Articles | Volume 27, issue 9
https://doi.org/10.5194/hess-27-1755-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-1755-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrologic implications of projected changes in rain-on-snow melt for Great Lakes Basin watersheds
Department of Geography, Indiana University, Bloomington, Indiana
47405, USA
Darren L. Ficklin
Department of Geography, Indiana University, Bloomington, Indiana
47405, USA
Scott M. Robeson
Department of Geography, Indiana University, Bloomington, Indiana
47405, USA
Related authors
Daniel T. Myers, David Jones, Diana Oviedo-Vargas, John Paul Schmit, Darren L. Ficklin, and Xuesong Zhang
Hydrol. Earth Syst. Sci., 28, 5295–5310, https://doi.org/10.5194/hess-28-5295-2024, https://doi.org/10.5194/hess-28-5295-2024, 2024
Short summary
Short summary
We studied how streamflow and water quality models respond to land cover data collected by satellites during the growing season versus the non-growing season. The land cover data showed more trees during the growing season and more built areas during the non-growing season. We next found that the use of non-growing season data resulted in a higher modeled nutrient export to streams. Knowledge of these sensitivities would be particularly important when models inform water resource management.
Daniel T. Myers, David Jones, Diana Oviedo-Vargas, John Paul Schmit, Darren L. Ficklin, and Xuesong Zhang
Hydrol. Earth Syst. Sci., 28, 5295–5310, https://doi.org/10.5194/hess-28-5295-2024, https://doi.org/10.5194/hess-28-5295-2024, 2024
Short summary
Short summary
We studied how streamflow and water quality models respond to land cover data collected by satellites during the growing season versus the non-growing season. The land cover data showed more trees during the growing season and more built areas during the non-growing season. We next found that the use of non-growing season data resulted in a higher modeled nutrient export to streams. Knowledge of these sensitivities would be particularly important when models inform water resource management.
Cited articles
Anderson, E. A.: National Weather Service river forecast system-snow
accumulation and ablation model, in: National Oceanic and Atmospheric
Administration Technical Memorandum NWS-HYDR0-17, Washington, DC, USA, 229 pp., https://www.weather.gov/media/owp/oh/hrl/docs/22snow17.pdf (last access: 2 May 2023), 1973.
Anderson, E. A.: Snow Accumulation and Ablation Model–SNOW-17, NWSRFS User
Documentation, 61 pp.,
https://www.wcc.nrcs.usda.gov/ftpref/wntsc/H&H/snow/AndersonSnow17.pdf
(last access: 10 April 2021), 2006.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large
Area Hydrologic Modeling and Assessment Part I: Model Development, J. Am.
Water Resour. Assoc., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998.
Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L.,
Flato, G. M., Kharin, V. V, Lee, W. G., and Merryfield, W. J.: Carbon
emission limits required to satisfy future representative concentration
pathways of greenhouse gases, Geophys. Res. Lett., 38, L05805, https://doi.org/10.1029/2010GL046270, 2011.
Beniston, M. and Stoffel, M.: Rain-on-snow events, floods and climate change
in the Alps: Events may increase with warming up to 4 ∘C and decrease thereafter, Sci. Total Environ., 571, 228–236,
https://doi.org/10.1016/j.scitotenv.2016.07.146, 2016.
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013.
Bi, D., Dix, M., Marsland, S. J., O'Farrell, S., Rashid, H., Uotila, P.,
Hirst, A. C., Kowalczyk, E., Golebiewski, M., and Sullivan, A.: The ACCESS
coupled model: description, control climate and evaluation, Aust. Meteorol.
Ocean J., 63, 41–64, 2013.
Blahušiaková, A., Matoušková, M., Jenicek, M., Ledvinka, O.,
Kliment, Z., Podolinská, J., and Snopková, Z.: Snow and climate
trends and their impact on seasonal runoff and hydrological drought types in
selected mountain catchments in Central Europe, Hydrolog. Sci. J., 65,
2083–2096, https://doi.org/10.1080/02626667.2020.1784900, 2020.
