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Abstract. This study presents a probabilistic model that
partitions the precipitation phase based on hourly measure-
ments from a network of radar-based disdrometers in east-
ern Canada. The network consists of 27 meteorological sta-
tions located in a boreal climate for the years 2020–2023.
Precipitation phase observations showed a 2 m air tempera-
ture interval between 0–4 °C, where probabilities of occur-
rence of solid, liquid, or mixed precipitation significantly
overlapped. Single-phase precipitation was found to occur
more frequently than mixed-phase precipitation. Probabilis-
tic phase-guided partitioning (PGP) models of increasing
complexity using random forest algorithms were developed.
The PGP models classified the precipitation phase and par-
titioned the precipitation accordingly into solid and liquid
amounts. PGP_basic is based on 2 m air temperature and
site elevation, while PGP_hydromet integrates relative hu-
midity, surface pressure, and precipitation rate. PGP_full in-
cludes all previous data, along with atmospheric reanaly-
sis data, the 1000–850 hPa layer thickness, and temperature
lapse rate. The PGP models were compared to benchmark
precipitation-phase-partitioning methods. These included a
model with a single temperature threshold set at 1.5 °C, a
linear-transition model with dual temperature thresholds of
−0.38 and 5 °C, and a psychrometric balance model. Among
the benchmark models, the single temperature threshold had
the best classification performance (F1 score of 0.74) due
to a low count of mixed-phase events. The other bench-
mark models tended to over-predict mixed-phase precipita-
tion in order to decrease the partitioning error. All PGP mod-
els showed significant phase classification improvement by

reproducing the observed overlapping precipitation phases
based on 2 m air temperature. PGP_hydromet and PGP_full
displayed the best classification performance (F1 score of
0.84). In terms of partitioning error, PGP_full had the lowest
RMSE (0.27 mm) and the least variability in performance.
The RMSE of the single-temperature-threshold model was
the highest (0.40 mm) and showed the greatest performance
variability. An input variable importance analysis revealed
that the additional data used in the more complex PGP mod-
els mainly improved mixed-phase precipitation prediction.
The improvement of mixed-phase prediction remains a chal-
lenge. Relative humidity was deemed to be the least im-
portant input variable used due to consistent near-saturation
water vapour conditions. Additionally, the reanalysis atmo-
spheric data proved to be an important factor in increasing
the robustness of the partitioning process. This study estab-
lishes a basis for integrating automated phase observations
into a hydrometeorological observation network and for de-
veloping probabilistic precipitation phase models.

1 Introduction

Precipitation phase is a critical component in hydrological
modelling. Simply put, the hydrological effect following ei-
ther a snowfall or rainfall event is drastically different; snow-
fall accumulates in winter and melts later in the spring or
during winter melt events, while rain can either infiltrate or
become runoff, potentially increasing streamflow in the short
term. The precipitation phase also affects snowpack charac-
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teristics in different ways; a rain-on-snow event infiltrates the
snowpack, increasing its liquid water content, and can cre-
ate ice layers and change the snowpack internal character-
istics (Singh et al., 1997; Wever et al., 2016), while snow-
fall increases the depth of the snowpack. During individ-
ual precipitation events, errors in snowpack water equivalent
(SWE) and depth are mainly caused by errors in precipita-
tion partitioning (Leroux et al., 2023). On a seasonal basis,
the precipitation phase significantly affects the ablation of the
snowpack, particularly due to its impact on the snow albedo
(Essery et al., 2013; Günther et al., 2019). As such, the cu-
mulative effects of misclassified precipitation have a signif-
icant impact on various seasonal values such as peak SWE,
peak discharge date, and snow cover duration (Harder and
Pomeroy, 2014).

As the climate warms, regions that typically experience
winter snowfall are expected to face more rainfall in their
winter precipitation, resulting in more rain-on-snow events
(Jeong and Sushama, 2018; Ye et al., 2008; Musselman et
al., 2018). Consequently, the proportion of runoff caused by
rain-on-snow events during the winter is projected to increase
in these regions (Jeong and Sushama, 2018; Musselman et
al., 2018). Effective precipitation partitioning methods are
more important than ever to anticipate potentially damag-
ing events and to monitor water resources at the catchment
scale. This need is also felt for field monitoring of precipita-
tion quantities. Indeed, solid precipitation is much more sen-
sitive to undercatch (underestimation due to the wind moving
hydrometeors away from the gauge) than liquid precipitation
(Rasmussen et al., 2012). Consequently, an inaccurate identi-
fication of the phase necessarily translates into an erroneous
estimation of the precipitation quantity. Ehsani and Behrangi
(2022) showed that undercatch for solid precipitation intro-
duced a significant bias in gridded precipitation products at
both the seasonal and annual scales at higher latitudes. This
highlights the need to account for the precipitation phase at
the synoptic scale, especially when using precipitation prod-
ucts to bias-correct satellite precipitation estimates (Behrangi
et al., 2019; Ehsani and Behrangi, 2022).

The modelling of the precipitation phase in operational hy-
drological models is often based on a single near-surface air
temperature threshold (Harpold et al., 2017). While simple
to implement, this method cannot predict mixed precipita-
tion events, which tend to occur when falling hydrometeors
of different sizes coexist and melt at different rates (Thériault
and Stewart, 2010). As an alternative to the single-threshold
approach, one can use a linear relationship to account for
mixed-phase precipitation events that occur between those
two thresholds. Furthermore, these types of methods can
be refined into curvilinear functions, which would theoreti-
cally yield a more accurate phase identification (Feiccabrino
et al., 2013). In both cases, the classification error is re-
duced when compared to the single-threshold approach (Fe-
iccabrino et al., 2013; Wen et al., 2013). The advantage of us-
ing temperature-threshold-based models comes mainly from

a data availability and computational requirement standpoint.
Variables other than air temperature are known to influence
the precipitation phase, such as relative humidity and atmo-
spheric pressure (Behrangi et al., 2018; Dai, 2008; Jennings
et al., 2018). Thus, precipitation partitioning models can be
improved by using dew point temperature (e.g. Marks et al.,
2013; Ye et al., 2013) or wet-bulb temperature (e.g. Ding et
al., 2014; Wang et al., 2019; Behrangi et al., 2018) instead
of relying solely on air temperature, increasing the spatial
robustness of such models.

Phase-partitioning models tend to rely on near-surface hy-
drometeorological variables because this information is eas-
ily accessible. However, the hydrometeor’s initial phase as it
leaves the cloud, the shape and size distribution of the precip-
itation particles, and the properties of the atmosphere from
the cloud to the ground all determine the precipitation phase
(Feiccabrino et al., 2015). As they fall, the hydrometeors ex-
change latent and sensible heat with their surroundings, link-
ing their phase to the temperature and vapour deficit as they
fall through the atmosphere. Additionally, both heat fluxes
are also affected by the ventilation of the hydrometeor, which
depends on its fall speed and the surrounding wind velocities
(Stewart, 1992).

Atmospheric temperature gradients can vary with time,
and so the thickness of the melting atmospheric layer is also
a key variable to consider as it affects the time the hydrom-
eteor spends in conditions favourable to melting. Empirical
models approximate this layer thickness by computing the
height difference between two selected pressure levels (Feic-
cabrino et al., 2015). Precipitation rates can also increase the
energy required to melt hydrometeors. Indeed, at high precip-
itation rates, there is a larger volume to melt, thus increasing
the likelihood of solid precipitation at warmer temperatures
(Froidurot et al., 2014; Thériault and Stewart, 2010). There-
fore, by accounting for the characteristics of the atmospheric
layer, microphysical models can determine the precipitation
phase of falling hydrometeors (Thériault and Stewart, 2010).
Other models are instead based on the statistical relationship
between the hydrometeorological variables and the precipi-
tation phase. Such models compute the probability of a pre-
cipitation phase occurring considering a set of environmental
conditions.

The methodology for calculating the probability of phase
occurrence varies across studies and includes, for exam-
ple, a curvilinear function (Dai, 2008), logistic regression
(Behrangi et al., 2018; Froidurot et al., 2014; Jennings et al.,
2018), and machine learning algorithms (Shin et al., 2022).
These methods output a precipitation type rather than a frac-
tion of solid and liquid precipitation in the case of dual-
threshold models. However, the use of these methods is lim-
ited when dealing with mixed-phase precipitation as they
do not provide information on how the precipitation is par-
titioned. Fortunately, mixed-phase events are less common
than single-phase events (Dai, 2008) and are thus often omit-
ted from studies using probabilistic methods.
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In addition to selecting the appropriate variables to include
in a phase-partitioning model, the quality and availability
of the validation dataset are critical aspects to consider. In-
deed, the scarcity of validation data was cited by Harpold
et al. (2017) as a major factor hindering the development of
phase-partitioning models. Direct manual phase observations
collected from trained observers have been used to validate
precipitation partitioning models (e.g. Behrangi et al., 2018;
Dai, 2008; Froidurot et al., 2014; Jennings et al., 2018). Jen-
nings et al. (2023) have also shown the possibility of using
crowdsourced precipitation phase data. While such datasets
are extensive in time and space, they do not provide quanti-
tative information on the snow and rain fractions in mixed-
phase events, thus limiting the possible predicted precipita-
tion phases to either solid or liquid.

