Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 18, issue 6
Hydrol. Earth Syst. Sci., 18, 2033–2047, 2014
https://doi.org/10.5194/hess-18-2033-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 18, 2033–2047, 2014
https://doi.org/10.5194/hess-18-2033-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Jun 2014

Research article | 03 Jun 2014

Climate change impacts on the hydrologic regime of a Canadian river: comparing uncertainties arising from climate natural variability and lumped hydrological model structures

G. Seiller and F. Anctil G. Seiller and F. Anctil
  • Chaire de recherche EDS en prévisions et actions hydrologiques, Université Laval, Département de génie civil et de génie des eaux, 1065, avenue de la Médecine, Québec, Qc, G1V0A6, Canada

Abstract. Diagnosing the impacts of climate change on water resources is a difficult task pertaining to the uncertainties arising from the different modelling steps. Lumped hydrological model structures contribute to this uncertainty as well as the natural climate variability, illustrated by several members from the same Global Circulation Model. In this paper, the hydroclimatic modelling chain consists of twenty-four potential evapotranspiration formulations, twenty lumped conceptual hydrological models, and seven snowmelt modules. These structures are applied on a natural Canadian sub-catchment to address related uncertainties and compare them to the natural internal variability of simulated climate system as depicted by five climatic members. Uncertainty in simulated streamflow under current and projected climates is assessed. They rely on interannual hydrographs and hydrological indicators analysis. Results show that natural climate variability is the major source of uncertainty, followed by potential evapotranspiration formulations and hydrological models. The selected snowmelt modules, however, do not contribute much to the uncertainty. The analysis also illustrates that the streamflow simulation over the current climate period is already conditioned by the tools' selection. This uncertainty is propagated to reference simulations and future projections, amplified by climatic members. These findings demonstrate the importance of opting for several climatic members to encompass the important uncertainty related to the climate natural variability, but also of selecting multiple modelling tools to provide a trustworthy diagnosis of the impacts of climate change on water resources.

Publications Copernicus
Download
Citation