Chegwidden, O. S., Nijssen, B., Rupp, D. E., Arnold, J. R., Clark, M. P.,
Hamman, J. J., Kao, S. C., Mao, Y., Mizukami, N., Mote, P. W., Pan, M.,
Pytlak, E., and Xiao, M.: How Do Modeling Decisions Affect the Spread Among
Hydrologic Climate Change Projections? Exploring a Large Ensemble of
Simulations Across a Diversity of Hydroclimates, Earth's Future, 7,
623–637, https://doi.org/10.1029/2018EF001047, 2019.
Christensen, J. H., Kjellström, E., Giorgi, F., Lenderink, G., and
Rummukainen, M.: Weight assignment in regional climate models, Clim. Res.,
44, 179–194, https://doi.org/10.3354/cr00916, 2010.
Cohen, J., Ye, H., and Jones, J.: Trends and variability in rain-on-snow
events, Geophys. Res. Lett., 42, 7115–7122, https://doi.org/10.1002/2015GL065320, 2015.
Davenport, F. V., Herrera-Estrada, J. E., Burke, M., and Diffenbaugh, N. S.:
Flood Size Increases Nonlinearly Across the Western United States in
Response to Lower Snow-Precipitation Ratios, Water Resour. Res., 56, 1–19,
https://doi.org/10.1029/2019WR025571, 2020.
Dudley, R. W., Hodgkins, G. A., McHale, M. R., Kolian, M. J., and Renard,
B.: Trends in snowmelt-related streamflow timing in the conterminous United
States, J. Hydrol., 547, 208–221, https://doi.org/10.1016/j.jhydrol.2017.01.051, 2017.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont,
O., Balkanski, Y., Bekki, S., Bellenger, H., and Benshila, R.: Climate
change projections using the IPSL-CM5 Earth System Model: from CMIP3 to
CMIP5, Clim. Dynam., 40, 2123–2165, 2013.
Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W.,
Shevliakova, E., Stouffer, R. J., Cooke, W., Dunne, K. A., and Harrison, M.
J.: GFDL's ESM2 global coupled climate–carbon earth system models. Part I:
Physical formulation and baseline simulation characteristics, J. Climate, 25,
6646–6665, 2012.
Earman, S., Campbell, A. R., Phillips, F. M., and Newman, B. D.: Isotopic
exchange between snow and atmospheric water vapor: Estimation of the
snowmelt component of groundwater recharge in the southwestern United States, J. Geophys. Res.-Atmos., 111, 1–18, https://doi.org/10.1029/2005JD006470, 2006.
Ensor, L. A. and Robeson, S. M.: Statistical characteristics of daily
precipitation: Comparisons of gridded and point datasets, J. Appl. Meteorol.
Clim., 47, 2468–2476, https://doi.org/10.1175/2008JAMC1757.1, 2008.
Environment Canada and USEPA: The Great Lakes: An Environmental Atlas and
Resource Book, https://doi.org/10.1038/184665a0, 1995.
Fontaine, T. A., Cruickshank, T. S., Arnold, J. G., and Hotchkiss, R. H.:
Development of a snowfall-snowmelt routine for mountainous terrain for the
soil water assessment tool (SWAT), J. Hydrol., 262, 209–223,
https://doi.org/10.1016/S0022-1694(02)00029-X, 2002.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., and Vertenstein,
M.: The community climate system model version 4, J. Climate, 24, 4973–4991,
2011.
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., and Fieg, K.: Climate
and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the
Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Syst.,
5, 572–597, 2013.
Government of Ontario: Ontario Watershed Boundaries – Datasets – Ontario
Data Catalogue,
https://data.ontario.ca/dataset/ontario-watershed-boundaries (last access: 2 May 2023), 2022.
Harpold, A. A., Dettinger, M., and Rajagopal, S.: Defining snow drought and
why it matters, EOS Trans. Am Geophys. Union, 98, https://doi.org/10.1029/2017eo068775, 2017.