High-frequency automatic measurements do not suf-
fer from limitations caused by mixed-phase precipitation
(Froidurot et al., 2014; Harpold et al., 2017) as the precip-
itation phase can be coupled with a concurrent precipitation
amount. When both phase identification and precipitation
gauge measurements are made at a high frequency, phase-
separated precipitation can be compiled for hourly or shorter
time steps, thus allowing for mixed-phase partitioning. One
possible validation approach based on automatic data is to
use precipitation measurements collocated with snow cover
height measurements (Harder and Pomeroy, 2013; Marks et
al., 2013). A more direct automatic approach is to use a dis-
drometer, which identifies the phase of the hydrometeor ac-
cording to its size and falling speed. For instance, Wayand
et al. (2016) utilized a disdrometer to associate precipita-
tion phase with precipitation amounts, which helped eval-
uate multiple phase models. This combination of observa-
tions not only allows for the validation of a phase model but
also addresses a major limitation of previous studies, namely
the partitioning of precipitation in the case of mixed-phase
events. Another important factor to consider is the time step
of the validation data. While many conceptual hydrological
models employ daily time steps to determine precipitation
phase, sub-daily time steps greatly enhance the accuracy of
the modelled phase (Feiccabrino, 2020; Harder and Pomeroy,
2013). Therefore, it is necessary to use sub-daily time steps,
such as 15 min or hourly, as a significant portion of the phase
model’s performance depends on the time step of interest.

There are many ways to improve the representation of the
precipitation phase for hydrological purposes. As pointed out
in Harpold et al. (2017), the often too simple phase models
need more hydrometeorological observations for a successful
partitioning of the precipitation phase. Such observations in-
clude the relative humidity, as well as atmospheric informa-
tion, like the temperature and humidity lapse rate. Addition-
ally, an important research limitation comes from the lack
of validation data. Direct observations, while commonly uti-
lized, have limited applications for mixed-phase precipitation
due to their qualitative nature. A preferable solution involves
automated phase observations as they enable the coupling

with precipitation rate measurements. However, direct phase
observation datasets indicate the existence of a temperature
transition zone, where both snow and rain are possible. This
highlights the limitations of simplistic phase models that fail
to capture the complex nature of phase determination.

This study leverages a unique regional-scale radar dis-
drometer network coupled with precipitation observations to
develop a probabilistic phase-partitioning model. The prob-
abilistic model follows a phase-guided partitioning (PGP) in
the form of a chain of random forest models. The precipita-
tion phase is classified before partitioning to accurately repli-
cate its intricate behaviour and to take advantage of the sig-
nificant amount of validation data available through such a
network. As such, the models classify the precipitation as ei-
ther solid, liquid, or mixed phase. The predicted phase then
dictates the partitioning into solid and liquid fractions. Addi-
tionally, multiple PGP models with lower data requirements
are developed to evaluate the possibility of utilizing such
models in practical operations. This study begins with a de-
scription of the precipitation dataset and hydrometeorologi-
cal variables used, followed by the methodology used to de-
velop the PGP models. Finally, the Results section presents
an analysis of the dataset and evaluates the model’s phase
classification and partitioning performance, comparing it to
benchmark models of differing levels of complexity.

2 Data

2.1 Surface hydrometeorological measurements

The disdrometer network used for this study was deployed
on the north shore of the St. Lawrence River in the province
of Quebec, Canada (Fig. 1). It is part of a larger hydrometeo-
rological observation network operated by Hydro-Québec, a
public utility responsible for the generation and distribution
of electricity in Quebec. The network lies between latitudes
of 47.23 and 52.13° N, and longitudes of 63.17 to 75.29° W,
spanning an area of roughly 532 594 km2. The 27 stations
have been in operation for varying periods of time between
the years 2019 and 2023, totalling 80 site-years. The site ele-
vations range from 315 to 641 m above sea level (a.s.l.), with
an average of 469 m a.s.l. The names, coordinates, and op-
erational time frames for each station are presented in Ap-
pendix A.

The sites have a mean annual 2 m air temperature of 0.2 °C
and a mean annual cumulative precipitation of 902 mm, cal-
culated from 160 site-years of daily observations. Figure 2 il-
lustrates the distribution of annual mean daily 2 m air temper-
ature and precipitation, as well as the elevation of the sites.
The annual precipitation decreases with latitude as the north-
ern sites (> 51° N) experience an annual mean of 813 mm.
The southernmost sites (< 49° N) receive more precipitation
on average, with an annual mean of 1002 mm. However, the
variability observed at these sites is much greater than ob-
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Figure 1. Location of the study sites in eastern Canada. The black square in the top-left inset corresponds to the map domain.

Figure 2. Distributions of the (a) annual mean temperature, (b) an-
nual mean precipitation, and (c) elevation at the study sites, sepa-
rated by latitudinal range.

served elsewhere. The sites’ elevation follows a mostly nor-
mal distribution within a 400 m range of the mean, with ele-
vations generally increasing northward. Following the Köp-
pen climate classification, the sites are nearly evenly split
between humid continental (Dfb) and humid subarctic (Dfc)
climates. The study period spans from 1 October to 1 June of

the following year as the chances of snowfall are practically
non-existent outside of these dates for the domain of interest.

Each site is equipped with a radar-based disdrometer
(model WS100, Lufft), providing 15 min phase identifica-
tion. The WS100 is a K-band (24 GHz) Doppler radar that
classifies droplets into 11 size classes between 0.3 and
5.0 mm. The disdrometer assigns World Meteorological Or-
ganization (WMO, 2018; Table 4677) weather codes for no
precipitation (code 0), rain (code 60), freezing rain (code 67),
a mix of rain or drizzle and snow (code 69), and snowfall
(code 70). The precipitation phase is identified according to
the hydrometeor diameter–fall velocity relationships for wa-
ter droplets outlined in Gunn and Kinzer (1949), as well as in
Locatelli and Hobbs (1974) for solid-phase precipitation par-
ticles. Rain and snow fall velocity as a function of measured
reflectivity from K-band Doppler radar was investigated in
Atlas et al. (1973) and remains an area of active research
(e.g. Garcia-Benadi et al., 2020; Kneifel et al., 2011; Löffler-
Mang et al., 1999; Sarkar et al., 2015). For simplicity, the
phase identifications derived from the diameter–fall veloc-
ity relationships are referred as observations in this study. In
addition, each site also provides measurements of SWE us-
ing a passive gamma ray monitoring system (model CS725,
Campbell Scientific) and of snow height using an ultrasonic
sensor (model SR50A, Campbell Scientific).

The meteorological observations in this study come from
weather stations operated by Hydro-Québec and SOPFEU,
the province’s wildfire prevention organization. The weather
stations provide 15 min accumulated precipitation (model
Pluvio2 by OTT, equipped with a single-Alter shield), al-
lowing the coupling of precipitation with concurrent dis-
drometer phase identification. The weather stations measure
hourly air temperature (model CS109, Campbell Scientific)
and relative humidity (model HMP155a, Campbell Scien-
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tific), with sensors mounted 2 m above the ground. Addition-
ally, wind speed and direction are monitored at a 15 min in-
terval with a ground propeller anemometer (model 05103,
Young) mounted 2 and 10 m above the ground.

Most of the study sites and weather stations are located in
close proximity to each other. Specifically, 67 % of the study
sites are within 3 km of or are collocated with the nearest
weather station. The remaining stations are between a me-
dian distance of 7 km and a maximum distance of 12 km.
The only exception is the Auxloups station and the near-
est weather station, which are separated by 28 km. To ac-
count for the elevation differences between the study sites
and weather stations, the air temperature measurements were
adjusted using international standard atmosphere methods.
The Discussion section will address the uncertainty related to
the distance between the study site and the weather station.
The temporal resolution and detailed specifications about the
study sites’ instruments are provided in Table 1.

