Articles | Volume 26, issue 19
https://doi.org/10.5194/hess-26-5035-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-5035-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Transit Time index (TTi) as an adaptation of the humification index to illustrate transit time differences in karst hydrosystems: application to the karst springs of the Fontaine de Vaucluse system (southeastern France)
Leïla Serène
CORRESPONDING AUTHOR
HSM, Univ. Montpellier, CNRS, IMT, IRD, Montpellier, France
Christelle Batiot-Guilhe
HSM, Univ. Montpellier, CNRS, IMT, IRD, Montpellier, France
Naomi Mazzilli
UMR 1114 EMMAH (AU-INRAE), Université d'Avignon, 84000 Avignon,
France
Christophe Emblanch
UMR 1114 EMMAH (AU-INRAE), Université d'Avignon, 84000 Avignon,
France
Milanka Babic
UMR 1114 EMMAH (AU-INRAE), Université d'Avignon, 84000 Avignon,
France
Julien Dupont
UMR 1114 EMMAH (AU-INRAE), Université d'Avignon, 84000 Avignon,
France
Roland Simler
UMR 1114 EMMAH (AU-INRAE), Université d'Avignon, 84000 Avignon,
France
Matthieu Blanc
Independent Researcher, Montpellier, France
Gérard Massonnat
Total Energies, CSTJF, Avenue Larribau, CEDEX 64018 Pau, France
Related authors
No articles found.
Guillaume Cinkus, Naomi Mazzilli, Hervé Jourde, Andreas Wunsch, Tanja Liesch, Nataša Ravbar, Zhao Chen, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 27, 2397–2411, https://doi.org/10.5194/hess-27-2397-2023, https://doi.org/10.5194/hess-27-2397-2023, 2023
Short summary
Short summary
The Kling–Gupta Efficiency (KGE) is a performance criterion extensively used to evaluate hydrological models. We conduct a critical study on the KGE and its variant to examine counterbalancing errors. Results show that, when assessing a simulation, concurrent over- and underestimation of discharge can lead to an overall higher criterion score without an associated increase in model relevance. We suggest that one carefully choose performance criteria and use scaling factors.
Guillaume Cinkus, Andreas Wunsch, Naomi Mazzilli, Tanja Liesch, Zhao Chen, Nataša Ravbar, Joanna Doummar, Jaime Fernández-Ortega, Juan Antonio Barberá, Bartolomé Andreo, Nico Goldscheider, and Hervé Jourde
Hydrol. Earth Syst. Sci., 27, 1961–1985, https://doi.org/10.5194/hess-27-1961-2023, https://doi.org/10.5194/hess-27-1961-2023, 2023
Short summary
Short summary
Numerous modelling approaches can be used for studying karst water resources, which can make it difficult for a stakeholder or researcher to choose the appropriate method. We conduct a comparison of two widely used karst modelling approaches: artificial neural networks (ANNs) and reservoir models. Results show that ANN models are very flexible and seem great for reproducing high flows. Reservoir models can work with relatively short time series and seem to accurately reproduce low flows.
Vianney Sivelle, Guillaume Cinkus, Naomi Mazzilli, David Labat, Bruno Arfib, Nicolas Massei, Yohann Cousquer, Dominique Bertin, and Hervé Jourde
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-17, https://doi.org/10.5194/hess-2023-17, 2023
Revised manuscript under review for HESS
Short summary
Short summary
KarstMod consists in a useful tool for the assessment of karst groundwater variability and sensitivity to anthropogenic pressures (e.g. groundwater abstraction). This tools is devoted to promote good practices in hydrological modeling for learning and occasional users. KarstMod requires no programming skills and offers a user friendly interface allowing any user to easily handle hydrological modeling.
Andreas Wunsch, Tanja Liesch, Guillaume Cinkus, Nataša Ravbar, Zhao Chen, Naomi Mazzilli, Hervé Jourde, and Nico Goldscheider
Hydrol. Earth Syst. Sci., 26, 2405–2430, https://doi.org/10.5194/hess-26-2405-2022, https://doi.org/10.5194/hess-26-2405-2022, 2022
Short summary
Short summary
Modeling complex karst water resources is difficult enough, but often there are no or too few climate stations available within or close to the catchment to deliver input data for modeling purposes. We apply image recognition algorithms to time-distributed, spatially gridded meteorological data to simulate karst spring discharge. Our models can also learn the approximate catchment location of a spring independently.