Hatchett, B. J. and McEvoy, D. J.: Exploring the origins of snow drought in
the northern Sierra Nevada, California, Earth Interact., 22, 1–13,
https://doi.org/10.1175/EI-D-17-0027.1, 2018.
Hill, D. F., Burakowski, E. A., Crumley, R. L., Keon, J., Michelle Hu, J.,
Arendt, A. A., Wikstrom Jones, K., and Wolken, G. J.: Converting snow depth
to snow water equivalent using climatological variables, The Cryosphere, 13, 1767–1784, https://doi.org/10.5194/tc-13-1767-2019, 2019.
Hodgkins, G. A., Dudley, R. W., and Huntington, T. G.: Changes in the timing
of high river flows in New England over the 20th Century, J. Hydrol., 278,
244–252, https://doi.org/10.1016/S0022-1694(03)00155-0, 2003.
Hodgkins, G. A., Dudley, R. W., and Aichele, S. S.: Historical Changes in
Precipitation and Streamflow in the U.S. Great Lakes Basin, 1915–2004,
United States Geol. Surv. Sci. Investig. Rep. 2007-5118, US Geological Survey, 37 pp., https://doi.org/10.3133/sir20075118, 2007.
Hourdin, F., Grandpeix, J.-Y., Rio, C., Bony, S., Jam, A., Cheruy, F., Rochetin, N., Fairhead, L., Idelkadi, A., and Musat, I.: LMDZ5B: the atmospheric component of the IPSL climate model with revisited
parameterizations for clouds and convection, Clim. Dynam., 40, 2193–2222,
2013.
Huang, X., Hall, A. D., and Berg, N.: Anthropogenic Warming Impacts on
Today's Sierra Nevada Snowpack and Flood Risk, Geophys. Res. Lett., 45,
6215–6222, https://doi.org/10.1029/2018GL077432, 2018.
Huntington, T. G., Hodgkins, G. A., Keim, B. D., and Dudley, R. W.: Changes
in the proportion of precipitation occurring as snow in New England
(1949–2000), J. Climate, 17, 2626–2636, 2004.
Jenicek, M., Seibert, J., Zappa, M., Staudinger, M., and Jonas, T.: Importance of maximum snow accumulation for summer low flows in humid catchments, Hydrol. Earth Syst. Sci., 20, 859–874,
https://doi.org/10.5194/hess-20-859-2016, 2016.
Jeong, D. I. and Sushama, L.: Rain-on-snow events over North America based
on two Canadian regional climate models, Clim. Dynam., 50, 303–316,
https://doi.org/10.1007/s00382-017-3609-x, 2018.
Kalin, L., Isik, S., Schoonover, J. E., and Lockaby, B. G.: Predicting Water
Quality in Unmonitored Watersheds Using Artificial Neural Networks, J.
Environ. Qual., 39, 1429–1440, https://doi.org/10.2134/jeq2009.0441, 2010.
Khodaee, M., Hwang, T., Ficklin, D. L., and Duncan, J. M.: With warming,
spring streamflow peaks are more coupled with vegetation green-up than
snowmelt in the northeastern United States, Hydrol. Process., 36, e14621,
https://doi.org/10.1002/HYP.14621, 2022.
Leathers, D. J., Kluck, D. R., and Kroczynski, S.: The Severe Flooding Event
of January 1996 across North-Central Pennsylvania, B. Am. Meteorol. Soc., 75, 785–797, https://doi.org/10.1175/1520-0477(1998)079<0785:TSFEOJ>2.0.CO;2, 1998.
Legates, D. R. and McCabe, G. J.: Evaluating the use of “goodness-of-fit”
Measures in hydrologic and hydroclimatic model validation, Water Resour.
Res., 35, 233–241, https://doi.org/10.1029/1998WR900018, 1999.
Lehner, B., Verdin, K., and Jarvis, A.: HydroSHEDS Technical Documentation,
World Wildlife Fund, Washington, DC, https://data.hydrosheds.org/file/technical-documentation/HydroSHEDS_TechDoc_v1_4.pdf (last access: 2 May 2023), 2006.