2.2 Reanalysis products

Hourly atmospheric data from the ECMWF Reanalysis v5
(ERA5) (Hersbach et al., 2023) are added to this study’s
dataset to account for the energy transfer to falling hydrome-
teors in the atmospheric levels closest to the surface. Further-
more, this will help in assessing the potential performance
gain of incorporating gridded data despite the spatial scale
discrepancy with local observational data. The added data
include temperature profiles for pressure levels of 1000 and
850 hPa. The corresponding geopotential height of these lev-
els is also added to the dataset. The values from the nearest
0.25°× 0.25° grid cell, roughly 28 km× 18 km at the study
sites’ latitudes, are assigned to every study site. Additionally,
the hourly surface atmospheric pressure from ERA5-Land
(Muñoz Sabater, 2019) is added to the dataset as it was not
measured at the weather stations used in this study. The at-
mospheric pressure from the nearest 9 km× 9 km grid space
is assigned to every study site. From these data, the thickness
1z between the 1000 and 850 hPa layers (m) is calculated
with

1z=
z850− z1000

g
, (1)

where z850 and z1000 correspond to the geopotential heights
(m2 s−2) at the top and bottom of the layer, and g is the
gravitational acceleration (9.81 m s−2). The layer thickness
between the two pressure levels is correlated with the mean
temperature of the layer and is also a commonly used vari-
able in operational meteorological models (Feiccabrino et al.,
2015). The pressure levels were selected based on their suc-
cessful use in the classification of the precipitation phase at
the surface in prior studies (e.g. Bourgouin, 2000; Shin et al.,
2022). The temperature lapse rate 0 (°C km−1) is also calcu-
lated:

0 =−
1T

1z
× 1000, (2)

where 1T corresponds to the temperature difference be-
tween the 850 and 100 hPa layers (°C).

3 Methodology

3.1 Precipitation data processing

The observed 15 min precipitation amounts were compiled
at an hourly time step. Each 15 min precipitation data seg-
ment was coupled with a disdrometer phase identification.
Both valid, non-zero values were required for the data seg-
ment to be included in the analysis. A first filter was ap-
plied, where hourly precipitation rates < 0.2 mm h−1 were
considered to be erroneous trace amounts, following standard
WMO methodology (WMO, 2018). A second filter was also
applied where precipitation rates > 110 mm h−1 were con-
sidered to be erroneous (Smith et al., 2022). A neutral aggre-
gating filter (Ross et al., 2020) was then applied to eliminate
noise and diurnal oscillations in the precipitation data. Addi-
tionally, hourly precipitation exceeding 30 mm h−1 was visu-
ally inspected. Any data not consistent with nearby stations
were considered to be invalid.

The disdrometers used in this study can identify freezing
rain and a mix of rain and snow in addition to snow and rain.
However, as most hydrological models only interpret the ef-
fect of snow and rain, this study focuses on the prediction
of solid and liquid precipitation. Therefore, the disdrometer
identifications of freezing rain and of a mix of rain or driz-
zle and snow were aggregated with, respectively, snow and
rain events. For example, if hourly precipitation has a frac-
tion of rain and a mix of rain or drizzle and snow, it would be
considered to be completely liquid after the aggregation. The
selected phase aggregation aims to group the phases that are
most similar in terms of hydrological influence and average
occurring temperature. These assumptions are supported by
an analysis of the effect of each precipitation phase on the
snowpack properties (height and snow water equivalent), as
detailed in Appendix B.

When solid precipitation was identified, the universal
transfer functions of Kochendorfer et al. (2017) were applied
to adjust for wind-induced gauge undercatch. To do so, local
hourly wind speed and temperature measurements at gauge
height were used, which were shown to provide appropriate
corrections for sites in boreal climates (Pierre et al., 2019).
The solid and liquid 15 min precipitation were then compiled
at hourly time steps and were partitioned into liquid- and
solid-precipitation fractions, totalling 31 905 data points. The
resulting phase partitioning was used to classify the phase of
each precipitation event as solid, liquid, or mixed, with re-
spective dataset proportions of 71 %, 22 %, and 7 %.

Figure 3a shows the phase occurrence of the coupled
15 min precipitation data along an interpolated 15 min 2 m
air temperature. The phase occurrence in Fig. 3b shows that it
is mostly the mixed and liquid precipitation that are affected
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Table 1. Study site instrument details.

Model, manufacturer Temporal resolution Observation Specifications

WS100, Lufft 15 min Precipitation phase See Sect. 3.1 and Appendix B

Pluvio2, OTT 15 min Precipitation rate Resolution: 0.1 mm
Accuracy: ±0.05 mm

CS109, Campbell Scientific 60 min Near-surface air temperature Accuracy: ±0.2 °C (from 0 to 70 °C),
increasing to ±0.5 °C at −50 °C

HMP155a, Campbell Scientific 60 min Near-surface relative humidity Accuracy: ±(1.0+ 0.008× reading) %
RH (from −20 to 40 °C)

05103, R.M. Young 15 min Wind speed 2 m above ground Wind speed threshold: 1.0 m s−1

Accuracy: ±0.3 m s−1

SR50A, Campbell Scientific 60 min Snow height Resolution: 0.25 mm
Accuracy: ±1 cm or 0.4 % of distance
to target

CS725, Campbell Scientific 6 h Snowpack SWE Resolution: 1 mm
Accuracy:±15 mm (from 0 to 300 mm)

Figure 3. Event counts of (a) the 15 min precipitation phase identified by the disdrometers and (b) the aggregated hourly precipitation phases
according to the 2 m air temperature.

by the aggregation and that very few freezing rain events ag-
gregated with snow events result in the snow and solid-phase
distributions being very similar. The aggregation of the mix
of rain or drizzle and snow with rain results in an increase in
liquid precipitation in the 0–5 °C range. Mixed-phase precip-
itation occurs in the same air temperature range as that of the
mix of rain or drizzle and snow, suggesting that this phase
is often present in mixed-phase precipitation, thus validat-

ing the aggregation. A cursory analysis of the mixed-phase
precipitation events revealed that events with a phase tran-
sition between snow and a mix of rain or drizzle and snow
account for roughly 75 % of the mixed-phase events. Transi-
tions from rain to snow are infrequent and represent roughly
15 % of the mixed-phase precipitation events, while the re-
mainder includes other phase combinations.

Hydrol. Earth Syst. Sci., 29, 1135–1158, 2025 https://doi.org/10.5194/hess-29-1135-2025
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3.2 Model performance evaluation

The models presented in this study are evaluated for their
ability to correctly predict the precipitation phase using a
variety of performance metrics. First, the metrics used to
quantify the predictive ability of the models are the precision
(PRE) and the recall (REC), as well as the F1 score (Rokach
et al., 2023). The combination of precision and recall is com-
monly used to evaluate model classification performance as
the metrics indicate different information. The precision indi-
cates the proportion of correct predictions for a given phase,
while the recall indicates the probability of detection for a
given phase. By definition, model precision and recall are in-
versely proportional. The assessment of both metrics informs
whether a model overpredicts or underpredicts a given class.
For instance, low precision and high recall indicate a class
overprediction, while high precision and low recall indicate a
class underprediction. Therefore, a model that achieves good
performance in both metrics is desirable.

PRE=
TP

TP+FP
(3)

REC=
TP

TP+FN
(4)

In the above, TP, FN, and FP are the true-positive, false-
negative, and false-positive counts, respectively, for a given
phase. The F1 score, being the harmonic mean of the pre-
cision and recall, is a useful metric to quantify the general
performance of the model.

F1= 2
(

PRE×REC
PRE+REC

)
(5)

These metrics are computed for each precipitation phase sep-
arately. A general score is also computed by weighing each
phase’s score according to its proportion in the dataset. As
such, the weighted F1 score is used as a general classifica-
tion performance metric as it combines both precision and
recall and harshly penalizes a poor score in either of them
while also considering the dataset imbalance.

Second, the model partitioning performance is evalu-
ated based on the predicted solid- and liquid-precipitation
amounts. The metrics used are the coefficient of determi-
nation R2 and the RMSE. Due to the slightly asymmetric
phase distribution and overlap between the phases shown in
Fig. 3, different R2 values are calculated for the solid- and
liquid-precipitation. Thereby, the metrics are calculated on
the phase-separated precipitation rather than on the precipi-
tation fraction as the precipitation phase could be solid, liq-
uid, or mixed for a given temperature. Because of the par-
titioning between solid or liquid precipitation, the RMSE is
equal to the root mean squared of the misclassified precipi-
tation. Therefore, the RMSE is the same for both solid and
liquid precipitation, and a single score is presented. Finally,
the partitioning performance metrics are performed on differ-
ent subsets of the dataset using aK-fold method. TheK-fold

validation method is commonly used to assess the variabil-
ity of model performance with machine learning methods.
By using different subsets of the dataset to train and validate
the model K times, a more general performance can be as-
sessed. Because of the fewer liquid- and mixed-precipitation
events compared to solid-precipitation events, the K fold is
also stratified to maintain phase proportions between train-
ing and validation sets from fold to fold. As such, in the case
of the partitioning validation, the variability of the precip-
itation amounts from fold to fold must be considered. The
performance metrics are repeated until the variance of the
partitioning performance metrics stabilizes. In this case, the
validation was performed with 5-fold validation and was re-
peated six times for a total of 30 validation folds.