Marie-Amélie Pétré, Bernard Ladouche, Jean-Luc Seidel, Romain Hemelsdaël, Véronique de Montety, Christelle Batiot-Guilhe, and Claudine Lamotte
Hydrol. Earth Syst. Sci., 24, 5655–5672, https://doi.org/10.5194/hess-24-5655-2020, https://doi.org/10.5194/hess-24-5655-2020, 2020
Short summary
Short summary
We studied the impact of occasional saltwater intrusions into the karst aquifer of the Balaruc peninsula (France). Using hydrogeological and geochemical data, this study shows that the hydraulic impact on the aquifer is rapid and of regional extent, whereas the geochemical impact is observed at the local scale and is temporally persistent. This research supports groundwater management by providing a better understanding of the hydrodynamics and recovery of the aquifer after saltwater intrusions.
Cédric Champollion, Sabrina Deville, Jean Chéry, Erik Doerflinger, Nicolas Le Moigne, Roger Bayer, Philippe Vernant, and Naomi Mazzilli
Hydrol. Earth Syst. Sci., 22, 3825–3839, https://doi.org/10.5194/hess-22-3825-2018, https://doi.org/10.5194/hess-22-3825-2018, 2018
Short summary
Short summary
Gravity monitoring at the surface and in situ (in caves) has been conducted in a karst hydro-system in the south of France (Larzac plateau). Subsurface water storage is evidenced with a spatial variability probably associated with lithology differences and confirmed by MRS measurements. Gravity allows transient water storage to be estimated on the seasonal scale.
V. Hakoun, N. Mazzilli, S. Pistre, and H. Jourde
Hydrol. Earth Syst. Sci., 17, 1975–1984, https://doi.org/10.5194/hess-17-1975-2013, https://doi.org/10.5194/hess-17-1975-2013, 2013
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Theory development
Technical note: Analytical solution for well water response to Earth tides in leaky aquifers with storage and compressibility in the aquitard
Solutions for Thermally-driven Reactive Transport and Porosity Evolution in Geothermal Systems (“Reactive Lauwerier Problem”)
Identification, Mapping and Eco-hydrological Signal Analysis for Groundwater-dependent Ecosystems (GDEs) in Langxi River Basin, North China
Flow recession behavior of preferential subsurface flow patterns with minimum energy dissipation
Towards a hydrogeomorphological understanding of proglacial catchments: an assessment of groundwater storage and release in an Alpine catchment
Effect of topographic slope on the export of nitrate in humid catchments: a 3D model study
In situ estimation of subsurface hydro-geomechanical properties using the groundwater response to semi-diurnal Earth and atmospheric tides
The Thiem team – Adolf and Günther Thiem, two forefathers of hydrogeology
Effects of aquifer geometry on seawater intrusion in annulus segment island aquifers
Depth to water table correction for initial carbon-14 activities in groundwater mean residence time estimation
Preferential pathways for fluid and solutes in heterogeneous groundwater systems: self-organization, entropy, work
Statistical characterization of environmental hot spots and hot moments and applications in groundwater hydrology
Technical note: Disentangling the groundwater response to Earth and atmospheric tides to improve subsurface characterisation
Flowing wells: terminology, history and role in the evolution of groundwater science
Asymmetric impact of groundwater use on groundwater droughts
New model of reactive transport in a single-well push–pull test with aquitard effect and wellbore storage
HESS Opinions: The myth of groundwater sustainability in Asia
Groundwater salinity variation in Upazila Assasuni (southwestern Bangladesh), as steered by surface clay layer thickness, relative elevation and present-day land use
Changes in groundwater drought associated with anthropogenic warming
Application of environmental tracers for investigation of groundwater mean residence time and aquifer recharge in fault-influenced hydraulic drop alluvium aquifers
HESS Opinions: Linking Darcy's equation to the linear reservoir
Effects of microarrangement of solid particles on PCE migration and its remediation in porous media
Hydrological connectivity from glaciers to rivers in the Qinghai–Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater
Temporal variations of groundwater tables and implications for submarine groundwater discharge: a 3-decade case study in central Japan
Consequences and mitigation of saltwater intrusion induced by short-circuiting during aquifer storage and recovery in a coastal subsurface
Understanding groundwater – students' pre-conceptions and conceptual change by means of a theory-guided multimedia learning program
The referential grain size and effective porosity in the Kozeny–Carman model
Approximate analysis of three-dimensional groundwater flow toward a radial collector well in a finite-extent unconfined aquifer
Technical Note: The use of an interrupted-flow centrifugation method to characterise preferential flow in low permeability media
Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling
Confronting the vicinity of the surface water and sea shore in a shallow glaciogenic aquifer in southern Finland
Residence times and mixing of water in river banks: implications for recharge and groundwater–surface water exchange
Using 14C and 3H to understand groundwater flow and recharge in an aquifer window
Hydrogeology of an Alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow
Mobilisation or dilution? Nitrate response of karst springs to high rainfall events
Transferring the concept of minimum energy dissipation from river networks to subsurface flow patterns
Spectral induced polarization measurements for predicting the hydraulic conductivity in sandy aquifers
Transient analysis of fluctuations of electrical conductivity as tracer in the stream bed
Teaching hydrogeology: a review of current practice
Transient flow between aquifers and surface water: analytically derived field-scale hydraulic heads and fluxes
Influence of initial heterogeneities and recharge limitations on the evolution of aperture distributions in carbonate aquifers
Impact of climate change on groundwater point discharge: backflooding of karstic springs (Loiret, France)
Stream depletion rate with horizontal or slanted wells in confined aquifers near a stream
Tidal propagation in an oceanic island with sloping beaches
Rémi Valois, Agnès Rivière, Jean-Michel Vouillamoz, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 28, 1041–1054, https://doi.org/10.5194/hess-28-1041-2024, https://doi.org/10.5194/hess-28-1041-2024, 2024
Short summary
Short summary
Characterizing aquifer systems is challenging because it is difficult to obtain in situ information. They can, however, be characterized using natural forces such as Earth tides. Models that account for more complex situations are still necessary to extend the use of Earth tides to assess hydromechanical properties of aquifer systems. Such a model is developed in this study and applied to a case study in Cambodia, where a combination of tides was used in order to better constrain the model.
Roi Roded, Einat Aharonov, Piotr Szymczak, Manolis Veveakis, Boaz Lazar, and Laura E. Dalton
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-307, https://doi.org/10.5194/hess-2023-307, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Common practices in water resources management and geothermal applications involve the injection of hot or cold water into aquifers. The resulting thermal changes may lead to chemical disequilibrium and consequent mineral dissolution/precipitation in the rock void-space. A mathematical model is developed to study the effects of such thermal-fluid injection on the evolution of water composition, aquifer porosity and permeability. The model is then applied to two important case studies.
Mingyang Li, Fulin Li, Shidong Fu, Huawei Chen, Kairan Wang, Xuequn Chen, and Jiwen Huang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-151, https://doi.org/10.5194/hess-2023-151, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
The research on GDEs started earlier, but because there is no good identification and classification method, most of the related research is also concentrated in Europe and Australia. In this study, the lower Yellow River basin in northern China with well-developed karst was selected as the study area, and a four-diagnostic criteria framework for identifying the GDEs based on remote sensing, GIS data dredging and hydrogeological surveys was proposed on the basis of previous studies.
Jannick Strüven and Stefan Hergarten
Hydrol. Earth Syst. Sci., 27, 3041–3058, https://doi.org/10.5194/hess-27-3041-2023, https://doi.org/10.5194/hess-27-3041-2023, 2023
Short summary
Short summary
This study uses dendritic flow patterns to analyze the recession behavior of aquifer springs. The results show that the long-term recession becomes slower for large catchments. After a short recharge event, however, the short-term behavior differs strongly from the exponential recession that would be expected from a linear reservoir. The exponential component still accounts for more than 80 % of the total discharge, much more than typically assumed for karst aquifers.
Tom Müller, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 6029–6054, https://doi.org/10.5194/hess-26-6029-2022, https://doi.org/10.5194/hess-26-6029-2022, 2022
Short summary
Short summary
This research provides a comprehensive analysis of groundwater storage in Alpine glacier forefields, a zone rapidly evolving with glacier retreat. Based on data analysis of a case study, it provides a simple perceptual model showing where and how groundwater is stored and released in a high Alpine environment. It especially points out the presence of groundwater storages in both fluvial and bedrock aquifers, which may become more important with future glacier retreat.
