounting routine but differently

parametrized. Thus, part of the uncertainty related to the

snowmelt module is taken into account through dissimilar

parameter sets that drives the state of the snowpack accumu-

lation and melting.

All models were given the same potential evapotranspira-

tion input, which is computed following the formula from

Oudin et al. (2005) that relies on the mean air temperature

and the calculated extraterrestrial radiation.

2.3 Forecasting approaches

Two approaches are used and compared for forecasting: the

open loop and the EnKF. Regardless of the method used, the

meteorological observations over the 3 years preceding the

forecast period are used for model spin up to provide better

estimates of initial catchment conditions.

2.3.1 Open-loop forecasting

When the open-loop forecast is activated, the state variables

are obtained in simulation mode and used as a starting point

to initiate the hydrological forecast. The simulation and fore-

cast steps then alternate as follows: (1) the models are forced

with observations up to the first day t of the forecast and

(2) the models are next forced with meteorological forecasts

to issue the hydrological predictions until t + 9. The proce-

dure is repeated as the models are brought forward in time

with the observations from t .

2.3.2 Ensemble Kalman filter

The EnKF is a sequential data assimilation technique that

uses a recursive Bayesian estimation scheme to provide an

ensemble of possible model re-initializations. The model

state variable vector X is updated according to its likelihood

probability density function that is inferred by the observa-

tions z, p(Xt |z1:t ) with the indices t referring to the time.

When an observation becomes available, model states are

updated (X+, the a posteriori estimation) as a combination of
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the predicted (X−, also called the a priori states) and the dif-

ference between the prior estimate of the variable of interest

HX− and the corresponding observation zt .

X+t =X−t +Kt

(
zt −HX−t

)
, (1)

where H is the observation model that relates the state vec-

tors and observations, and K is the Kalman gain matrix that

defines the relative importance given to the output error and

prior estimate, respectively.

The Kalman gain is defined with the model error covari-

ance matrix Pt and the covariance of observation noise Rt

as

Kt = PtH
T
(

HPtH
T
+Rt

)−1

. (2)

A detailed explanation of the EnKF mathematical back-

ground and concepts can be found in Evensen (2003). In this

study, the filter has been implemented in its traditional form

following Mandel (2006).

The EnKF is able to decipher the catchment initial condi-

tion as it acts on variables after the spin-up time, i.e., at the

very start of the hydrological forecast. Thus, it is frequently

presented as a tool that describes catchment descriptive state

uncertainty, such as soil moisture, but it also implicitly takes

into account model parameters and structural uncertainty as

these are reflected in the model states and output errors. The

forecasting system comprises inaccuracies at several levels

and consequently the error statistics that the EnKF uses to

update state variables are due not only to the variability un-

certainty (the uncertainty due to the inherent variability of

the values of interest) but also to the epistemic uncertainty

(the uncertainty related to the imperfect knowledge of the

processes) that lay in the value of the state variables as well.

The EnKF performance is highly influenced by its set-

ting, in particular by the required noise specification of in-

puts and outputs (Noh et al., 2014) and also by the choice

of the updated state variables (Li et al.). This directly affects

the spread of the ensemble and the corresponding uncertainty

description (Thiboult and Anctil, 2015a). As the level of un-

certainty varies from the model used and the simulated catch-

ment, the optimal EnKF implementation also depends to a

great extent on these aspects (Thiboult and Anctil, 2015a).

In practice, it is complex to untangle uncertainties through

the use of the EnKF. The filter, in its traditional form, can

decipher the overall predictive uncertainty but does not dis-

tinguish between input–output, structural, and parameter un-

certainty. By artificially and deliberately overestimating the

input uncertainty, it is possible to compensate for uncertain-

ties that are not explicitly addressed and achieve reliability

in simulation and possibly during forecast for the first lead

times.