3.3 Phase-guided probabilistic precipitation phase
model

Machine learning algorithms are powerful tools for build-
ing classification and regression models. Random forests
(Breiman, 2001) are commonly utilized in the environmen-
tal sciences due to their simple implementation and lower
susceptibility to overfitting compared to other models. The
model is based on decision trees, where variables are ran-
domly chosen at each node to create a prediction. Therefore,
the decision trees, each unique due to randomness, provide
predictions that are ultimately aggregated to generate a final
well-informed prediction.

Given the overlapping phases of the dataset, a random for-
est (RF) classifier is used to predict the precipitation phase
with a probabilistic approach. The procedure to develop the
RF model is illustrated in Fig. 4. To address the phase type
imbalance, the data were adjusted by undersampling the solid
phase and increasing the weight of both liquid- and mixed-
precipitation phases in the dataset. To achieve this, only data
points with air temperatures between −4 and 8 °C were kept
in the analysis. The phase proportions resulting from the un-
dersampling are 60 % solid, 26 % liquid, and 14 % mixed.
The data were then split using an 80/20 ratio between the
training and validation sets, respectively, resulting in 13 339
data points for training and 3335 for validation. To account
for the prevalence of solid-precipitation samples, the train-
ing and validation sets were stratified to maintain the afore-
mentioned phase proportions between the two subsets (60 %
solid, 26 % liquid, 14 % mixed). Hyperparameters were opti-
mized on the training set to increase the model performance
and to reduce the chance of overfitting by using a stratified
5-fold cross-validation and maximizing for a weighted F1
score. The RF classifier was then retrained on the entire train-
ing dataset and was ready for use on the validation set.

While the precipitation partitioning is straightforward
when the predicted phase is either solid or liquid, it is less
so for a predicted mixed phase, where a solid- and liquid-
precipitation fraction must be assigned. Thus, in the case of a
predicted mixed phase, an RF regression model is developed
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Figure 4. Development and validation methodology for the phase-guided-partitioning model.

following the same steps described above. The loss func-
tion used to optimize the regression model parameters is the
mean-squared error (MSE) to increase the penalty on larger
errors. The phase-guided-partitioning model predicts a pre-
cipitation phase, as well as a solid- and liquid-precipitation
partitioning according to the predicted phase, with the com-
plete process illustrated in Fig. 5.

Multiple PGP models using a combination of atmospheric
variables were developed. The subsets of input variables of
the PGP models accommodate different levels of data avail-
ability, ranging from the strictest minimum data require-
ments (e.g. in an operational context) to atmospheric vari-
ables, with each subset fully incorporating the previous sub-
sets (see Table 2). This approach will help to quantify the
impact of some atmospheric variables that are not measured
at surface weather stations. The simplest model, PGP_basic,
includes only 2 m air temperature and site elevation. Next,
PGP_hydromet includes all related near-surface hydromete-
orological data, such as relative humidity, atmospheric pres-
sure, and precipitation rate. Finally, the PGP_full model, as
discussed in the previous sections, incorporates atmospheric
data from reanalysis, specifically the thickness of the 1000–
850 hPa layer and the temperature lapse rate.

3.4 Benchmark phase-partitioning models

The benchmark models used for this study are common
methods of increasing complexity found in hydrological
models. First, a single 2 m air temperature threshold (ST)
model is used as a baseline comparison. This model sepa-

Figure 5. Phase-guided-partitioning model structure.
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Table 2. Listing of the input variables used in the tested PGP models.

PGP model Input variables

PGP_basic 2 m air temperature, elevation

PGP_hydromet 2 m air temperature, elevation, relative humidity, atmospheric
pressure, precipitation rate

PGP_full 2 m air temperature, elevation, relative humidity, atmospheric
pressure, precipitation rate, 1000–850 hPa layer thickness, tem-
perature lapse rate

rates precipitation into solid and liquid phases based on a cal-
ibrated air temperature threshold. While this type of model
is widely used, it is generally associated with larger par-
titioning errors on a seasonal basis (Harpold et al., 2017).
Second, a linear-transition (LT) model is used. It allows for
mixed-phase precipitation while still being of low complex-
ity. LT partitions the solid and liquid precipitation accord-
ing to a linear relationship between a snow and rain temper-
ature threshold. Finally, the psychrometric-energy-balance
(PB) model is used, which is a phase-partitioning method
based on the mass energy and energy balance of a subli-
mating ice sphere that integrates the relative humidity to es-
timate the hydrometeor temperature (Harder and Pomeroy,
2013). The estimated hydrometeor temperature is then used
as an input in a two-parameter curvilinear relationship. All
three benchmark models are calibrated individually with the
least squares method, minimizing the error with the observed
solid-phase fractions. The models and their calibrated values
are given in Appendix C. The precipitation phase can then be
inferred from the predicted fractions. In other words, a mixed
phase will be predicted in the instance of non-zero solid
and liquid fractions, otherwise the predicted phase is either
solid or liquid. Previous studies that employed probabilis-
tic models based on direct phase observations (e.g. Behrangi
et al., 2018; Jennings et al., 2018) were not included as
benchmark models. Mixed-phase precipitation is typically
excluded from such studies as there is no effective method
to accurately partition the precipitation due to the categori-
cal nature of direct phase observations. The above consider-
ations make such models difficult to compare with the PGP
models presented in this study.

3.5 Input variable importance analysis

A common way to interpret input variable importance for a
machine learning model is to use permutation importance,
which helps in decreasing the black-box aspect of machine
learning algorithms (McGovern et al., 2019). The perfor-
mance of the model is computed according to a chosen scor-
ing scheme. Each variable of the model is then shuffled indi-
vidually. The goal of this step is to break the relationship be-
tween a variable and the desired prediction. After each shuf-
fle, a performance score is calculated to show the decrease

in model performance. This process is then repeated several
times to account for data variability. Thus, the relative im-
portance of each input variable to the model can be quan-
tified with the resulting performance decrease. Permutation
importance analysis provides only the importance of an input
variable to the model and not the inherent information pro-
vided by that variable. However, when shuffling a variable
that is highly correlated to another, the model can still find
the shuffled variable’s information when performing permu-
tation importance analysis. In practice, this is an important
consideration as it means the importance of either or both in-
put variables can be lower. This analysis offers insight into
the crucial variables for the PGP models and how they can
be further improved.

4 Results

4.1 Dataset analysis

The distribution of the hydrometeorological variables catego-
rized by precipitation phase is displayed in Fig. 6. The tem-
perature distributions show a significant overlap between all
three phases from 1.5 to 3.6 °C, similarly to that reported in
Jennings et al. (2023). Mixed-precipitation probability peaks
at approximately 2.4 °C. The distribution of relative humidity
reveals that precipitation is associated with near-saturation
water vapour conditions, with a median value of 97 %, re-
gardless of the precipitation phase. The mean precipitation
rate is generally low at 0.9 mm h−1. The median precipi-
tation rate for mixed-phase events is generally the highest
at 0.8 mm h−1, followed by that of liquid-phase events at
0.7 mm h−1 and that of solid-phase events at 0.6 mm h−1. At-
mospheric pressure distributions are similar for both liquid-
and mixed-phase precipitation events. The mean air pressure
during the solid-precipitation events is comparable to that
of the other phases, but there are more events between 90
and 92 kPa. The distribution for the thickness of the 1000–
850 hPa layer closely mirrors that of air temperature, given
their general correlation. The temperature lapse rate averages
4.9 °C km−1, and distributions, especially of solid precipita-
tion, show a bias toward the standard atmospheric lapse rate
of 6.5 °C km−1.
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Figure 6. Input distributions separated by phase of (a) 2 m air temperature, (b) relative humidity, (c) atmospheric pressure, (d) precipitation
rate, (e) 1000–850 hPa layer thickness, and (f) air temperature lapse rate.

The overlap of the phase distributions for each input vari-
able, most notably the air temperature, indicates that a prob-
abilistic approach is appropriate for predicting the precip-
itation phase. Indeed, between approximately 0 and 4 °C,
solid and liquid precipitation may occur separately or coex-
ist. According to findings in previous studies, precipitation
over land is more likely to occur in a single phase than in
mixed-phase precipitation (Dai, 2008; Froidurot et al., 2014),
as is the case in this study, where only 13 % of the precipi-
tation data points are mixed phase. There is, however, a nar-
row 2 m air temperature range, between 2 and 2.5 °C, where
mixed-phase probability exceeds the probability of single-
phase precipitation. An appropriate phase-partitioning model
must thus accurately predict the phase in the temperature
interval where solid-, liquid-, and mixed-precipitation oc-
currences overlap while also providing accurate partitioning
when needed.