Jie Yang, Qiaoyu Wang, Ingo Heidbüchel, Chunhui Lu, Yueqing Xie, Andreas Musolff, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 5051–5068, https://doi.org/10.5194/hess-26-5051-2022, https://doi.org/10.5194/hess-26-5051-2022, 2022
Short summary
Short summary
We assessed the effect of catchment topographic slopes on the nitrate export dynamics in terms of the nitrogen mass fluxes and concentration level using a coupled surface–subsurface model. We found that flatter landscapes tend to retain more nitrogen mass in the soil and export less nitrogen mass to the stream, explained by the reduced leaching and increased potential of degradation in flat landscapes. We emphasized that stream water quality is potentially less vulnerable in flatter landscapes.
Gabriel C. Rau, Timothy C. McMillan, Martin S. Andersen, and Wendy A. Timms
Hydrol. Earth Syst. Sci., 26, 4301–4321, https://doi.org/10.5194/hess-26-4301-2022, https://doi.org/10.5194/hess-26-4301-2022, 2022
Short summary
Short summary
This work develops and applies a new method to estimate hydraulic and geomechanical subsurface properties in situ using standard groundwater and atmospheric pressure records. The estimated properties comply with expected values except for the Poisson ratio, which we attribute to the investigated scale and conditions. Our new approach can be used to cost-effectively investigate the subsurface using standard monitoring datasets.
Georg J. Houben and Okke Batelaan
Hydrol. Earth Syst. Sci., 26, 4055–4091, https://doi.org/10.5194/hess-26-4055-2022, https://doi.org/10.5194/hess-26-4055-2022, 2022
Short summary
Short summary
Unbeknown to most hydrologists, many methods used in groundwater hydrology today go back to work by Adolf and Günther Thiem. Their work goes beyond the Dupuit–Thiem analytical model for pump tests mentioned in many textbooks. It includes, e.g., the development and improvement of isopotential maps, tracer tests, and vertical well constructions. Extensive literature and archive research has been conducted to identify how and where the Thiems developed their methods and how they spread.
Zhaoyang Luo, Jun Kong, Chengji Shen, Pei Xin, Chunhui Lu, Ling Li, and David Andrew Barry
Hydrol. Earth Syst. Sci., 25, 6591–6602, https://doi.org/10.5194/hess-25-6591-2021, https://doi.org/10.5194/hess-25-6591-2021, 2021
Short summary
Short summary
Analytical solutions are derived for steady-state seawater intrusion in annulus segment aquifers. These analytical solutions are validated by comparing their predictions with experimental data. We find seawater intrusion is the most extensive in divergent aquifers, and the opposite is the case for convergent aquifers. The analytical solutions facilitate engineers and hydrologists in evaluating seawater intrusion more efficiently in annulus segment aquifers with a complex geometry.
Dylan J. Irvine, Cameron Wood, Ian Cartwright, and Tanya Oliver
Hydrol. Earth Syst. Sci., 25, 5415–5424, https://doi.org/10.5194/hess-25-5415-2021, https://doi.org/10.5194/hess-25-5415-2021, 2021
Short summary
Short summary
It is widely assumed that 14C is in contact with the atmosphere until recharging water reaches the water table. Unsaturated zone (UZ) studies have shown that 14C decreases with depth below the land surface. We produce a relationship between UZ 14C and depth to the water table to estimate input 14C activities for groundwater age estimation. Application of the new relationship shows that it is important for UZ processes to be considered in groundwater mean residence time estimation.
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021, https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Short summary
This study uses the concepts of entropy and work to quantify and explain the emergence of preferential flow and transport in heterogeneous saturated porous media. We found that the downstream concentration of solutes in preferential pathways implies a downstream declining entropy in the transverse distribution of solute transport pathways. Preferential flow patterns with lower entropies emerged within media of higher heterogeneity – a stronger self-organization despite a higher randomness.
