Articles | Volume 29, issue 2
https://doi.org/10.5194/hess-29-525-2025
https://doi.org/10.5194/hess-29-525-2025
Technical note
 | 
24 Jan 2025
Technical note |  | 24 Jan 2025

Technical note: A fast and reproducible autosampler for direct vapor equilibration isotope measurements

Jonas Pyschik, Stefan Seeger, Barbara Herbstritt, and Markus Weiler

Related authors

Technical note: a Weighing Forest Floor Grid-Lysimeter
Heinke Paulsen and Markus Weiler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3503,https://doi.org/10.5194/egusphere-2024-3503, 2024
Short summary
RoGeR v3.0.5 – a process-based hydrological toolbox model in Python
Robin Schwemmle, Hannes Leistert, Andreas Steinbrich, and Markus Weiler
Geosci. Model Dev., 17, 5249–5262, https://doi.org/10.5194/gmd-17-5249-2024,https://doi.org/10.5194/gmd-17-5249-2024, 2024
Short summary
Technical note: Discrete in situ vapor sampling for subsequent lab-based water stable isotope analysis
Barbara Herbstritt, Benjamin Gralher, Stefan Seeger, Michael Rinderer, and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023,https://doi.org/10.5194/hess-27-3701-2023, 2023
Short summary
Dye-tracer-aided investigation of xylem water transport velocity distributions
Stefan Seeger and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3393–3404, https://doi.org/10.5194/hess-27-3393-2023,https://doi.org/10.5194/hess-27-3393-2023, 2023
Short summary
Enhancing the usability of weather radar data for the statistical analysis of extreme precipitation events
Andreas Hänsler and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 5069–5084, https://doi.org/10.5194/hess-26-5069-2022,https://doi.org/10.5194/hess-26-5069-2022, 2022
Short summary

Related subject area

Subject: Vadose Zone Hydrology | Techniques and Approaches: Instruments and observation techniques
Effects of different climatic conditions on soil water storage patterns
Annelie Ehrhardt, Jannis Groh, and Horst H. Gerke
Hydrol. Earth Syst. Sci., 29, 313–334, https://doi.org/10.5194/hess-29-313-2025,https://doi.org/10.5194/hess-29-313-2025, 2025
Short summary
High-resolution operational soil moisture monitoring for forests in central Germany
Ivan Vorobevskii, Thi Thanh Luong, Rico Kronenberg, and Rainer Petzold
Hydrol. Earth Syst. Sci., 28, 3567–3595, https://doi.org/10.5194/hess-28-3567-2024,https://doi.org/10.5194/hess-28-3567-2024, 2024
Short summary
Technical Note: Revisiting the general calibration of cosmic-ray neutron sensors to estimate soil water content
Maik Heistermann, Till Francke, Martin Schrön, and Sascha E. Oswald
Hydrol. Earth Syst. Sci., 28, 989–1000, https://doi.org/10.5194/hess-28-989-2024,https://doi.org/10.5194/hess-28-989-2024, 2024
Short summary
Coupled hydrogeophysical inversion of an artificial infiltration experiment monitored with ground-penetrating radar: synthetic demonstration
Rohianuu Moua, Nolwenn Lesparre, Jean-François Girard, Benjamin Belfort, François Lehmann, and Anis Younes
Hydrol. Earth Syst. Sci., 27, 4317–4334, https://doi.org/10.5194/hess-27-4317-2023,https://doi.org/10.5194/hess-27-4317-2023, 2023
Short summary
Technical note: Discrete in situ vapor sampling for subsequent lab-based water stable isotope analysis
Barbara Herbstritt, Benjamin Gralher, Stefan Seeger, Michael Rinderer, and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3701–3718, https://doi.org/10.5194/hess-27-3701-2023,https://doi.org/10.5194/hess-27-3701-2023, 2023
Short summary

Cited articles

Allen, S. T. and Kirchner, J. W.: Potential Effects of Cryogenic Extraction Biases on Plant Water Source Partitioning Inferred from Xylem-water Isotope Ratios, Hydrol. Process., 36, e14483, https://doi.org/10.1002/hyp.14483, 2022. a
Bertrand, G., Masini, J., Goldscheider, N., Meeks, J., Lavastre, V., Celle-Jeanton, H., Gobat, J.-M., and Hunkeler, D.: Determination of Spatiotemporal Variability of Tree Water Uptake Using Stable Isotopes (δ18O, δ2H) in an Alluvial System Supplied by a High-Altitude Watershed, Pfyn Forest, Switzerland, Ecohydrology, 7, 319–333, https://doi.org/10.1002/eco.1347, 2014. a
Boumaiza, L., Chesnaux, R., Walter, J., and Stumpp, C.: Assessing Groundwater Recharge and Transpiration in a Humid Northern Region Dominated by Snowmelt Using Vadose-Zone Depth Profiles, Hydrogeol. J., 28, 2315–2329, https://doi.org/10.1007/s10040-020-02204-z, 2020. a
Ceperley, N., Gimeno, T. E., Jacobs, S. R., Beyer, M., Dubbert, M., Fischer, B., Geris, J., Holko, L., Kübert, A., Le Gall, S., Lehmann, M. M., Llorens, P., Millar, C., Penna, D., Prieto, I., Radolinski, J., Scandellari, F., Stockinger, M., Stumpp, C., Tetzlaff, D., Van Meerveld, I., Werner, C., Yildiz, O., Zuecco, G., Barbeta, A., Orlowski, N., and Rothfuss, Y.: Toward a Common Methodological Framework for the Sampling, Extraction, and Isotopic Analysis of Water in the Critical Zone to Study Vegetation Water Use, WIREs Water, 11, e1727, https://doi.org/10.1002/wat2.1727, 2024.  a
Chesnaux, R. and Stumpp, C.: Advantages and Challenges of Using Soil Water Isotopes to Assess Groundwater Recharge Dominated by Snowmelt at a Field Study Located in Canada, Hydrolog. Sci. J., 63, 679–695, https://doi.org/10.1080/02626667.2018.1442577, 2018. a
Download
Short summary
We developed a device (named VapAuSa) that automates stable water isotope analysis. Stable water isotopes are a natural tracer that many researchers use to investigate water (re-)distribution processes in environmental systems. VapAuSa helps to analyse such environmental samples by automating a formerly tedious manual process, allowing for higher sample throughput. This enables larger sampling campaigns, as more samples can be processed before reaching their limited storage time.