In this study, the EnKF is tuned to optimize reliability and

accuracy per catchment and per model. The retained specifi-

cations are identified after extensive testing has been carried

out. More precisely, two or three noise levels for each input

and output were tested (a 25–50–75 % standard deviation of

the mean value with a gamma law for precipitation, 10–25–

50 % standard deviation of the mean value with the normal

law for streamflow observations, and 2–5◦ standard devia-

tion with a normal law for the temperature). Additionally, as

the choice of updated state variables is also a key component

of the EnKF, all possible combinations of updated state vari-

ables were tested with the 12 noise combinations described

above. The retained EnKF settings were based on a two-step

criterion; first, the three settings that presented the best re-

liability were kept and then the one among them that led to

the lowest bias. Therefore, the optimal settings may use un-

realistically high perturbations that compensate partially for

the structural error. A detailed description of the EnKF op-

timization with the 20 models is provided in Thiboult and

Anctil (2015a)

In this study, where the EnKF is meant to be combined

with the multimodel approach, dual state-parameter updating

was not considered since it is expected that the multimodel

accounts for structural and parameter uncertainty simultane-

ously (Poulin et al., 2011), releasing the need to modify (up-

date) model time-invariant parameters.

2.4 Scores

The continuous ranked probability score (CRPS; Matheson

and Winkler, 1976) is a common verification tool for prob-

abilistic forecasts that assesses accuracy and resolution. A

cumulative distribution function is built based on the raw

predictive ensemble, i.e., the collection of deterministic fore-

casts and then compared to the observation. It is defined as

CRPS(Ft ,xobs)=

+∞∫
−∞

(Ft (x)−H (x ≥ xobs))
2dx, (3)

where Ft (x) is the cumulative distribution function at time t ,

x the predicted variable, and xobs is the corresponding ob-

served value. The function H is the Heaviside function,

which equals 0 for predicted values smaller than the observed

value, 1 otherwise. The CRPS shares the same unit as the pre-

dicted variable x.

As the CRPS assesses the forecast for a single time step,

the MCRPS is defined as the average CRPS over the entire

period. The MCRPS can reduce to the mean absolute er-

ror (MAE) if a single member is considered and thus it allows

to compare deterministic and probabilistic forecasts (Hers-

bach, 2000; Gneiting and Raftery, 2007). Finally, a value of 0

indicates a perfect forecast and there is no upper bound.

The reliability diagram (Stanski et al., 1989) is a graphi-

cal method to assess the reliability of a predictive ensemble

by plotting forecasted against observed event frequencies. A

perfectly reliable forecast is represented by a 45◦ line that in-

dicates that forecasted and observed frequencies are equal. If

the joint distribution curve differs from the perfect reliabil-
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Table 3. Description of the nine forecasting systems.

Systems A B C D E F G H H′

Multimodel Off Off Off Off On On On On On

EnKF Off Off On On Off Off On On On

Met. ensemble Off On Off On Off On Off On On

Nb of members (20×) 1 (20×) 50 (20×) 50 (20×) 2500 20 1000 1000 50 000 50 000

ity line, it indicates that the spread of the ensemble does not

perfectly match its predictive skills. If the curve is situated

above the perfect reliability line, this denotes an overdisper-

sion of the ensemble, and an underdispersion in the opposite

case.

The reliability is 2-fold. Since the reliability curve assesses

the dispersion regarding the predictive skills of the ensem-

ble, it is possible to have a perfectly reliable system with a

low predictive capability in the case that dispersion is very

high. For disambiguation, the ensemble spread is added to

the plots.

Practically, one can define the deviation from perfect re-

liability by estimating a measure of distance between the

forecast reliability curve and the perfect reliability line by

computing the MAE or mean square error (MSE; Brochero

et al., 2013). This dimensionless score allows one to reduce

the measure of reliability to a scalar. In the case where the

MAE is used, it can be easily interpreted as the average dis-

tance between forecasted frequencies and the observed fre-

quencies over all quantiles of interest. This verification score

is henceforth referred to as the mean absolute error of the

reliability diagram, MaeRD.