Jiancong Chen, Bhavna Arora, Alberto Bellin, and Yoram Rubin
Hydrol. Earth Syst. Sci., 25, 4127–4146, https://doi.org/10.5194/hess-25-4127-2021, https://doi.org/10.5194/hess-25-4127-2021, 2021
Short summary
Short summary
We developed a stochastic framework with indicator random variables to characterize the spatiotemporal distribution of environmental hot spots and hot moments (HSHMs) that represent rare locations and events exerting a disproportionate influence over the environment. HSHMs are characterized by static and dynamic indicators. This framework is advantageous as it allows us to calculate the uncertainty associated with HSHMs based on uncertainty associated with its contributors.
Gabriel C. Rau, Mark O. Cuthbert, R. Ian Acworth, and Philipp Blum
Hydrol. Earth Syst. Sci., 24, 6033–6046, https://doi.org/10.5194/hess-24-6033-2020, https://doi.org/10.5194/hess-24-6033-2020, 2020
Short summary
Short summary
This work provides an important generalisation of a previously developed method that quantifies subsurface barometric efficiency using the groundwater level response to Earth and atmospheric tides. The new approach additionally allows the quantification of hydraulic conductivity and specific storage. This enables improved and rapid assessment of subsurface processes and properties using standard pressure measurements.
Xiao-Wei Jiang, John Cherry, and Li Wan
Hydrol. Earth Syst. Sci., 24, 6001–6019, https://doi.org/10.5194/hess-24-6001-2020, https://doi.org/10.5194/hess-24-6001-2020, 2020
Short summary
Short summary
The gushing of water from flowing wells is a natural phenomenon of interest to the public. This review demonstrates that this spectacular phenomenon also instigated the science of groundwater and can be considered a root of groundwater hydrology. Observations of flowing wells not only led to the foundation of many principles of traditional groundwater hydrology but also played a vital role in the paradigm shift from aquitard-bound flow to cross-formational flow driven by topography.
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary
Short summary
Groundwater use changes the availability of groundwater, especially during droughts. This study investigates the impact of groundwater use on groundwater droughts. A methodological framework is presented that was developed and applied to the UK. We identified an asymmetric impact of groundwater use on droughts, which highlights the relation between short-term and long-term strategies for sustainable groundwater use.
Quanrong Wang, Junxia Wang, Hongbin Zhan, and Wenguang Shi
Hydrol. Earth Syst. Sci., 24, 3983–4000, https://doi.org/10.5194/hess-24-3983-2020, https://doi.org/10.5194/hess-24-3983-2020, 2020
Franklin W. Schwartz, Ganming Liu, and Zhongbo Yu
Hydrol. Earth Syst. Sci., 24, 489–500, https://doi.org/10.5194/hess-24-489-2020, https://doi.org/10.5194/hess-24-489-2020, 2020
Short summary
Short summary
We are concerned about the sad state of affairs around groundwater in the developing countries of Asia and the obvious implications for sustainability. Groundwater production for irrigated agriculture has led to water-level declines that continue to worsen. Yet in the most populous countries, China, India, Pakistan, and Iran, there are only token efforts towards evidence-based sustainable management. It is unrealistic to expect evidence-based groundwater sustainability to develop any time soon.
Floris Loys Naus, Paul Schot, Koos Groen, Kazi Matin Ahmed, and Jasper Griffioen
Hydrol. Earth Syst. Sci., 23, 1431–1451, https://doi.org/10.5194/hess-23-1431-2019, https://doi.org/10.5194/hess-23-1431-2019, 2019
Short summary
Short summary
In this paper, we postulate a possible evolution of the groundwater salinity around a village in southwestern Bangladesh, based on high-density fieldwork. We identified that the thickness of the surface clay layer, the surface elevation and the present-day land use determine whether fresh or saline groundwater has formed. The outcomes show how the large groundwater salinity variation in southwestern Bangladesh can be understood, which is valuable for the water management in the region.
John P. Bloomfield, Benjamin P. Marchant, and Andrew A. McKenzie
Hydrol. Earth Syst. Sci., 23, 1393–1408, https://doi.org/10.5194/hess-23-1393-2019, https://doi.org/10.5194/hess-23-1393-2019, 2019
Short summary
Short summary
Groundwater is susceptible to drought due to natural variations in climate; however, to date there is no evidence of a relationship between climate change and groundwater drought. Using two long groundwater level records from the UK, we document increases in frequency, magnitude and intensity and changes in duration of groundwater drought associated with climate warming and infer that, given the extent of shallow groundwater globally, warming may widely effect changes to groundwater droughts.
