Articles | Volume 19, issue 7
Hydrol. Earth Syst. Sci., 19, 3133–3151, 2015
https://doi.org/10.5194/hess-19-3133-2015
Hydrol. Earth Syst. Sci., 19, 3133–3151, 2015
https://doi.org/10.5194/hess-19-3133-2015

Research article 16 Jul 2015

Research article | 16 Jul 2015

Hydrological connectivity inferred from diatom transport through the riparian-stream system

N. Martínez-Carreras et al.

Related authors

Technical note: A time-integrated sediment trap to sample diatoms for hydrological tracing
Jasper Foets, Carlos E. Wetzel, Núria Martínez-Carreras, Adriaan J. Teuling, Jean-François Iffly, and Laurent Pfister
Hydrol. Earth Syst. Sci., 24, 4709–4725, https://doi.org/10.5194/hess-24-4709-2020,https://doi.org/10.5194/hess-24-4709-2020, 2020
Short summary
Sediment transport modelling in riverine environments: on the importance of grain-size distribution, sediment density, and suspended sediment concentrations at the upstream boundary
Jérémy Lepesqueur, Renaud Hostache, Núria Martínez-Carreras, Emmanuelle Montargès-Pelletier, and Christophe Hissler
Hydrol. Earth Syst. Sci., 23, 3901–3915, https://doi.org/10.5194/hess-23-3901-2019,https://doi.org/10.5194/hess-23-3901-2019, 2019
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Instruments and observation techniques
Ecohydrological travel times derived from in situ stable water isotope measurements in trees during a semi-controlled pot experiment
David Mennekes, Michael Rinderer, Stefan Seeger, and Natalie Orlowski
Hydrol. Earth Syst. Sci., 25, 4513–4530, https://doi.org/10.5194/hess-25-4513-2021,https://doi.org/10.5194/hess-25-4513-2021, 2021
Short summary
Insights into the isotopic mismatch between bulk soil water and Salix matsudana Koidz trunk water from root water stable isotope measurements
Ying Zhao and Li Wang
Hydrol. Earth Syst. Sci., 25, 3975–3989, https://doi.org/10.5194/hess-25-3975-2021,https://doi.org/10.5194/hess-25-3975-2021, 2021
Short summary
The role of dew and radiation fog inputs in the local water cycling of a temperate grassland during dry spells in central Europe
Yafei Li, Franziska Aemisegger, Andreas Riedl, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 25, 2617–2648, https://doi.org/10.5194/hess-25-2617-2021,https://doi.org/10.5194/hess-25-2617-2021, 2021
Short summary
Co-evolution of xylem water and soil water stable isotopic composition in a northern mixed forest biome
Jenna R. Snelgrove, James M. Buttle, Matthew J. Kohn, and Dörthe Tetzlaff
Hydrol. Earth Syst. Sci., 25, 2169–2186, https://doi.org/10.5194/hess-25-2169-2021,https://doi.org/10.5194/hess-25-2169-2021, 2021
Short summary
Vapor plumes in a tropical wet forest: spotting the invisible evaporation
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Bart Schilperoort, Adriana del Pilar González-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 25, 619–635, https://doi.org/10.5194/hess-25-619-2021,https://doi.org/10.5194/hess-25-619-2021, 2021
Short summary

Cited articles

Ali, G. A. and Roy, A. G.: Shopping for hydrologically representative connectivity metrics in a humid temperate forested catchment, Water Resour. Res., 46, W12544, https://doi.org/10.1029/2010WR009442, 2010.
Ali, G. A., Roy, A. G., Turmel, M. C., and Courchesne, F.: Source-to-stream connectivity assessment through end-member mixing analysis, J. Hydrol., 392, 119–135, https://doi.org/10.1016/j.jhydrol.2010.07.049, 2010.
Barthold, F. K., Tyralla, C., Schneider, K., Vaché, K. B., Frede, H. G., and Breuer, L.: How many tracers do we need for end member mixing analysis (EMMA)? A sensitivity analysis, Water Resour. Res., 47, W08519, https://doi.org/10.1029/2011WR010604, 2011.
Beven, K.: TOPMODEL: a critique, Hydrol. Process., 11, 1069–1085, 1997.
Bonell, M.: Selected challenges in runoff generation research in forests from the hillslope to headwater drainage basin scale, J. Am. Water Resour. As., 34, 765–785, https://doi.org/10.1111/j.1752-1688.1998.tb01514.x, 1998.
Download
Short summary
We tested the hypothesis that different diatom species assemblages inhabit specific moisture domains of the catchment and, consequently, the presence of certain species assemblages in the stream during runoff events offers the potential for recording whether there was hydrological connectivity between these domains or not. In the Weierbach catchment, the transport of aerial diatoms during events suggested a rapid connectivity between the soil surface and the stream.