4.2 Phase classification

Figure 7 shows the phase density distribution of the bench-
mark models and the PGP models in comparison to the ob-

Table 3. Weighted classification scores for single-threshold (ST),
linear-transition (LT), psychrometric-balance (PB), and phase-
guided-partitioning PGP models. PGP model details are summa-
rized in Table 2.

Model F1 Precision Recall

ST 0.74 0.71 0.79
LT 0.71 0.88 0.66
PB 0.31 0.88 0.30
PGP_basic 0.82 0.86 0.80
PGP_hydromet 0.84 0.85 0.83
PGP_full 0.84 0.84 0.84

servations. The corresponding classification scores of the
models, which were weighted to reflect the precipitation
phase proportions in the dataset, are presented in Table 3.
The phase density distributions show the limitations of
benchmark phase-partitioning models, namely that the mixed
phase is absent or overrepresented compared to the observa-
tions. However, ST performs well in all three metrics due to
the low likelihood of mixed-phase occurrence. When eval-
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Figure 7. Hourly phase distributions according to 2 m temperature of the (a) observations, (b) single threshold, (c) PGP_basic, (d) linear
transition, (e) PGP_hydromet, (f) psychrometric balance, and (g) PGP_full. PGP model details are summarized in Table 2.

uating the overall classification performance using the F1
score, LT follows ST because of a disparity between pre-
cision and recall that affects its F1 score. The lower recall
score for LT can be attributed to its overprediction of the less
frequent mixed phase, which, in turn, negatively affects the
recall of other phases. This enhances the model’s weighted
precision by decreasing the number of false positives in non-
mixed-phase prediction. The same reasoning can be more ex-
tensively applied to PB’s weighted scores. The mixed phase’s
overlap with other phases significantly decreases the model’s
overall recall. Due to the relationships used to create the
benchmark models, the overlap between all three phases is
not accurately represented. By including relative humidity,
PB can model phase overlap, but this does not improve the
modelled phase distribution density with respect to the ob-
servations.

The weighted F1 score for the PGP models shows that they
have a more robust general performance as they have high
weighted precision and recall scores while having a small
disparity between both scores. The PGP models reproduce

the observed phase overlap well but overpredict the mixed
phase slightly, affecting both the solid- and liquid-phase pre-
dictions. PGP_basic exhibits the greatest mixed-phase over-
prediction, while the difference between PGP_hydromet and
PGP_full is marginal. This result suggests possible improve-
ments to PGP models, particularly for mixed-phase precipi-
tation.

The phase-separated classification metrics provide further
insight into the performance of the models, as shown in
Fig. 8. The F1 score provides an overall performance for
each phase prediction. PGP_full has the best F1 scores for
both the solid and liquid phases, while PGP_hydromet has a
higher F1 for the mixed phase. PGP_basic is generally the
third best-performing model in terms of F1 score, except for
the solid phase, where ST outperforms it. While it is not able
to predict the mixed phase, ST has the highest scores for the
liquid- and solid-precipitation phases out of the benchmark
models. This is probably because mixed-phase precipitation
events constitute only roughly 13 % of the samples; this low
proportion does not significantly decrease the model’s per-
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Figure 8. Model phase classification metrics separated by (a) the solid, (b) the mixed, and (c) the liquid phase. PGP model details are
summarized in Table 2.

formance. LT performs slightly worse than ST for both solid-
and liquid-phase F1 scores but has the highest mixed-phase
F1 score out of the benchmark models.

PB’s poor F1 scores are explained by the overlaps be-
tween the phases shown in Fig. 7. The model allows the pre-
dicted mixed phase to overlap with the predicted solid and
liquid phases, which is the opposite behaviour compared to
the observed phase density, where mixed-phase precipitation
mostly exists in the solid- and liquid-phase overlap. Given
the modelled phase density and the resulting classification
scores, the phase prediction abilities of both LT and PB suf-
fer from overprediction of the mixed phase. This is evidenced
by the significant disparity between the precision and recall
scores of LT and PB for the mixed phase. A high recall score
signifies that the model minimizes the number of false neg-
atives, which negatively affects the model’s precision. Thus,
overpredicting the mixed phase greatly reduces the models’
precision for the mixed phase while greatly increasing their
recall for the mixed phase. Conversely, the conservative pre-
diction of the liquid and solid phases increases the precision
of the model but decreases the recall for both phases.

Although they are not always the best models in terms of
either precision or recall, the PGP models have the best gen-
eral performance, making them more reliable for phase pre-
diction. Thus, PGP models significantly reduce phase iden-
tification error by showing high precision and recall, with
small disparities for solid- and liquid-phase prediction. How-
ever, PGP’s main distinguishing feature is its general ability

to predict mixed-phase precipitation. Furthermore, the dis-
parity between the precision and recall scores for the mixed
phase is much smaller than for the other models studied, in-
dicating that the overprediction of the mixed phase is much
less severe for PGP.

4.3 Precipitation partitioning

Figure 9 displays how the regression metrics vary across val-
idation folds. The precipitation rate variability has a signifi-
cant impact on ST’s performance, making its ability to par-
tition precipitation highly variable from winter to winter. In
contrast, LT and PB exhibit better performance than ST due
to their ability to partition the solid and liquid phases, with
much less variability in performance. The variability of R2

for liquid precipitation is lower for LT and PB than for solid
precipitation because fewer of these events occur. For all re-
gression metrics, LT and PB have similar performances. This
is most likely due to the very humid environment, which de-
creases the difference between the 2 m air temperature and
the hydrometeor temperature computed for PB.
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Figure 9. Model regression performance in (a) R2 for solid precipitation, (b) R2 for liquid precipitation, and (c) RMSE. PGP model details
are summarized in Table 2.

Table 4. Average regression scores for single-threshold (ST), linear-
transition (LT), psychrometric-balance (PB), and phase-guided-
partitioning (PGP) models. PGP model details are summarized in
Table 2.

Model R2 solid R2 liquid RMSE (mm)

ST 0.76 0.65 0.40
LT 0.86 0.80 0.31
PB 0.86 0.80 0.31
PGP_basic 0.87 0.81 0.30
PGP_hydromet 0.88 0.83 0.29
PGP_full 0.89 0.85 0.27

The average regression metrics in Table 4 show the parti-
tioning performance of the various models. All models have a
highR2 for solid precipitation, likely due to the abundance of
solid precipitation. However, model performance decreases
for liquid precipitation R2, with ST being significantly lower
than for other models. This trend is also observed for the
RMSE. While ST is the worst-performing model, LT, PB,
and PGP_basic perform similarly in all regression metrics.
The inclusion of hydrometeorological data in PGP_hydromet
leads to a slight increase in performance. Lastly, the inclu-
sion of atmospheric data in PGP_full improves performance
compared to the other models.

Generally, the performance of PGP_basic is similar to that
of LT and PB, with slight differences. PGP_basic is more
variable in its performance for solid-precipitation R2 and
RMSE. This variability can be attributed to the misclassifi-
cation of precipitation events due to its limited input vari-
ables. The R2 scores for PGP_hydromet are less variable
than for PGP_basic, while its RMSE is the most variable out

of the PGP models. PGP_full exhibits the lowest variability
for both R2 and is the only PGP model with RMSE variabil-
ity similar to the benchmark models LT and PB.

The broader RMSE score range of the PGP models high-
lights the impact of misidentified phases. Misidentification
can be more costly than for a benchmark model that system-
atically separates precipitation into solid and liquid phases
for temperatures where mixed-phase events are possible. Fur-
thermore, models such as LT and PB achieve partial accu-
racy in phase partitioning by forcing mixed-phase precipita-
tion, but if a PGP model misclassifies the phase, the entire
precipitation event may be incorrectly partitioned. However,
PGP models do show that phase identification prior to phase
partitioning can reduce the overall error of a model for both
solid and liquid precipitation. This suggests that improved
phase identification, specifically with mixed-phase predic-
tion, could greatly enhance the accuracy of precipitation par-
titioning from PGP models.

4.4 Input variable importance

Figure 10 shows the correlation matrix of PGP_full input
variables. While the correlation of most input variable com-
binations is low, the 2 m air temperature and 1000–850 hPa
layer thickness are highly correlated. The layer thickness is
affected by environmental temperatures as the air density is
inversely proportional to its temperature. Therefore, as tem-
peratures increase, the distance between two pressure levels
also increases. There is a moderate negative correlation be-
tween elevation and air pressure, probably because of the
small range of study site elevations. The temperature lapse
rate has a small correlation with almost all features.
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Figure 10. Correlation matrix of PGP_full input variable pairs.