Additional information about reliability can be obtained

from the Spread Skill Plot (SSP, Fortin et al., 2014). It com-

pares the Root Mean Square Error RMSE and the square root

of average ensemble variance that is a measure of the ensem-

ble spread. The reliability is thus somehow decomposed into

an accuracy error part and a spread component. Ideally, the

spread should match the RMSE.

3 Results

Table 3 summarizes the specificities of the nine variants of

the hydrometeorological forecasting framework according to

the three “forecasting tools”: multimodel, EnKF, and ensem-

ble meteorological forcing. Each of these switches may be

activated or not and are marked accordingly as on/off in the

table.

The multimodel switch dictates if the members issued by

the 20 individual models are pooled together to create a sin-

gle probabilistic forecast. In the case where the multimodel

approach is not used, the models’ outputs are kept individu-

ally and 20 distinct ensembles – one per model – are consid-

ered.

The EnKF switch indicates if sequential data assimilation

or the open-loop procedure is applied. When EnKF updat-

ing is used, an ensemble of 50 members is created from 50

likely initial conditions sets identified by the filter. Other-

wise, a single set of state variable values determined from

the simulation is provided to the forecasting step. Note that

the H and H′ system differ by the EnKF perturbations mag-

nitude, where H uses perturbations that aim to optimize the

combined criterion while H′ uses lower perturbations that are

deemed to be more realistic.

Lastly, the meteorological forcing employed during the

forecasting step can be either deterministic or probabilistic,

using one randomly picked member or all 50 MEPS mem-

bers.

These tools can be used alternatively or combined. For in-

stance, if the EnKF and the meteorological ensemble forcing

are used collectively, each of the 50 initial condition sets will

serve as a starting point for each of the 50 meteorological

forecast members, creating a larger hydrometeorological en-

semble that contains 2500 members.

We chose to disregard more complex or “hybrid” cases in

this study, where for example, the final ensemble is com-

posed with some models that benefit EnKF state updating

while others are used in an open-loop forecasting mode as

these setups do not add additional information about the role

of the tools, increase the degree of freedom for the system

optimization and would increase computational costs consid-

erably.

The results for each of the nine systems applied to every

catchment, lead time, and possibly every model are not sys-

tematically detailed and compared to each other. The follow-

ing graphs are deemed sufficient to interpret the role and ben-

efits that the system components play on the forecast quality.

Additional graphs representing the resolution and reliability

of each system are provided online for readers, who are in-

terested in a specific setup.

To picture an overview of the results, Fig. 2 represents the

accuracy in terms of MCRPS (or MAE for system A that is

fully deterministic) and MaeRD. For graphical convenience,

the full distribution of performance according to various fac-

tors is not displayed but only a single representative value. To

reduce all of the results to a single scalar, the median perfor-

mance has been considered. In the case where a multimodel

approach is used, the median performance over the 20 catch-

ments is displayed on the figure. Otherwise, when individual
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Figure 2. Synthetic results of the nine systems that are referred by their code letter (see Table 3). The four top radar plots illustrate the

MCRPS with the center indicating the climatology reference performance, and the perimeter representing a perfectly accurate simulation.

The four bottom plots describe the measure of distance from perfect reliability, with the center indicating a MaeRD= 0.5 while the perimeter

corresponds to a perfect reliability.

models are considered, the median performing model is first

identified and then the median performance over the catch-

ment is represented. This implies that the performance of

individual models systems (A, B, C, and D) may refer to a

different model for each lead time.

The four radar plots situated on the top of the figure illus-

trate the MCRPS performance. As a reference, the center of

the disk consists of the median MCRPS value of the clima-

tology over the 20 catchments while the perimeter represents

a perfect MCRPS equal to 0. The radius lines represent the

nine systems described in Table 3 and are referred to by their

corresponding letter.

The nine systems present varying performance but all de-

crease logically with lead time. System A, which is deter-

ministic, undoubtedly performs worse for every lead time.

