Articles | Volume 29, issue 4
https://doi.org/10.5194/hess-29-1135-2025
https://doi.org/10.5194/hess-29-1135-2025
Research article
 | 
28 Feb 2025
Research article |  | 28 Feb 2025

Leveraging a radar-based disdrometer network to develop a probabilistic precipitation phase model in eastern Canada

Alexis Bédard-Therrien, François Anctil, Julie M. Thériault, Olivier Chalifour, Fanny Payette, Alexandre Vidal, and Daniel F. Nadeau

Related authors

Temporal patterns of greenhouse gas emissions from two small thermokarst lakes in Nunavik, Canada
Amélie Pouliot, Isabelle Laurion, Antoine Thiboult, and Daniel F. Nadeau
EGUsphere, https://doi.org/10.5194/egusphere-2025-1497,https://doi.org/10.5194/egusphere-2025-1497, 2025
Short summary
Effect of secondary ice production processes on the simulation of ice pellets using the Predicted Particle Properties microphysics scheme
Mathieu Lachapelle, Mélissa Cholette, and Julie M. Thériault
Atmos. Chem. Phys., 24, 11285–11304, https://doi.org/10.5194/acp-24-11285-2024,https://doi.org/10.5194/acp-24-11285-2024, 2024
Short summary
Development of an under-ice river discharge forecasting system in Delft-Flood Early Warning System (Delft-FEWS) for the Chaudière River based on a coupled hydrological-hydrodynamic modelling approach
Kh Rahat Usman, Rodolfo Alvarado Montero, Tadros Ghobrial, François Anctil, and Arnejan van Loenen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-116,https://doi.org/10.5194/gmd-2024-116, 2024
Preprint under review for GMD
Short summary
How does a warm and low-snow winter impact the snow cover dynamics in a humid and discontinuous boreal forest? Insights from observations and modeling in eastern Canada
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, François Anctil, Tobias Jonas, and Étienne Tremblay
Hydrol. Earth Syst. Sci., 28, 2745–2765, https://doi.org/10.5194/hess-28-2745-2024,https://doi.org/10.5194/hess-28-2745-2024, 2024
Short summary
Impact of intercepted and sub-canopy snow microstructure on snowpack response to rain-on-snow events under a boreal canopy
Benjamin Bouchard, Daniel F. Nadeau, Florent Domine, Nander Wever, Adrien Michel, Michael Lehning, and Pierre-Erik Isabelle
The Cryosphere, 18, 2783–2807, https://doi.org/10.5194/tc-18-2783-2024,https://doi.org/10.5194/tc-18-2783-2024, 2024
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Global catalog of soil moisture droughts over the past four decades
Jan Řehoř, Rudolf Brázdil, Oldřich Rakovec, Martin Hanel, Milan Fischer, Rohini Kumar, Jan Balek, Markéta Poděbradská, Vojtěch Moravec, Luis Samaniego, Yannis Markonis, and Miroslav Trnka
Hydrol. Earth Syst. Sci., 29, 3341–3358, https://doi.org/10.5194/hess-29-3341-2025,https://doi.org/10.5194/hess-29-3341-2025, 2025
Short summary
Probabilistic precipitation downscaling for ungauged mountain sites: a pilot study for the Hindu Kush Himalaya
Marc Girona-Mata, Andrew Orr, Martin Widmann, Daniel Bannister, Ghulam Hussain Dars, Scott Hosking, Jesse Norris, David Ocio, Tony Phillips, Jakob Steiner, and Richard E. Turner
Hydrol. Earth Syst. Sci., 29, 3073–3100, https://doi.org/10.5194/hess-29-3073-2025,https://doi.org/10.5194/hess-29-3073-2025, 2025
Short summary
Implementation of global soil databases in the Noah-MP model and the effects on simulated mean and extreme soil hydrothermal changes
Kazeem Abiodun Ishola, Gerald Mills, Ankur Prabhat Sati, Benjamin Obe, Matthias Demuzere, Deepak Upreti, Gourav Misra, Paul Lewis, Daire Walsh, Tim McCarthy, and Rowan Fealy
Hydrol. Earth Syst. Sci., 29, 2551–2582, https://doi.org/10.5194/hess-29-2551-2025,https://doi.org/10.5194/hess-29-2551-2025, 2025
Short summary
Skilful probabilistic predictions of UK flood risk months ahead using a large-sample machine learning model trained on multimodel ensemble climate forecasts
Simon Moulds, Louise Slater, Louise Arnal, and Andrew W. Wood
Hydrol. Earth Syst. Sci., 29, 2393–2406, https://doi.org/10.5194/hess-29-2393-2025,https://doi.org/10.5194/hess-29-2393-2025, 2025
Short summary
Towards a robust hydrologic data assimilation system for hurricane-induced river flow forecasting
Peyman Abbaszadeh, Fatemeh Gholizadeh, Keyhan Gavahi, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 29, 2407–2427, https://doi.org/10.5194/hess-29-2407-2025,https://doi.org/10.5194/hess-29-2407-2025, 2025
Short summary

Cited articles

Atlas, D., Srivastava, R. C., and Sekhon, R. S.: Doppler radar characteristics of precipitation at vertical incidence, Rev. Geophys., 11, 1, https://doi.org/10.1029/RG011i001p00001, 1973. 
Bédard-Therrien, A., Anctil, F., Theriault, J. M., Chalifour, O., Payette, F., Vidal, A., and Nadeau, D.: Data for “Leveraging a Disdrometer Network to Develop a Probabilistic Precipitation Phase Model in Eastern Canada”, Zenodo [data set], https://doi.org/10.5281/zenodo.10790810, 2024. 
Behrangi, A., Yin, X., Rajagopal, S., Stampoulis, D., and Ye, H.: On distinguishing snowfall from rainfall using near-surface atmospheric information: Comparative analysis, uncertainties and hydrologic importance, Q. J. Roy. Meteor. Soc., 144, 89–102, https://doi.org/10.1002/qj.3240, 2018. 
Behrangi, A., Singh, A., Song, Y., and Panahi, M.: Assessing Gauge Undercatch Correction in Arctic Basins in Light of GRACE Observations, Geophys. Res. Lett., 46, 11358–11366, https://doi.org/10.1029/2019GL084221, 2019. 
Bourgouin, P.: A method to determine precipitation types, Weather Forecast., 15, 583–592, https://doi.org/10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2, 2000. 
Download
Short summary
Precipitation data from an automated observational network in eastern Canada showed a temperature interval where rain and snow could coexist. Random forest models were developed to classify the precipitation phase using meteorological data to evaluate operational applications. The models demonstrated significantly improved phase classification and reduced error compared to benchmark operational models. However, accurate prediction of mixed-phase precipitation remains challenging.
Share