The scoring scheme for permutation importance must be
carefully selected according to the model and use case. In
this instance, the PGP models tend to overpredict the mixed
phase, which also negatively impacts their ability to predict
the other phases. In turn, this also affects the models’ parti-
tioning errors, which indicates that their overall performance
is reliant on accurate phase classification. For these reasons,
the chosen scoring scheme for the permutation importance is
the weighted F1 score, used to consider the classification of
the imbalanced phase dataset.

Figure 11 shows the permutation importance of PGP_full
input variables and the resulting decrease in the weighted F1
score in relation to the validation set. The 2 m air temperature
is the most important variable, with its permutation decreas-
ing the score by more than 0.2. The second most important
variable is the 1000–850 hPa layer thickness, a result shared
by Shin et al. (2022). Because of its high correlation with the
2 m air temperature, it is difficult to interpret the real impor-
tance of this variable. In terms of classification performance,
the addition of this variable seems to provide small improve-
ments, as shown by the differences in classification metrics
between PGP_hydromet and PGP_full.

For the remaining variables, the importance decreases
sharply. However, while the individual importance of the
variables is low, they improve the phase classification when

Figure 11. Permutation importance of PGP_full input variable,
showing the decrease in the model’s weighted F1 score.

combined. This suggests that the additional variables used
in PGP_full are likely to improve mostly mixed-phase pre-
diction, which is supported by the model’s performance in
Sect. 4.2. The elevation is used to approximate the atmo-
spheric pressure of a site and can improve phase partitioning
(e.g. Ding et al., 2014; Behrangi et al., 2018). Furthermore,
atmospheric pressure is often cited as an important variable
for phase partitioning (e.g. Behrangi et al., 2018; Dai, 2008;
Jennings et al., 2018). The thinner air in low-pressure envi-
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ronments allows snow to reach the ground faster. The tem-
perature lapse rate provides key information regarding the
amount of energy the hydrometeors absorb before reaching
the ground.

The precipitation rate has a minor impact on the perfor-
mance of the model. Nevertheless, it may hold significance
for the prediction of the mixed phase. The precipitation rate
is linked to the precipitation phase as it increases the energy
required to completely melt falling precipitation (Froidurot et
al., 2014; Thériault et al., 2010). However, its effect is mini-
mal, most likely due to the small proportion of mixed-phase
events. Finally, the model ranks relative humidity as the least
important feature. This outcome is unexpected because rela-
tive humidity was shown to have a significant effect on phase
partitioning (e.g. Behrangi et al., 2018; Jennings et al., 2018).
One explanation could be the high percentage of data points
near water vapour saturation, resulting in the variable being
less regionally significant than more heterogeneous regions
such as mountain ranges. Besides, this could account for the
PB model’s underwhelming classification accuracy since it
utilizes relative humidity to determine the precipitation phase
and due to the fact that it was developed for the drier climate
near the Canadian Rockies.

5 Discussion

5.1 Model performance and input variable importance

The classification and regression metrics of the PGP mod-
els show that phase classification prior to phase partitioning
reduces the partitioning error of solid and liquid precipita-
tion while also providing a more reliable phase prediction
than benchmark models. The use of radar-based disdrome-
ter measurements enabled the partitioning step of the model
by providing precipitation fractions for mixed-phase events,
a flaw mentioned in other studies (Froidurot et al., 2014;
Jennings et al., 2018). Out of the benchmark models, ST
displayed the best classification performance despite not al-
lowing for mixed-phase precipitation. The tendency of over-
predicting the mixed-phase precipitation of both LT and PB
reduced their overall classification performance. This gen-
eral behaviour was also observed in Leroux et al. (2023),
where simpler methods outperformed methods based on a
precipitation phase fraction. However, ST showed signifi-
cantly worse partitioning performance compared to LT and
PB. The limitations of precipitation-fraction-based models
are highlighted by the fact that LT and PB were the worst-
performing phase classification benchmark models despite
being the best partitioning benchmark models. These models
are calibrated to minimize partitioning error, but, in doing
so, they are biased toward predicting mixed-phase precipi-
tation. The mixed-phase prediction of the benchmark mod-
els could be artificially constrained to reduce overprediction
and to improve classification performance. Such constraints

would, however, increase the benchmark models’ partition-
ing error, given that they were calibrated according to solid-
precipitation fractions. Therefore, there is a trade-off be-
tween classification and partitioning error for precipitation-
fraction-based models such as LT and PB.

PGP_basic, while showing an improvement in phase clas-
sification, did not significantly outperform the partitioning of
the benchmark models LT and PB. PGP_hydromet showed
improved phase classification, notably for the mixed phase,
and partitioning. PGP_full showed a further increase in over-
all performance while also reducing the partitioning error
variability. However, all PGP models tended to overpredict
the mixed phase, as shown in Fig. 7. Reducing the overpre-
diction of the mixed phase is a persistent challenge in im-
proving precipitation phase modelling, as noted in previous
studies (Casellas et al., 2021; Leroux et al., 2023).

The permutation importance analysis showed that most in-
put variables used, apart from the 2 m air temperature, are
of low importance. However, the classification performance
improvements in PGP_hydromet and PGP_full show the cu-
mulative importance of the additional variables used, most
notably for mixed-phase prediction. Despite many studies
demonstrating its impact on precipitation phase, relative hu-
midity was found to be the least important factor. This is
likely due to the regional homogeneity, with most observa-
tions occurring near liquid water vapour saturation. The site
elevation was considered to be important for phase classi-
fication, even though it is a constant variable. This suggests
that an atmospheric pressure estimated by the elevation could
provide enough relevant information to improve phase clas-
sification. Still, out of the hydrometeorological variables, the
atmospheric pressure had the most impact on phase classi-
fication performance. This is in line with other studies that
found that it has a significant impact on the precipitation
phase (e.g. Behrangi et al., 2018; Dai, 2008; Jennings et al.,
2018), although this is generally to a lesser extent than rela-
tive humidity when considering the regional variability.

The precipitation rate’s low importance is most likely be-
cause it affects mixed-phase prediction and thus has little
impact on the overall performance. According to Thériault
et al. (2010), higher precipitation rates raise the likelihood
of larger hydrometeors, which require more energy to melt.
Consequently, there is an increased likelihood of mixed-
phase precipitation occurring in the form of partially melted
hydrometeors. As noted by Feiccabrino et al. (2015), higher
precipitation rates can lead to snowfall happening at warmer
temperatures due to the presence of unstable air below the
isothermal layer.

The permutation importance of the 1000–850 hPa layer
thickness is second to the 2 m air temperature. However,
because of the high correlation of the pair of variables
combined with the moderate classification improvement in
PGP_full, the real importance of the 1000–850 hPa layer is
most likely to be low. While the importance of the temper-
ature lapse rate is low, the partitioning results demonstrated
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that incorporating gridded atmospheric variables alongside
local observations led to a reduction in the variance of the
regression performance. This finding is noteworthy because
few studies, as pointed out by Harpold et al. (2017), have
explored the impact of incorporating atmospheric reanalysis
data into phase modelling. Froidurot et al. (2014) indicated
that models using atmospheric data did not greatly improve
the phase prediction, as is the case in this study’s classifica-
tion performance. Furthermore, Dai (2008) emphasizes the
terrain-dependent nature of lapse rates. Thus, even though
the study sites in the region are relatively similar in terms of
terrain, the importance of lapse rates in the modelling pro-
cess was still significant, contrarily to the fairly homogenous
relative humidity measurements.

5.2 Coupled precipitation data uncertainty

There are uncertainties regarding the results due to the
dataset and assumptions employed. Hydrological models
commonly limit the precipitation phases to solid or liquid.
Nonetheless, this dataset includes a considerable quantity of
mixed snow and rain or drizzle events, and it is uncertain how
hydrological models should handle this precipitation phase.
The phase aggregation step considered the behaviour of the
snowpack following the different phases detected by the dis-
drometers. Following a mix of rain or drizzle and snow, the
SWE and snow height tended to decrease, a snowpack re-
sponse similar to that following a rain event. It can be in-
ferred that this type of precipitation is likely to be dominated
by rainfall given the warm temperature at which it occurs and
the ensuing effects on the snowpack. However, it is probable
that this interpretation is specific to the disdrometers used in
this study unless evidence to the contrary emerges. However,
phase identification errors have the potential to introduce un-
certainties into the results, notably in the case of mixed-phase
precipitation. To measure this uncertainty, it is recommended
that studies be conducted using collocated WS-100 disdrom-
eters and other well-documented options such as laser dis-
drometers to assess the differences between ground-truth-
providing instruments (Harpold et al., 2017).