Li, D., Lettenmaier, D. P., Margulis, S. A., and Andreadis, K.: The Role of
Rain-on-Snow in Flooding Over the Conterminous United States, Water Resour.
Res., 55, 8492–8513, https://doi.org/10.1029/2019WR024950, 2019.
Long, M. C., Lindsay, K., Peacock, S., Moore, J. K., and Doney, S. C.:
Twentieth-century oceanic carbon uptake and storage in CESM1 (BGC), J.
Climate, 26, 6775–6800, 2013.
Maurer, E. P., Brekke, L., Pruitt, T., and Duffy, P. B.: Fine-resolution
climate projections enhance regional climate change impact studies, EOS
Trans. Am. Geophys. Union, 88, 504, https://doi.org/10.1029/2007eo470006, 2007.
Maurer, E. P., Hidalgo, H. G., Das, T., Dettinger, M. D., and Cayan, D. R.:
The utility of daily large-scale climate data in the assessment of climate
change impacts on daily streamflow in California, Hydrol. Earth Syst. Sci.,
14, 1125–1138, https://doi.org/10.5194/hess-14-1125-2010, 2010.
Meadow, A. M. and Owen, G.: Planning and Evaluating the Societal Impacts of
Climate Change Research Projects: A guidebook for natural and physical
scientists looking to make a difference, The University of Arizona, https://doi.org/10.2458/10150.658313, 2021.
Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 19,
205–234, 1965.
Mote, T. L., Estilow, T. W., Henderson, G. R., Leathers, D. J., Robinson, D.
A., and Suriano, Z. J.: Daily gridded north American snow, temperature, and
precipitation, 1959–2009, version 1, NSIDC Natl. Snow Ice Data Center, Boulder, Colorado, USA, N5028PQ3, https://nsidc.org/data/G10021/versions/1 (last access: 30 June 2021), 2018.
Muche, M. E., Sinnathamby, S., Parmar, R., Knightes, C. D., Johnston, J. M.,
Wolfe, K., Purucker, S. T., Cyterski, M. J., and Smith, D.: Comparison and
Evaluation of Gridded Precipitation Datasets in a Kansas Agricultural
Watershed Using SWAT, J. Am. Water Resour. Assoc., 56, 486–506,
https://doi.org/10.1111/1752-1688.12819, 2020.
Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K., and Rasmussen, R.:
Slower snowmelt in a warmer world, Nat. Clim. Change, 7, 214–219,
https://doi.org/10.1038/nclimate3225, 2017.
Musselman, K. N., Lehner, F., Ikeda, K., Clark, M. P., Prein, A. F., Liu,
C., Barlage, M., and Rasmussen, R.: Projected increases and shifts in
rain-on-snow flood risk over western North America, Nat. Clim. Change, 8,
808–812, https://doi.org/10.1038/s41558-018-0236-4, 2018.
Musselman, K. N., Lehner, F., Eidhammer, T., Pendergrass, A., and Gutmann,
E. D.: Assessing the Predictability and Probability of 21st Century
Rain-on-Snow Flood Risk for the Conterminous US, in: AGU Fall Meeting 2021, 13–17 December 2021, New Orleans, Louisiana, USA, GC52A-07, https://ui.adsabs.harvard.edu/abs/2021AGUFMGC52A..07M/abstract (last access: 2 May 2023), 2021a.
Musselman, K. N., Addor, N., Vano, J. A., and Molotch, N. P.: Winter melt
trends portend widespread declines in snow water resources, Nat. Clim.
Change, 2021, 418–424, https://doi.org/10.1038/S41558-021-01014-9, 2021b.
Myers, D. T., Ficklin, D. L., Robeson, S. M., Neupane, R. P., Botero-Acosta,
A., and Avellaneda, P. M.: Choosing an arbitrary calibration period for
hydrologic models: How much does it influence water balance simulations?,
Hydrol. Process., 35, e14045, https://doi.org/10.1002/hyp.14045, 2021a.
