Articles | Volume 28, issue 8
https://doi.org/10.5194/hess-28-1791-2024
https://doi.org/10.5194/hess-28-1791-2024
Research article
 | 
18 Apr 2024
Research article |  | 18 Apr 2024

Timing of spring events changes under modelled future climate scenarios in a mesotrophic lake

Jorrit P. Mesman, Inmaculada C. Jiménez-Navarro, Ana I. Ayala, Javier Senent-Aparicio, Dennis Trolle, and Don C. Pierson

Related authors

Learning from a large-scale calibration effort of multiple lake temperature models
Johannes Feldbauer, Jorrit P. Mesman, Tobias K. Andersen, and Robert Ladwig
Hydrol. Earth Syst. Sci., 29, 1183–1199, https://doi.org/10.5194/hess-29-1183-2025,https://doi.org/10.5194/hess-29-1183-2025, 2025
Short summary
Prediction of algal blooms via data-driven machine learning models: an evaluation using data from a well-monitored mesotrophic lake
Shuqi Lin, Donald C. Pierson, and Jorrit P. Mesman
Geosci. Model Dev., 16, 35–46, https://doi.org/10.5194/gmd-16-35-2023,https://doi.org/10.5194/gmd-16-35-2023, 2023
Short summary

Related subject area

Subject: Rivers and Lakes | Techniques and Approaches: Modelling approaches
Learning from a large-scale calibration effort of multiple lake temperature models
Johannes Feldbauer, Jorrit P. Mesman, Tobias K. Andersen, and Robert Ladwig
Hydrol. Earth Syst. Sci., 29, 1183–1199, https://doi.org/10.5194/hess-29-1183-2025,https://doi.org/10.5194/hess-29-1183-2025, 2025
Short summary
The influence of permafrost and other environmental factors on stream thermal sensitivity across Yukon, Canada
Andras J. Szeitz and Sean K. Carey
Hydrol. Earth Syst. Sci., 29, 1083–1101, https://doi.org/10.5194/hess-29-1083-2025,https://doi.org/10.5194/hess-29-1083-2025, 2025
Short summary
Assessing national exposure to and impact of glacial lake outburst floods considering uncertainty under data sparsity
Huili Chen, Qiuhua Liang, Jiaheng Zhao, and Sudan Bikash Maharjan
Hydrol. Earth Syst. Sci., 29, 733–752, https://doi.org/10.5194/hess-29-733-2025,https://doi.org/10.5194/hess-29-733-2025, 2025
Short summary
Modeling Lake Titicaca's water balance: the dominant roles of precipitation and evaporation
Nilo Lima-Quispe, Denis Ruelland, Antoine Rabatel, Waldo Lavado-Casimiro, and Thomas Condom
Hydrol. Earth Syst. Sci., 29, 655–682, https://doi.org/10.5194/hess-29-655-2025,https://doi.org/10.5194/hess-29-655-2025, 2025
Short summary
Effect of floodplain trees on apparent friction coefficient in straight compound channels
Adam P. Kozioł, Adam Kiczko, Marcin Krukowski, Elżbieta Kubrak, Janusz Kubrak, Grzegorz Majewski, and Andrzej Brandyk
Hydrol. Earth Syst. Sci., 29, 535–545, https://doi.org/10.5194/hess-29-535-2025,https://doi.org/10.5194/hess-29-535-2025, 2025
Short summary

Cited articles

Adrian, R., Gerten, D., Huber, V., Wagner, C., and Schmidt, S. R.: Windows of change: temporal scale of analysis is decisive to detect ecosystem responses to climate change, Mar. Biol., 159, 2533–2542, https://doi.org/10.1007/s00227-012-1938-1, 2012. 
Anneville, O., Souissi, S., Ibanez, F., Ginot, V., Druart, J. C., and Angeli, N.: Temporal mapping of phytoplankton assemblages in Lake Geneva: annual and interannual changes in their patterns of succession, Limnol. Oceanogr., 47, 1355–1366, 2002.  
Beare, D. and McKenzie, E.: Connecting ecological and physical time-series: the potential role of changing seasonality, Mar. Ecol. Prog. Ser., 178, 307–309, https://doi.org/10.3354/meps178307, 1999. 
Berger, S. A., Diehl, S., Stibor, H., Sebastian, P., and Scherz, A.: Separating effects of climatic drivers and biotic feedbacks on seasonal plankton dynamics: no sign of trophic mismatch, Freshwater Biol., 59, 2204–2220, https://doi.org/10.1111/fwb.12424, 2014. 
Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., Allen, P. M., Volk, M., and Srinivasan, R.: Introduction to SWAT+, a completely restructured version of the soil and water assessment tool, J. Am. Water Resour. Assoc., 53, 115–130, https://doi.org/10.1111/1752-1688.12482, 2017. 
Download
Short summary
Spring events in lakes are key processes for ecosystem functioning. We used a coupled catchment–lake model to investigate future changes in the timing of spring discharge, ice-off, spring phytoplankton peak, and onset of stratification in a mesotrophic lake. We found a clear trend towards earlier occurrence under climate warming but also that relative shifts in the timing occurred, such as onset of stratification advancing more slowly than the other events.
Share