It is challenged from the third day and is outperformed for

medium range forecast by the hydrological climatology. Sys-

tem B presents quite a similar behavior to system A but with

a lower decrease of accuracy with lead time. System C may

be considered as competitive for shorter lead times but loses

quickly its edge. These preliminary results tend to indicate

that simpler HEPSs may not be appropriate to accurately

forecast streamflows over a 9-day horizon. However, all ver-

sions, including the simplest versions (except system A) are

more informative than the climatology for all lead times. Sys-

tems G, H, and H′ stand out from the others for all lead times.

The second row in Fig. 2 illustrates the reliability of each

system. The center of the disk corresponds to a MaeRD equal

to 0.5. System A is artificially placed at the center of the

radar plot to denote that no reliability information is com-

municated since it is deterministic.

The reliability result shares similarities with the accuracy

assessment. Simpler systems face difficulties in providing a

reliable forecast. Despite the use of the meteorological en-

semble forcing, system B is far from providing the right dis-

persion. Systems C and D provide some information for short

lead times, but experience a substantial loss with increasing

lead time. Once again, G, H, and H′ perform the best.

3.1 Multimodel approach and structural uncertainty

To assess the gain related to the multimodel approach, Fig. 3

presents a comparison of the individual model MAE (A) and

the MCRPS that pools all model output together (E). At this

step, only the structural uncertainty is taken into account as

the meteorological forcing is kept deterministic and no initial

condition uncertainty estimation is provided for both cases.

These systems are computationally cheap as they contain ei-

ther 20× 1 member or 20 members.

In Fig. 3, each box plot represents the distribution of per-

formance (minimum, quantiles 0.25, 0.5, and 0.75, and max-

imum) of the 20 models while the curve details the multi-

model accuracy. On the x axis, the 20 test catchments are

sorted according to increasing multimodel MCRPS for the

first lead time. This allows one to notice that certain catch-

ments exhibit a faster growing error.

The multimodel performs consistently better than the me-

dian performance of the models but also better than any

model in the large majority of cases. Exceptions can be oc-

casionally observed for catchments 3 and 17 where only

one or two models outperform the ensemble. However, the

best performing models differ from one catchment to an-

other while the multimodel presents the advantage of being

more robust than any of the models. This is explained by the

varied individual model behaviors. Each model may grasp

different specificities of the hydrograph by focusing more

specifically on different (conceptual) hydrological processes.

Consequently, the ensemble members – the models – have
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Figure 3. Comparison of individual models MAE and multimodel MCRPS sorted by increasing multimodel MCRPS for the first day (ver-

sion A vs. E).
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Figure 4. Reliability of the multimodel ensemble (system E) for all individual catchments. The spread represents the square root of mean

ensemble variance averaged over all catchments.

disparate errors. Whenever the mismatch between forecast

members and observation is poorly correlated, their errors

tend to cancel each other out.

Figure 4 presents the reliability of system E. Each curve

refers to one of the 20 catchments. As mentioned, the struc-

tural uncertainty of the hydrological models is solely explic-

itly taken into account by the combination of the models.

System E is generally slightly over confident for all lead

times and this trend becomes more apparent as the lead time

increases. This is expected as the meteorological forcing un-

certainty increases with time while the deterministic forcing

does not support that aspect. One can notice that the reliabil-

ity also depends on the catchments. For the first lead time,

most of the catchments are close to reliability while there are

two outliers for which accuracy skills do not match their cor-

responding spread. In fact, these catchments exhibit a con-

stant hydrological bias partially explained by an inaccurate

meteorological forcing that is not captured by any of the

models. Consequently, the models’ errors are highly corre-

lated and this prevents the members from performing an en-

semble. This bias indicates that the aggregation of the other

sources of uncertainty drive the system toward an inaccurate

state.

3.2 Data assimilation and initial condition uncertainty

Figure 5 illustrates the increase of performance related to the

data assimilation by comparing systems E and G. System G

improves upon E as it benefits from the EnKF data assimila-

tion to handle the initial condition uncertainty. The models’

states are updated according to the last available observations

and an ensemble is created for each model based on the prob-

abilistic estimation of best initial conditions.

