Articles | Volume 19, issue 2
https://doi.org/10.5194/hess-19-785-2015
https://doi.org/10.5194/hess-19-785-2015
Research article
 | 
05 Feb 2015
Research article |  | 05 Feb 2015

Reimagining the past – use of counterfactual trajectories in socio-hydrological modelling: the case of Chennai, India

V. Srinivasan

Related authors

Moving sociohydrology forward: a synthesis across studies
T. J. Troy, M. Konar, V. Srinivasan, and S. Thompson
Hydrol. Earth Syst. Sci., 19, 3667–3679, https://doi.org/10.5194/hess-19-3667-2015,https://doi.org/10.5194/hess-19-3667-2015, 2015
Why is the Arkavathy River drying? A multiple-hypothesis approach in a data-scarce region
V. Srinivasan, S. Thompson, K. Madhyastha, G. Penny, K. Jeremiah, and S. Lele
Hydrol. Earth Syst. Sci., 19, 1905–1917, https://doi.org/10.5194/hess-19-1905-2015,https://doi.org/10.5194/hess-19-1905-2015, 2015
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Making a case for power-sensitive water modelling: a literature review
Rozemarijn ter Horst, Rossella Alba, Jeroen Vos, Maria Rusca, Jonatan Godinez-Madrigal, Lucie V. Babel, Gert Jan Veldwisch, Jean-Philippe Venot, Bruno Bonté, David W. Walker, and Tobias Krueger
Hydrol. Earth Syst. Sci., 28, 4157–4186, https://doi.org/10.5194/hess-28-4157-2024,https://doi.org/10.5194/hess-28-4157-2024, 2024
Short summary
Developing water supply reservoir operating rules for large-scale hydrological modelling
Saskia Salwey, Gemma Coxon, Francesca Pianosi, Rosanna Lane, Chris Hutton, Michael Bliss Singer, Hilary McMillan, and Jim Freer
Hydrol. Earth Syst. Sci., 28, 4203–4218, https://doi.org/10.5194/hess-28-4203-2024,https://doi.org/10.5194/hess-28-4203-2024, 2024
Short summary
An investigation of anthropogenic influences on hydrologic connectivity using model stress tests
Amelie Herzog, Jost Hellwig, and Kerstin Stahl
Hydrol. Earth Syst. Sci., 28, 4065–4083, https://doi.org/10.5194/hess-28-4065-2024,https://doi.org/10.5194/hess-28-4065-2024, 2024
Short summary
The H2Ours game to explore water use, resources and sustainability: connecting issues in two landscapes in Indonesia
Lisa Tanika, Rika Ratna Sari, Arief Lukman Hakim, Meine van Noordwijk, Marielos Peña-Claros, Beria Leimona, Edi Purwanto, and Erika N. Speelman
Hydrol. Earth Syst. Sci., 28, 3807–3835, https://doi.org/10.5194/hess-28-3807-2024,https://doi.org/10.5194/hess-28-3807-2024, 2024
Short summary
Drainage assessment of irrigation districts: on the precision and accuracy of four parsimonious models
Pierre Laluet, Luis Olivera-Guerra, Víctor Altés, Vincent Rivalland, Alexis Jeantet, Julien Tournebize, Omar Cenobio-Cruz, Anaïs Barella-Ortiz, Pere Quintana-Seguí, Josep Maria Villar, and Olivier Merlin
Hydrol. Earth Syst. Sci., 28, 3695–3716, https://doi.org/10.5194/hess-28-3695-2024,https://doi.org/10.5194/hess-28-3695-2024, 2024
Short summary

Cited articles

Baisa, B., Davis, L. W., Salant, S. W., and Wilcox, W.: The welfare costs of unreliable water service, J. Developm. Econom., 92, 1–12, https://doi.org/10.1016/j.jdeveco.2008.09.010, 2010.
Brown, C., Ghile, Y., Laverty, M., and Li, K.: Decision scaling: Linking bottom-up vulnerability analysis with climate projections in the water sector, Water Resour. Res., 48, W09537, https://doi.org/10.1029/2011WR011212, 2012.
Chakravorty, U. and Umetsu, C.: Basinwide water management: a spatial model, J. Environ. Econom. Manage., 45, 1–23, 2003.
Clark, J. R. A. and Clarke, R.: Local sustainability initiatives in English national parks: what role for adaptive governance?, Land Use Pol., 28, 314–324, 2011.
Cook, C. and Bakker, K.: Water security: debating an emerging paradigm, Global Environ. Change, 22, 94–102, 2012.
Download
Short summary
The paper models the socio-hydrologic system in a developing city -- Chennai, India -- using "counterfactual trajectories" to understand what might have happened if different decisions had been made 50 years ago. A key contribution is the inclusion of two-way feedbacks between the human, engineered, and hydrological systems. Households are allowed to adapt to decisions made by the water utility. This influences how they use water and consequently how much water is available in the aquifer.