Another source of uncertainty arises from the coupling
of precipitation amounts and phase observations. Fehlmann
et al. (2020) demonstrated that laser disdrometers have low
missed-event and false-alarm rates for sub-daily integration
times compared to precipitometers, but no such study was
conducted with the radar-based disdrometers of this study.
Additionally, the study by Fehlmann et al. (2020) was car-
ried out in a site sheltered from the wind, implying that the
wind-induced gauge undercatch could not be studied. In turn,
the wind could influence the missed-event and false-alarm
rates of this study’s instruments. In this study, data segments
where either the precipitation gauge or disdrometer did not
detect any precipitation were discarded. Figure 12 displays
the hit rate of both the instruments at the initial 15 min inter-
vals and shows that the instruments’ hit rates are generally

Figure 12. Confusion matrix of the precipitometer and disdrome-
ter 15 min precipitation hit rate, normalized over the precipitometer
observations. The upper-left metric is the probability of detection,
the upper-right metric is the miss rate, and the lower-left metric is
the false-alarm rate.

in agreement. The instrument hits were normalized over the
precipitation gauge observations to compute relevant agree-
ment metrics. The precipitation gauge is considered to be
ground-truth as it would be used in conjunction with a pre-
cipitation phase model, and phase observations are rare in an
operational context.

Precipitation data segments of 0.1 mm coincide with 38 %
of the disdrometer misses. Assuming that a significant por-
tion of this precipitation data would be labelled as trace
amounts when resampled at the hourly interval (< 0.2 mm),
the probability of missed events is likely to be lower in re-
ality. Multiple factors could account for disagreements be-
tween the instruments, including the effect of wind, which
likely varies from instrument to instrument, and the fact that
certain stations are not collocated or nearby. However, stud-
ies on the environmental effects on the disdrometer perfor-
mance are lacking, and this would require more detailed in-
vestigation, as outlined in Harpold et al. (2017).

Figure 13 shows the variation of the instrument agreement
according to the distance between stations. The station pairs
are divided into four distance categories: less than 3 km, 4
to 7 km, 7 to 12 km, and more than 12 km. Generally, the sta-
tions separated by less than 3 km show better agreement, with
a few outliers. However, the instrument agreement does not
seem to decrease with distance as the 4 to 7 km category ex-
hibits the poorest agreement. Notably, the Auxloups station,
separated by 28 km from the nearest weather station, has a
probability of detection of 0.79, a false-alarm rate of 0.14,
and a miss rate of 0.21. These instrument agreement met-
rics are only slightly worse than the metrics of the 15 min
dataset in Fig. 12. This suggests that instrument agreement is
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Figure 13. Comparison of the (a) probability of detection, (b) false-alarm rate, and (c) miss rate according to the distance between the study
site and paired weather stations. The dashed grey line corresponds to the metric computed based on the full dataset in Fig. 12.

Figure 14. Observed probability of occurrence for the solid, liquid,
and mixed phases.

linked to site-specific conditions rather than to distance be-
tween stations. However, by discarding data points where the
instruments do not agree, we ensure that precipitation events
are consistent across study sites and weather stations. In addi-
tion, the coupling of instruments from nearby stations brings
the spatial scale of the observational data closer to the scale
of the reanalysis data.

5.3 Data validation across studies

The phase observations from this study can be compared to
other studies that use different validation data, such as di-
rect observations (e.g. Behrangi et al., 2018; Dai, 2008; Jen-
nings et al., 2018). However, it can be difficult to compare the
phase occurrence according to the 2 m air temperature as the
datasets in such studies often exclude mixed-phase precipita-

tion. Consequently, the mixed phase is usually not analyzed
in detail. One method to simply compare phase-partitioning
models is the critical-threshold air temperature value CTa,
which is defined as the critical temperature threshold where
both the solid and liquid phases have a 50 % chance of oc-
currence. In the case of this study, we define a different crit-
ical threshold for the solid phase (CTS) and the liquid phase
(CTL), as well as a temperature where the probability for the
mixed phase is highest (Pm). Figure 14 shows the probability
of occurrence of the phases at the study sites separated into
0.2 °C bins. The resulting thresholds are CTS of 1.3 °C, CTL
of 3.8 °C, and Pm of 2.4 °C for a mixed-phase probability of
0.44. It is also noteworthy that Pm is roughly where the prob-
ability of solid and liquid precipitation is equal. Because of
this study’s aggregation step, CTS should be similar to CTa
values from other studies as the aggregation mostly affected
the probability of mixed and liquid precipitation, and CTL
will be much warmer than CTa.

In Behrangi et al. (2018), the average hourly CTa of
1.58 °C aligns roughly with the study’s CTS and the cali-
brated 2 m air temperature threshold of the benchmark ST.
One of the main conclusions from the study was that the wet-
bulb temperature model is more robust than the dry-bulb tem-
perature model as the CTa can vary significantly from site to
site. Humid conditions lead to a cooler CTa, while drier con-
ditions have the opposite effect. As such, the CTa for humid
conditions would be approximately equal to the mean value
minus the standard deviation, resulting in 1.18 °C, and is thus
closer to this study’s CTS of 1.3 °C. Additionally, the up-
per limit of CTa of 2.16 °C in Behrangi et al. (2018) closely
matches Pm. This finding lends credibility to the disdrometer
phase identification and the phase aggregation step as it in-
dicates the temperature range in which both solid and liquid
phases are possible.
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In Dai (2008), the overland 3-hourly CTa of 1.2 °C is com-
parable to this study’s CTS despite the different time steps.
The chance for the mixed phase in this study is much higher
and more likely at warmer temperatures than in Dai (2008),
where a peak 14.3 % chance of mixed rain and snow at 1.4 °C
overland is reported. However, Ding et al. (2014) have shown
that the probability of mixed-phase precipitation at the daily
time step greatly increases under humid conditions, partic-
ularly near saturation. Such an analysis would, however, be
required at the hourly time step to confirm this behaviour.
The reasoning for the increase in mixed-phase precipitation
probability is that the increase in relative humidity decreases
evaporative cooling and favours a transition from snow to
rain. In contrast, the temperature difference between the hy-
drometeors and the air decreases as humidity rises, which
decreases sensible heat transfer and hinders the transition
from snow to rain. The relatively homogenous conditions of
the study sites could explain the differences in mixed-phase
precipitation probability, while the analysis in Dai (2008)
lumped together a large number of stations.

The findings in Jennings et al. (2018) show a much lower
3-hourly CTa of 0.7 °C for precipitation in 90 %–100 % rel-
ative humidity and 0.9 °C for precipitation occurring in 90–
105 kPa humidity and pressure conditions, under which the
majority of this study’s precipitation occurs. The greater dif-
ference between these CTa and CTS values could be due to
several reasons. First, the 3-hourly CTa should theoretically
be lower than the hourly CTa. As the time step increases, the
occurrence of mixed-phase precipitation increases due to the
higher likelihood of a phase transition. Second, the different
types of validation data could explain why CTa is generally
lower than CTS. Phase identification errors, particularly near
the solid–liquid-phase transition, could also differ between
direct observations and radar disdrometers.

Overall, the radar-based disdrometer measurements are
similar to the findings of previous studies, although, gener-
ally, with slightly warmer conditions of occurrence for solid
precipitation. However, more research is needed to properly
quantify the uncertainties associated with this type of dis-
drometer. In addition, models based on automated phase ob-
servations may differ from those based on direct observa-
tions, especially as the time step can vary from study to study.
This also highlights the importance of the verification step
performed after aggregating mixed snow and rain or drizzle
with rainfall as their effect was deemed to be closer to that of
rainfall.

6 Conclusion

The study used phase measurements from radar-based dis-
drometers to train probabilistic models to classify and parti-
tion precipitation data for a network of study sites in eastern
Canada. The study sites were located in predominantly bo-
real climates and at similar elevations, ranging from 315 to

641 m above sea level. The mean annual 2 m air tempera-
ture was around 0.2 °C, and the cumulative annual precipita-
tion was significant at 902 mm. The humidity conditions for
the data points used in the study were generally close to wa-
ter vapour saturation. The utilization of automated measure-
ments enabled partitioning of precipitation for mixed-phase
events, which were previously limited to direct phase obser-
vations. The studied PGP models showed an improvement in
phase partitioning with prior phase classification compared
to benchmark models of varying complexity. PGP provides
more accurate phase classification, which can benefit hy-
drological modelling at both local and watershed scales. It
successfully reproduced the phase overlap between 1.5 and
3.5 °C, as seen in Fig. 7, where mixed-phase probability was
the highest.