The EnKF provides a considerable gain over open-loop

forecasts for all catchments and reduces the number of lower

performance catchments. This indicates that inaccuracies ac-

cumulated and stored during the spin-up period in the state

variable as the results of structural and forcing errors can

be significantly reduced by providing adequate model re-

initialization.

As the EnKF acts on model state variables right after the

spin-up period, it is not surprising to see its efficiency de-

creasing with lead time. This clarifies why the EnKF is ben-

eficial for all lead times but that its skill decreases faster than

that of the open-loop scheme. Moreover, the EnKF provides

satisfactory initial condition distribution to minimize the er-

ror at the time the observation becomes available but does not

sample the posterior states to be optimally integrated through

time.

Figure 6 details the reliability of system G. There is a con-

siderable increase of spread in comparison to system E for

shorter leads times that goes beyond adequate dispersion and

lead to a slightly overdispersed forecast for the first lead time.

This was expected as the EnKF was initially implemented

to maximize individual model reliability for system G (see
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Figure 5. Comparison of open-loop and EnKF multimodel MCRPS sorted by increasing EnKF MCRPS (system E vs. G).
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Figure 6. Reliability of the EnKF multimodel ensemble (system G) for all individual catchments. The spread represents the square root of

mean ensemble variance averaged over all catchments.

0 2 4 6 8 10
0

1

2

Day

R
M

SE
, s

pr
ea

d 
(m

m
 d

ay
   

) 

 

 
RMSE

Spread

–1

Figure 7. Typical spread skill plot of a single model EnKF ensem-

ble.

Sect. 2.3.2). As the EnKF also takes into account the param-

eter and structural uncertainties and is combined with a mul-

timodel approach, there may be a redundancy in the error de-

ciphering. The structural error and the corresponding ensem-

ble spread that it should describe may be somehow accounted

for twice in that particular case. However, the overestimation

of the ideal spread diminishes as the EnKF influence fades

away quickly and the system goes back toward a better reli-

ability for medium range forecast and underdispersion from

days 4–5.

To explain the rapid decrease in reliability, Fig. 7 displays

the ensemble mean RMSE and the square root of average en-

semble variance. This individual spread skill plot (one model

and one catchment) is typical. The spread and the RMSE

are close to a perfect match for the first day indicating an

appropriate dispersion, yet, they diverge rapidly. The relia-

bility deterioration of the system is 2-fold: the increase of

the ensemble mean bias and the decrease of the spread. The

loss of hydrological predictive skill is coherent regarding that

the meteorological accuracy diminishes with increasing lead

time. Concerning the second point, in most cases, the ensem-

ble of initial conditions that EnKF provides often differ little

from each other – a few percent – indicating that the posterior

distribution of each parameter is rather narrow (DeChant and

Moradkhani, 2012; Abaza et al., 2015). These dissimilarities

are not large enough to provoke a divergence in the behavior

of EnKF members during the forecasting step as the mod-

els are resilient. The different initial conditions thus tend to

merge toward a certain value – often close the open-loop one

– which may not be accurate. This behavior is attributed to

the EnKF rather than to the model structures as it has been

also observed by others, for example with a 3-hour time step

and spatially distributed model in Abaza et al. (2014). Al-

ternatives to the traditional EnKF (e.g., dual state-parameter,

additional direct perturbations of state variables) may possi-

bly contribute to slightly maintaining the spread for longer

lead times but they may not be consistent with the use of the

multimodel, as it may imply taking into account the same

source of uncertainty twice.
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Figure 8. Comparison of EnKF multimodel MCRPS with deterministic and ensemble meteorological forcing (system G vs. H).
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Figure 9. Reliability of the EnKF multimodel ensemble with MEPS forcing (system H).

3.3 Contribution of the meteorological ensemble

forcing

One step further in terms of system complexity is taken as

the MEPS forcing is introduced. In this study meteorological

forcing was not processed, as the investigation of such tech-

nique was deemed out of scope. It is expected that a success-

ful pre-processing would enhance the MEPS forecast and

that these improvements could possibly be cascaded through

the hydrological components to the final hydrological fore-

cast. Counter-intuitively, recent attempts demonstrated that

no or minor improvements were obtained in the hydrological

forecast (Kang et al., 2010; Verkade et al., 2013; Zalachori

et al., 2012; Roulin and Vannitsem, 2015).