Myers, D. T., Ficklin, D. L., and Robeson, S. M.: Incorporating rain-on-snow
into the SWAT model results in more accurate simulations of hydrologic
extremes, J. Hydrol., 603, 126972, https://doi.org/10.1016/J.JHYDROL.2021.126972, 2021b.
Myers, D. T., Ficklin, D. L., and Robeson, S. M.: Myers et al. Great Lakes Basin model and data, Mendeley Data [data set], https://doi.org/10.17632/bfypd4wpcn.1, 2022.
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual
models part I – A discussion of principles, J. Hydrol., 10, 282–290,
https://doi.org/10.1016/0022-1694(70)90255-6, 1970.
Pan, C. G., Kirchner, P. B., Kimball, J. S., Kim, Y., and Du, J.: Rain-on-snow events in Alaska, their frequency and distribution from satellite observations, Environ. Res. Lett., 13, 1–15,
https://doi.org/10.1088/1748-9326/aac9d3, 2018.
Pianosi, F. and Wagener, T.: A simple and efficient method for global
sensitivity analysis based oncumulative distribution functions, Environ.
Model. Softw., 67, 1–11, https://doi.org/10.1016/j.envsoft.2015.01.004, 2015.
Pomeroy, J. W., Fang, X., and Marks, D. G.: The cold rain-on-snow event of
June 2013 in the Canadian Rockies – characteristics and diagnosis, Hydrol.
Process., 30, 2899–2914, https://doi.org/10.1002/hyp.10905, 2016.
Rajulapati, C. R., Papalexiou, S. M., Clark, M. P., and Pomeroy, J. W.: The
Perils of Regridding: Examples Using a Global Precipitation Dataset, J.
Appl. Meteorol. Clim., 60, 1561–1573, https://doi.org/10.1175/JAMC-D-20-0259.1, 2021.
Rennert, K. J., Roe, G., Putkonen, J., and Bitz, C. M.: Soil thermal and
ecological impacts of rain on snow events in the circumpolar arctic, J.
Climate, 22, 2302–2315, https://doi.org/10.1175/2008JCLI2117.1, 2009.
Ritchie, J. T.: Model for predicting evaporation from a row crop with
incomplete cover, Water Resour. Res., 8, 1204–1213,
https://doi.org/10.1029/WR008i005p01204, 1972.
Rössler, O., Froidevaux, P., Börst, U., Rickli, R., Martius, O., and
Weingartner, R.: Retrospective analysis of a nonforecasted rain-on-snow
flood in the Alps – a matter of model limitations or unpredictable nature?,
Hydrol. Earth Syst. Sci., 18, 2265–2285, https://doi.org/10.5194/hess-18-2265-2014, 2014.
Rotstayn, L. D., Jeffrey, S. J., Collier, M. A., Dravitzki, S. M., Hirst, A. C., Syktus, J. I., and Wong, K. K.: Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations, Atmos. Chem. Phys., 12, 6377–6404, https://doi.org/10.5194/acp-12-6377-2012, 2012.
Serreze, M. C., Gustafson, J., Barrett, A. P., Druckenmiller, M. L., Fox,
S., Voveris, J., Stroeve, J., Sheffield, B., Forbes, B. C., and Rasmus, S.:
Arctic rain on snow events: bridging observations to understand environmental and livelihood impacts, Environ. Res. Lett., 16, 105009, https://doi.org/10.1088/1748-9326/ac269b, 2021.
Stern, M. A., Flint, L. E., Flint, A. L., Boynton, R. M., Stewart, J. A. E.,
Wright, J. W., and Thorne, J. H.: Selecting the Optimal Fine-Scale Historical Climate Data for Assessing Current and Future Hydrological Conditions, J. Hydrometeorol., 23, 293–308, https://doi.org/10.1175/JHM-D-21-0045.1, 2022.
Stewart, I. T., Cayan, D. R., and Dettinger, M. D.: Changes in Snowmelt
Runoff Timing in Western North America under a `Business as Usual' Climate
Change Scenario, Climatic Change, 621, 217–232, https://doi.org/10.1023/B:CLIM.0000013702.22656.E8, 2004.