The classification performances show a substantial en-
hancement in phase classification as opposed to benchmark
models, which were designed to minimize errors in phase
partitioning. Additionally, the PGP models reduced partition-
ing error, especially PGP_hydromet and PGP_full. However,
due to prior classification, partitioning performance is highly
dependent on classification performance. As a result, the less
complex PGP_basic had increased error variability. Accord-
ing to the input variable importance analysis, atmospheric
pressure was the second most important near-surface variable
for phase classification. The reanalysis atmospheric data re-
duced the partitioning error variability of PGP_full in com-
parison to the other PGP models. As for relative humidity,
it was deemed to be the least important hydrometeorological
feature for phase classification due to the regional homogene-
ity of the study sites. Overall, these findings demonstrate that
automated phase observations enhance PGP method devel-
opment and significantly improve precipitation phase classi-
fication, even with limited hydrometeorological information.
The incorporation of reanalysis atmospheric data further en-
hances the accuracy of local observations, pointing toward
potential operational applications for such methods.

The methodology of this study could be applied to other
environments, including drier conditions or a broader spec-
trum of environments. Further research should include a
comprehensive comparison of the radar-based disdrometers
used in this study with other phase validation techniques to
assess potential limitations. Research is also needed to im-
prove the prediction of the mixed phase. Other variables such
as wind speed could be considered as high wind speed can
have a cooling effect on precipitation. Additionally, the im-
pact of using a model that combines both phase classification
and partitioning on snowpack accumulation and basin mass
and energy dynamics should be investigated.
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Appendix A: Study site details

Table A1 shows the details for the study sites used from the
Hydro-Québec observational network.

Table A1. List of study site coordinates, elevations, and time frames for when the station was in operation.

Station name Latitude (° N) Longitude (° W) Elevation (m a.s.l.) Operational time frame

Argent 50.776574 69.778857 641 2020–2023
Auxloups 51.905890 70.487430 537 2020–2023
Baubert 51.409460 63.556960 541 2020–2022
Betsia_M 49.976570 69.913268 403 2019–2023
Cabituqg 49.573333 69.513611 491 2019–2023
Conrad 47.607249 74.261131 433 2020–2023
Diamand 47.231302 73.183080 373 2020–2023
Garemang 51.110640 67.139860 778 2020–2023
Hartj_G 51.779310 67.945980 460 2020–2023
Lacroi_G 51.328710 70.079390 621 2019–2023
Laflam_G 48.930225 70.270496 519 2019–2023
Lbardo_G 51.111896 67.828433 486 2019–2023
Levasseu 51.268480 68.754960 466 2020–2023
Louis 49.886620 68.489740 315 2020–2023
Louise_G 50.658526 68.839767 397 2019–2023
Moucha_M 52.125510 69.527780 565 2019–2022
Noirs 50.121160 68.831730 385 2020–2023
Parleur 51.285470 69.522370 485 2020–2021
Perdrix 50.129460 67.967450 315 2022–2023
Pipmua_G 49.360520 70.915810 566 2020–2023
Porto 49.584230 70.275910 413 2020–2023
Roussy_G 50.423470 68.094360 456 2020–2023
Rtoulnus 50.964750 67.476760 688 2020–2022
Sauterel 51.917820 63.838040 459 2020–2023
Stmarg_G 51.891980 67.046360 461 2020–2023
Wabistan 48.484572 73.441157 565 2020–2023
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Appendix B: Disdrometer phase identification
validation

Snow water equivalent (SWE) and snow height observations
were compiled from the entire network on a winter-by-winter
basis. If more than 30 % of a winter’s snowpack observations
were missing at a station, that winter is not included in this
analysis. The resulting data subset consists of 11 winter sites,
with a total of 53 520 hourly data points. The hourly data
were then separated into precipitation events. The following
filters were applied to the events:

– duration ≥ 3 h

– mean 2 m air temperature between −5 and 5 °C

– total precipitation ≥ 0.5 mm

– mean SWE ≥ 15 mm.

This filtering step aimed to exclude short events and events
that occurred either in warmer conditions, where phases
other than rain are uncommon, or in the absence of snow
cover detectable by the instrumentation in place. As such,
235 precipitation events were retained. In addition to the data
points encompassing each event, the following hours were
added until the next update of the SWE observations (at most
6 h). The events were then classified according to their main
precipitation phase, i.e. the phase associated with at least half
the total precipitation of the event.

Table B1. Precipitation event characteristics separated by phase.

Main phase Event count Mean temperature (°C) 1SWE (mm) 1SH (cm)

Snow 192 −2.0 3.0 3.3
Rain 12 3.6 3.5 −1.8
Mix of rain or drizzle and snow 19 1.5 5.9 −1.5
Freezing rain 12 −1.7 3.2 0.2

The mean 2 m air temperature, SWE variation (1SWE),
and snow height variation (1SH) are compiled from precip-
itation events according to the main precipitation phase of
the event (Table B1). The effects of rain and the mix of rain
or drizzle and snow events on the snowpack are similar: an
SWE increase accompanied by an SH decrease. In addition,
the average temperature of mixed snow and rain or drizzle
events is significantly above the freezing point, where rain-
fall is more likely to occur than snowfall. In the case of freez-
ing rain, the average temperature during the events is more
similar to snowfall. Although freezing rain does not gener-
ally increase the SH, it contributes to the solid component of
the snowpack as it freezes on contact. Thus, the phase ag-
gregation of this study was based on the hydrological impact
and temperature range of freezing rain and the mix of rain or
drizzle and snow.
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Appendix C: Benchmark model description

The single-threshold model (ST) used to compute the solid-
precipitation fraction fsnow (–) functions as follows:

fsnow =

{
1 Ta ≤ TK
0 Ta > TK

, (C1)

where Ta is the temperature (°C), and TK is the calibrated
temperature threshold (°C). The linear-transition model (LT)
uses two calibrated thresholds to calculate fsnow:

fsnow =


1 Ta ≤ Tsnow
Train−Ta
Train−Tsnow

Tsnow < Ta < Train

0 Ta ≥ Train

, (C2)

where Train and Tsnow are the calibrated rain and snow thresh-
olds (°C). Finally, the psychrometric-energy-balance model
(PB) (Harder and Pomeroy, 2013) calculates fsnow as fol-
lows:

fsnow =
1

1+ b+ cTi
, (C3)

where b and c are calibrated values, and Ti is the temperature
of an unventilated hydrometeor (°C). Based on the mass bal-
ance of a sublimating ice sphere, Ti is calculated iteratively
with the following function:

Ti = Ta+Lt
D

λt

(
ρTa − ρTi ,

)
(C4)

where Lt is the latent heat of sublimation or vaporization
(J k−1); D is the diffusivity of water vapour (m2 s−1); λt is
the thermal conductivity of air (J m−1 s−1 K−1); and ρTa and
ρTi are the water vapour density of the surrounding air and on
the hydrometeor’s surface, respectively (kg m−3). The pro-
cedure to compute the variables is as detailed in Harder and
Pomeroy (2013). D is computed following Thorpe and Ma-
son (1966):

D = 2.06× 10−5
(

Ta

273.15

)1.75

. (C5)

The vapour pressure e (kPa) is computed as in Dingman
(2015):

e =
RH
100
× 0.611exp

(
17.37T

237.3+ T

)
, (C6)

where RH is the relative humidity (%), and T is the air tem-
perature (°C). ρ is computed following the ideal gas law:

ρ =
mwe

RT
, (C7)

where mw is the molecular weight of water
(0.01801528 kg mol−1), and R is the universal gas con-
stant (8.31441 J mol−1 K−1). The air thermal conductivity λt
is computed as in List (1951):

λt = 0.000063Ta+ 0.00673. (C8)

Figure C1. Observed solid-precipitation fraction according to the
2 m air temperature and the modelled solid-precipitation fraction of
the (a) static threshold, (b) linear transition, and (c) psychrometric
balance.

Table C1. Benchmark model calibrated parameters.

Model Calibrated parameters

Single threshold (ST) TK = 1.50

Linear transition (LT) Tsnow =−0.38
Train = 5.00

Psychrometric balance (PB) b = 6.34
c = 0.39

Finally, the latent heat of sublimation (Ta < 0) and vaporiza-
tion (Ta ≥ 0) is computed as follows (Yau and Rogers, 1996):

Lt =

{
1000(2834.1− 0.29Ta− 0.004T 2

a ) Ta < 0
1000(2501− 2.31Ta Ta ≥ 0

,

(C9)

Table C1 shows the calibrated parameters for the models pre-
sented in this section. The calibration was made on the same
training set used for the PGP models. Figure C1 shows the
simulated solid fraction for the benchmark models, as well
as the observed solid fraction.

Data availability. The data used to train and validate the models in
this study are available at https://doi.org/10.5281/zenodo.10790810
(Bédard-Therrien et al., 2024). Supplementary data or models used
in the analysis are available from the corresponding author upon
reasonable request. All data are subject to Hydro-Québec’s Cre-
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