Figure 8 compares the MCRPS of systems G and H.

They differ only in their meteorological forcing as the lat-

ter uses the 50-member probabilistic forecast. The difference

between them is negligible until the seventh or eighth day

where an improvement in performance can be noticed on

some catchments. For these longer lead times, the probabilis-

tic forcing is slightly more efficient for the MCRPS but the

main difference lies in the reliability (Fig. 9). In fact, the re-

liability is substantially improved for the longest lead times

when the meteorological uncertainty is provided to the sys-

tem. The influence of the season is rather weak since the

comparison of these systems with respect to seasonality leads

to the same conclusions (see Supplement).

The ECMWF MEPS dispersion grows with lead time and

logically contributes to the HEPS’s spread accordingly. This

is confirmed by comparing the spread of the G and H systems

as they decrease at a different pace. While they are almost

identical with a value of 0.58 and 0.59 mm day−1 for day 3,

G spread drops to 0.45 mm day−1 for day 9 while the use

of the MEPS maintains the spread to 0.59 mm day−1. This

also indicates that the tool that contributes the most to the

HEPS dispersion is the EnKF since the raw MEPS forcing is

not able to fully balance the decrease of the spread induced

by the EnKF. Further improvement in the reliability could

perhaps be achieved through bias removal and suitable pre-

processing technique.

The main sources of uncertainty – hydrological model

structure, initial conditions, and meteorological forcing – are

cascaded through the different components of the forecast-

ing system to provide better forecast than any of the systems

previously described. Yet the system reliability is not per-

fect as the forecast for day 1 and day 9 are, respectively,

slightly overdispersive and underdispersive in addition to

present sensitivity to the catchments. To realistically repre-

sent the uncertainty of the system, the spread should grow

with lead time as the future is more uncertain. This suggests

that further improvement of this setup and particular applica-

tion could be obtained with a more dispersed meteorological

forcing.

3.4 Simplification of the framework

A potential drawback for operational use of such a system is

that it is computationally expensive as 50 000 members are

exploited to build it. The efficiency of a simpler system is

assessed in Fig. 10. Eight typical catchments are displayed

www.hydrol-earth-syst-sci.net/20/1809/2016/ Hydrol. Earth Syst. Sci., 20, 1809–1825, 2016



1820 A. Thiboult et al.: Accounting for three sources of uncertainty

0

0.5

1

1 2 3 4 5 6 7 8 9

6

16

16

6

16

0

0.5

1

1 2 3 4 5 6 7 8 9

5

13

1

5

13

1

5

13

1

1

5

13

1

5

1 1 1 1

0

0.5

1

1 2 3 4 5 6 7 8 9

5

17

5 1 1 1 1

18

1

18

1

18

0

0.5

1

1 2 3 4 5 6 7 8 9

5

0

0.5

1

1 2 3 4 5 6 7 8 9

5

12

10 10

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

Day

5 5 17

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

Day

5

15

15

5

15 15 15 15 15 15 15

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

Day

5

17

5

17

17 17 17 17 17 17 17

Individual models MCRPS

x
Code number of the model(s)
that surpass the multimodel

Streamflow climato. MCRPS

Multimodel MCRPS
M

C
R

P
S

 (
m

m
 d

a
y
  
)

–1
M

C
R

P
S

 (
m

m
 d

a
y
  
)

–1

Figure 10. Comparative examples of the MCRPS on eight catchments of the EnKF individual models and the EnKF multimodel, both using

MEPS forcing (system D vs. H).

in the subplots to illustrate the conclusion. The box plots

represent the MCRPS distribution of the 20 models results

from system D that benefits EnKF state updating and MEPS

forcing. Each of these models can be considered as a sub-

ensemble of the large ensemble H driven by a single model

instead of using a multimodel approach. This is a more con-

sistent approach with the EnKF individual optimization that

is carried out to aim for reliability for each model one at

a time. The numbers at the top of the subplots refer to the

model number that outperform the multimodel for each lead

time.