Sui, J. and Koehler, G.: Rain-on-snow induced flood events in southern Germany, J. Hydrol., 252, 205–220, https://doi.org/10.1016/S0022-1694(01)00460-7, 2001.
Suriano, Z. J.: On the role of snow cover ablation variability and
synoptic-scale atmospheric forcings at the sub-basin scale within the Great
Lakes watershed, Theor. Appl. Climatol., 35, 607–621,
https://doi.org/10.1007/s00704-018-2414-8, 2018.
Suriano, Z. J.: Synoptic and meteorological conditions during extreme snow
cover ablation events in the Great Lakes Basin, Hydrol. Process., 34,
1949–1965, https://doi.org/10.1002/hyp.13705, 2020.
Suriano, Z. J.: North American rain-on-snow ablation climatology, Clim.
Res., 87, 133–145, https://doi.org/10.3354/CR01687, 2022.
Suriano, Z. J. and Leathers, D. J.: Spatio-temporal variability of Great
Lakes basin snow cover ablation events, Hydrol. Process., 31, 4229–4237,
https://doi.org/10.1002/hyp.11364, 2017.
Suriano, Z. J. and Leathers, D. J.: Great lakes basin snow-cover ablation
and synoptic-scale circulation, J. Appl. Meteorol. Clim., 57, 1497–1510, https://doi.org/10.1175/JAMC-D-17-0297.1, 2018.
Suriano, Z. J., Robinson, D. A., and Leathers, D. J.: Changing snow depth in
the Great Lakes basin (USA): Implications and trends, Anthropocene, 26, 1–11, https://doi.org/10.1016/j.ancene.2019.100208, 2019.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, B. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel,
P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., and
Edmonds, J. A.: RCP4.5: A pathway for stabilization of radiative forcing by
2100, Climatic Change, 109, 77–94, https://doi.org/10.1007/s10584-011-0151-4, 2011.
US Bureau of Reclamation: Downscaled CMIP3 and CMIP5 Hydrology Climate
Projections: Release of Hydrology Projections, Comparison with Preceding
Information, and Summary of User Needs,
https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_climate.pdf
(last access: 2 May 2023), 2013.
USGS: Watershed Boundary Dataset, USGS [data set],
https://www.usgs.gov/national-hydrography/watershed-boundary-dataset (last access: 2 May 2023), 2022.
Voldoire, A., Sanchez-Gomez, E., y Mélia, D. S., Decharme, B., Cassou,
C., Sénési, S., Valcke, S., Beau, I., Alias, A., and Chevallier, M.:
The CNRM-CM5. 1 global climate model: description and basic evaluation,
Clim. Dynam., 40, 2091–2121, 2013.
Volodin, E. M., Dianskii, N. A., and Gusev, A. V: Simulating present-day
climate with the INMCM4.0 coupled model of the atmospheric and oceanic
general circulations, Izv. Atmos. Ocean. Phys., 46, 414–431, 2010.
Vrugt, J. A. and Robinson, B. A.: Improved evolutionary optimization from
genetically adaptive multimethod search, P. Natl. Acad. Sci. USA, 104, 708–711, https://doi.org/10.1073/pnas.0610471104, 2007.
Wang, H. M., Chen, J., Xu, C. Y., Zhang, J., and Chen, H.: A Framework to
Quantify the Uncertainty Contribution of GCMs Over Multiple Sources in
Hydrological Impacts of Climate Change, Earth's Future, 8, 1–17,
https://doi.org/10.1029/2020EF001602, 2020.
Watanabe, M., Suzuki, T., O'ishi, R., Komuro, Y., Watanabe, S., Emori, S.,
Takemura, T., Chikira, M., Ogura, T., and Sekiguchi, M.: Improved climate
simulation by MIROC5: Mean states, variability, and climate sensitivity, J.
Climate, 23, 6312–6335, 2010.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Welty, J. and Zeng, X.: Characteristics and causes of extreme snowmelt over
the conterminous United States, B. Am. Meteorol. Soc., 102, E1526–E1542,
2021.
