Articles | Volume 28, issue 7
https://doi.org/10.5194/hess-28-1711-2024
https://doi.org/10.5194/hess-28-1711-2024
Research article
 | 
15 Apr 2024
Research article |  | 15 Apr 2024

Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values

Matthias Sprenger, Rosemary W. H. Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth H. Williams

Related authors

Snowmelt-mediated isotopic homogenization of shallow till soil
Filip Muhic, Pertti Ala-Aho, Matthias Sprenger, Björn Klöve, and Hannu Marttila
EGUsphere, https://doi.org/10.5194/egusphere-2023-884,https://doi.org/10.5194/egusphere-2023-884, 2023
Short summary
Seasonal recharge mechanism of the upper shallow groundwater in a long-term wastewater leakage and irrigation region of a river alluvium aquifer
Shiqin Wang, Zhixiong Zhang, Shoucai Wei, Wenbo Zheng, Binbin Liu, Matthias Sprenger, Yanjun Shen, and Yizhang Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-391,https://doi.org/10.5194/hess-2022-391, 2023
Revised manuscript not accepted
Short summary
Precipitation fate and transport in a Mediterranean catchment through models calibrated on plant and stream water isotope data
Matthias Sprenger, Pilar Llorens, Francesc Gallart, Paolo Benettin, Scott T. Allen, and Jérôme Latron
Hydrol. Earth Syst. Sci., 26, 4093–4107, https://doi.org/10.5194/hess-26-4093-2022,https://doi.org/10.5194/hess-26-4093-2022, 2022
Short summary
Mechanisms of consistently disjunct soil water pools over (pore) space and time
Matthias Sprenger, Pilar Llorens, Carles Cayuela, Francesc Gallart, and Jérôme Latron
Hydrol. Earth Syst. Sci., 23, 2751–2762, https://doi.org/10.5194/hess-23-2751-2019,https://doi.org/10.5194/hess-23-2751-2019, 2019
Short summary
Water ages in the critical zone of long-term experimental sites in northern latitudes
Matthias Sprenger, Doerthe Tetzlaff, Jim Buttle, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 22, 3965–3981, https://doi.org/10.5194/hess-22-3965-2018,https://doi.org/10.5194/hess-22-3965-2018, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Elasticity curves describe streamflow sensitivity to precipitation across the entire flow distribution
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 28, 1567–1583, https://doi.org/10.5194/hess-28-1567-2024,https://doi.org/10.5194/hess-28-1567-2024, 2024
Short summary
Seasonal and interannual dissolved organic carbon transport process dynamics in a subarctic headwater catchment revealed by high-resolution measurements
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024,https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Links between seasonal suprapermafrost groundwater, the hydrothermal change of the active layer, and river runoff in alpine permafrost watersheds
Jia Qin, Yongjian Ding, Faxiang Shi, Junhao Cui, Yaping Chang, Tianding Han, and Qiudong Zhao
Hydrol. Earth Syst. Sci., 28, 973–987, https://doi.org/10.5194/hess-28-973-2024,https://doi.org/10.5194/hess-28-973-2024, 2024
Short summary
Technical note: Isotopic fractionation of evaporating waters: effect of sub-daily atmospheric variations and eventual depletion of heavy isotopes
Francesc Gallart, Sebastián González-Fuentes, and Pilar Llorens
Hydrol. Earth Syst. Sci., 28, 229–239, https://doi.org/10.5194/hess-28-229-2024,https://doi.org/10.5194/hess-28-229-2024, 2024
Short summary
Increased nonstationarity of stormflow threshold behaviors in a forested watershed due to abrupt earthquake disturbance
Guotao Zhang, Peng Cui, Carlo Gualtieri, Nazir Ahmed Bazai, Xueqin Zhang, and Zhengtao Zhang
Hydrol. Earth Syst. Sci., 27, 3005–3020, https://doi.org/10.5194/hess-27-3005-2023,https://doi.org/10.5194/hess-27-3005-2023, 2023
Short summary

Cited articles

Bennett, K. E. and Talsma, C.: Concurrent Changes in Extreme Hydroclimate Events in the Colorado River Basin, Water, 13, 978, https://doi.org/10.3390/w13070978, 2021. 
Beria, H., Larsen, J. R., Ceperley, N. C., Michelon, A., Vennemann, T., and Schaefli, B.: Understanding snow hydrological processes through the lens of stable water isotopes, Wiley Interdiscip, Rev. Water, 5, e1311, https://doi.org/10.1002/wat2.1311, 2018. 
Beria, H., Larsen, J. R., Michelon, A., Ceperley, N. C., and Schaefli, B.: Data for the manuscript “HydroMix v1.0: a new Bayesian mixing framework for attributing uncertain hydrological sources” (Version 1.0), Zenodo [code], https://doi.org/10.5281/zenodo.3475429, 2019. 
Beria, H., Larsen, J. R., Michelon, A., Ceperley, N. C., and Schaefli, B.: HydroMix v1.0: a new Bayesian mixing framework for attributing uncertain hydrological sources, Geosci. Model Dev., 13, 2433–2450, https://doi.org/10.5194/gmd-13-2433-2020, 2020. 
Bureau of Reclamation: Colorado River Basin Water Supply and Demand Study Executive Summary, Reclam. Manag. Water West, https://www.usbr.gov/watersmart/bsp/docs/finalreport/ColoradoRiver/CRBS_Executive_Summary_FINAL.pdf (last access: 10 April 2024), 2012. 
Download
Short summary
Stable isotopes of water (described as d-excess) in mountain snowpack can be used to infer proportions of high-elevation snowmelt in stream water. In a Colorado River headwater catchment, nearly half of the water during peak streamflow is derived from melted snow at elevations greater than 3200 m. High-elevation snowpack contributions were higher for years with lower snowpack and warmer spring temperatures. Thus, we suggest that d-excess could serve to assess high-elevation snowpack changes.