In Fig. 10, sub-ensembles are more skillful than the hydro-

logical climatology for all lead times but rarely outperform

the multimodel forecast. More precisely, the median per-

forming sub-ensemble is always poorer than the multimodel

and only the best models among the 20 occasionally exhibit

lower MCRPS. Individual models that outperform the mul-

timodel frequently differ from one catchment to another and

from a lead time to another. This emphasizes the difficulty

to choose a priori a single model as half of the 20 models

never behave better than the multimodel and only model 1,

5, and 17 perform better than the multimodel for several

catchments. Choosing a sub-ensemble doubtlessly enhances

the system computational requirements and eases operational

implementation, but relying on a single model may be mis-

leading or, at least, minimize the expectation that one can

have from the HEPS.

Figure 11 assesses the reliability of the same system with

the MaeRD score. Like for the previous plots, the box plots

contain the 20 ensembles that correspond to the 20 mod-

els and are sorted by catchment with increasing multimodel

MaeRD. Note that the MaeRD does not provide precise in-

formation about dispersion but only about the distance from

perfect reliability. Nevertheless, individual model ensemble

may be either slightly over or underdispersive for the first

lead time but are systematically underdispersive for longer

lead times. However, system H can be either over or under-

dispersive depending on the catchment. Overdispersive fore-

casts, like for catchment 20, can be recognized as they tend

to become more reliable for longer lead times.

For the first lead time, the best individual model ensem-

bles may be competitive with the multimodel but are already

less efficient from day 3 and are drastically underdispersive

for day 9. Even if the EnKF takes into account the struc-

tural uncertainty at t = 0, it loses its efficiency during the

forecast. The information that the updated state sets contain

about the structural uncertainty vanishes when the sets con-

verge toward a common value. The multimodel approach, by

its nature, allows one to take over the role of the EnKF by

dynamically preserving the required diversity.

3.5 Required EnKF perturbations

If the different sources of uncertainty along the hydromete-

orological modeling chain are not explicitly accounted for

by dedicated tools, the EnKF has to compensate for them.
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Figure 11. Comparison of the deviation from perfect reliability of EnKF individual models and the EnKF multimodel, both using MEPS

forcing sorted by increasing EnKF multimodel MaeRD for the first day (system D vs. H).
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Figure 12. Reliability of the EnKF multimodel ensemble with MEPS forcing and lower input–output perturbations (system H′).

One way to achieve reliability is to increase the level of per-

turbation to the input. However, there is no obvious way

to know by which amount the uncertainty on input should

be overestimated to compensate for the other uncertainties

(Zhang et al., 2015). Thus, to ensure hydrological reliability,

one needs to perform a fastidious calibration of the EnKF

hyper-parameters to identify the required noise magnitude

(Thiboult and Anctil, 2015a).

H′ is identical to system H except that it relies on a dif-

ferent optimization of the EnKF. Instead of maximizing the

combined criterion for individual models (see Sect. 2.3.2),

the EnKF noise specification is set lower to values that are

more consistent with real uncertainties estimations of ob-

served climatological and streamflow observations at catch-

ment scale. Namely, precipitation is perturbed with a gamma

law with a standard deviation of 25 % of the mean value, tem-

peratures with a normal law with a 2◦ standard deviation, and

streamflow observations with normal law with a 10 % stan-

dard deviation.