Willems, P., Mora, D., Vansteenkiste, T., Taye, M. T., and Van Steenbergen,
N.: Parsimonious rainfall-runoff model construction supported by time series
processing and validation of hydrological extremes – Part 2: Intercomparison
of models and calibration approaches, J. Hydrol., 510, 591–609, 2014.
Willmott, C. J. and Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Clim. Res., 30, 79–82, https://doi.org/10.3354/cr030079, 2005.
Willmott, C. J., Robeson, S. M., and Matsuura, K.: Geographic Box Plots, Taylor & Francis, 331–344, https://doi.org/10.2747/0272-3646.28.4.331, 2007.
Willmott, C. J., Matsuura, K., and Robeson, S. M.: Ambiguities inherent in
sums-of-squares-based error statistics, Atmos. Environ., 43, 749–752,
https://doi.org/10.1016/J.ATMOSENV.2008.10.005, 2009.
Willmott, C. J., Robeson, S. M., and Matsuura, K.: Short Communication A
refined index of model performance, Int. J. Climatol., 33, 1053–1056,
https://doi.org/10.1002/joc.2419, 2012.
Willmott, C. J., Robeson, S. M., Matsuura, K., and Ficklin, D. L.: Assessment of three dimensionless measures of model performance, Environ. Model. Softw., 73, 167–174, https://doi.org/10.1016/J.ENVSOFT.2015.08.012, 2015.
Wilson, L. G., DeCook, K. J., and Neuman, S. P.: Regional recharge research
for Southwest alluvial basins, Water Resour. Res. Center, Univ. Arizona,
Tuscon, https://wrrc.arizona.edu/ (last access: 2 May 2023), 1980.
Winchell, M., Srinivasan, R., Di Luzio, M., and Arnold, J.: ArcSWAT
Interface For SWAT2012: User's Guide, Texas Agricultural Experiment Station
and United States Department of Agriculture, Temple, TX, https://swat.tamu.edu/software/arcswat/ (last access: 2 May 2023), 2013.
Wu, T., Song, L., Li, W., Wang, Z., Zhang, H., Xin, X., Zhang, Y., Zhang,
L., Li, J., and Wu, F.: An overview of BCC climate system model development
and application for climate change studies, J. Meteorol. Res., 28, 34–56,
2014.
Wuebbles, D., Cardinale, B., Cherkauer, K., Davidson-Arnott, R., Hellmann,
J., Infante, D., Johnson, L., de Loe, R., Lofgren, B., and Packman, A.: An
assessment of the impacts of climate change on the Great Lakes, Environ. Law
Policy Cent., https://elpc.org/wp-content/uploads/2020/04/2019-ELPCPublication-Great-Lakes-Climate-Change-Report.pdf (last access: 2 May 2023), 2019.
Ye, H., Yang, D., and Robinson, D.: Winter rain on snow and its association
with air temperature in northern Eurasia, Hydrol. Process., 22, 2728–2736,
https://doi.org/10.1002/hyp.7094, 2008.
Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara,
M., Tanaka, T. Y., Shindo, E., Tsujino, H., and Deushi, M.: A new global
climate model of the Meteorological Research Institute: MRI-CGCM3 – Model
description and basic performance, J. Meteorol. Soc. Jpn. Ser. II, 90,
23–64, 2012.
Zhang, X., Srinivasan, R., and Van Liew, M.: Multi-site calibration of the
SWAT model for hydrologic modeling, T. ASABE, 51, 2039–2049, 2008.
Short summary
We projected climate change impacts to rain-on-snow (ROS) melt events in the Great Lakes Basin. Decreases in snowpack limit future ROS melt. Areas with mean winter/spring air temperatures near freezing are most sensitive to ROS changes. The projected proportion of total monthly snowmelt from ROS decreases. The timing for ROS melt is projected to be 2 weeks earlier by the mid-21st century and affects spring streamflow. This could affect freshwater resources management.
We projected climate change impacts to rain-on-snow (ROS) melt events in the Great Lakes Basin....