These noise magnitudes are therefore meant to describe

the real uncertainties in forcing and observations in the

EnKF but do not implicitly account for model error any

longer. Also, in a perfect-model environment, i.e., without

any model error, it has been shown that the EnKF spread is

representative of the ensemble mean error with respect to a

truth integration (Houtekamer et al., 2009). In other words,

the implementation of the EnKF with realistic input and out-

put perturbations corresponds to a potential “perfect” EnKF

implementation if the total uncertainty could be summarized

to the input and output error and were perfectly identified,

i.e., in a perfectly controlled environment with a negligible

model structural error. Consequently, with the system H′,

the structural error is theoretically only deciphered through

the multimodel pooling. Yet this needs to be qualified as

it is practically hard to untangle the sources of uncertainty

within the actual configuration of the EnKF, but it reduces

the risk that the tools’ effects overlap. By choosing these per-

turbations, the user also gets rid of a fastidious EnKF tuning

by screening adequate perturbation (e.g., Moradkhani et al.,

2005; Thiboult and Anctil, 2015a) and hence simplifies the

system implementation.

In Fig. 12, system H′ improves reliability for first lead

times by reducing the overdispersion with a sensible de-

crease in the ensemble spread from 0.72 to 0.57 mm day−1

for day 1 without any degradation of the MCRPS (except for

two catchments; all results are shown on additional figures

online). System H′ maintains a more constant spread and re-

liability with increasing lead time as the main sources of un-

certainty are more accurately deciphered specifically by their

corresponding tool, leading to an overall better forecast.

Finally, it is unreasonable to assume that uncertainties are

invariant from one catchment to another. The comparison of

the MEPS forecast and meteorological observations showed

that the quality over the 20 catchments remains close and in-

dicates that the misfit probably originates from the structures

composing the multimodel ensemble that can be maladapted
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to simulate these particular catchments or from doubtful

streamflow measurements. This leads us think that further

improvements in very uncertain environments are limited by

a preliminary accurate quantification of error.

Also, considerable efforts have been paid to link perfor-

mance with estimated times of concentration, size of catch-

ments, and river slope without any clear results. The authors

were not able to relate any catchment feature to particular

results.

4 Conclusions

This work investigates the contribution of three different

probabilistic tools commonly used in hydrometeorological

sciences. They are used conjointly and alternatively to iden-

tify their effect on the hydrological predictive ensemble and

to untangle sources of uncertainty that are aggregated in the

outputs.

Each of these tools is dedicated to capture a certain as-

pect of the total uncertainty. A multimodel approach is used

to quantify and reduce explicitly the hydrological model er-

ror, the ensemble Kalman filter (EnKF) to decipher the un-

certainty related to initial conditions and the meteorological

ensemble to account for the forcing uncertainty.

The experiment shows that important gain may be

achieved in terms of accuracy and reliability by adequately

using these techniques. Their action differ substantially by

their mean and range of action.

The EnKF provides accurate quantification of initial error

but fails to maintain reliability as its effect fades out quickly

after model spin up. The information about the structural un-

certainty deciphered by the EnKF, which is contained in the

state variable posterior distribution, is not propagated with

time integration during the forecast step. However, the EnKF

remains a key component of the system as it is the one that

provides the most dispersion for the first lead times. This also

indicates that the accumulation of past errors in the initial

conditions is a dominant source of uncertainty.

The multimodel approach is able to partially compensate

for the EnKF decreasing action by taking over the struc-

tural uncertainty. Moreover, the combination of independent

models improves accuracy as their errors may cancel each

other. Lastly, the use of ensemble meteorological forecast

contributes to the reliability of medium range forecast by rep-

resenting the meteorological forcing errors.

Their action are complementary as they decipher differ-

ent nature of uncertainty at different locations by acting at

particular stages in the forecasting process. When combined,

they need to be set according to the tools they are juxtaposed

with to prevent overlapping actions. This is particularly the

case for the EnKF that has an important degree of freedom

in its implementation. It can eventually be tuned with more

realistic input perturbations by coupling with the multimodel

ensemble and therefore, facilitate its implementation by re-

laxing the constraints of optimal perturbation screening.

Possible avenues for further improvements may be

achieved through a multimodel state updating rather than in-

dividual models updating, i.e., by treating initial condition

in a single step as a whole. Lastly, the meteorological fore-

cast has shown to be a little underdispersed for this appli-

cation and could possibly be improved by applying suitable

pre-processing techniques.

The Supplement related to this article is available online

at doi:10.5194/hess-20-1809-2016-supplement.
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