Bin Ma, Menggui Jin, Xing Liang, and Jing Li
Hydrol. Earth Syst. Sci., 23, 427–446, https://doi.org/10.5194/hess-23-427-2019, https://doi.org/10.5194/hess-23-427-2019, 2019
Short summary
Short summary
Groundwater supplies the most freshwater for industrial and agricultural production and domestic use in the arid northwest of China. This research uses environmental tracers to enhance one's understanding of groundwater, including aquifer recharge sources and groundwater mean residence times in the alluvium aquifers. The results provide valuable implications for groundwater resources regulation and sustainable development and have practical significance for other arid areas.
Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 22, 1911–1916, https://doi.org/10.5194/hess-22-1911-2018, https://doi.org/10.5194/hess-22-1911-2018, 2018
Short summary
Short summary
This paper provides the connection between two simple equations describing groundwater flow at different scales: the Darcy equation describes groundwater flow at pore scale, the linear reservoir equation at catchment scale. The connection between the two appears to be very simple. The two parameters of the equations are proportional, depending on the porosity of the subsoil and the resistance for the groundwater to enter the surface drainage network.
Ming Wu, Jianfeng Wu, Jichun Wu, and Bill X. Hu
Hydrol. Earth Syst. Sci., 22, 1001–1015, https://doi.org/10.5194/hess-22-1001-2018, https://doi.org/10.5194/hess-22-1001-2018, 2018
Short summary
Short summary
Fractal models of regular triangle arrangement (RTA) and square pitch arrangement (SPA) are developed in this study. Results suggest RTA can cause more groundwater contamination and make remediation more difficult. In contrast, the cleanup of contaminants in aquifers with SPA is easier. This study demonstrates how microscale arrangements control contaminant migration and remediation, which is helpful in designing successful remediation schemes for subsurface contamination.
Rui Ma, Ziyong Sun, Yalu Hu, Qixin Chang, Shuo Wang, Wenle Xing, and Mengyan Ge
Hydrol. Earth Syst. Sci., 21, 4803–4823, https://doi.org/10.5194/hess-21-4803-2017, https://doi.org/10.5194/hess-21-4803-2017, 2017
Short summary
Short summary
The roles of groundwater flow in the hydrological cycle within the alpine area characterized by permafrost or seasonal frost are poorly known. We investigated the role of permafrost in controlling groundwater flow and hydrological connections between glaciers and river. The recharge, flow path and discharge of permafrost groundwater at the study site were explored. Two mechanisms were proposed to explain the significantly seasonal variation in interaction between groundwater and surface water.
Bing Zhang, Jing Zhang, and Takafumi Yoshida
Hydrol. Earth Syst. Sci., 21, 3417–3425, https://doi.org/10.5194/hess-21-3417-2017, https://doi.org/10.5194/hess-21-3417-2017, 2017
Short summary
Short summary
Since groundwater is the linkage between climate changes and fresh submarine groundwater discharge, the variations of and relationships among monthly groundwater table, rainfall, snowfall, and climate change events from 1985 to 2015 were analyzed by wavelet coherence to discuss the implications for climate changes. The results show the increase in precipitation and the groundwater table, indicating that fresh submarine groundwater discharge flux may increase under climate change.
Koen Gerardus Zuurbier and Pieter Jan Stuyfzand
Hydrol. Earth Syst. Sci., 21, 1173–1188, https://doi.org/10.5194/hess-21-1173-2017, https://doi.org/10.5194/hess-21-1173-2017, 2017
Short summary
Short summary
The subsurface is increasingly perforated for exploitation of water and energy. This has increased the risk of leakage between originally separated aquifers. It is shown how this leakage can have a very negative impact on the recovery of freshwater during aquifer storage and recovery (ASR) in brackish-saline aquifers. Deep interception of intruding brackish-saline water can mitigate the negative effects and buoyancy of freshwater to some extent, but not completely.
Ulrike Unterbruner, Sylke Hilberg, and Iris Schiffl
Hydrol. Earth Syst. Sci., 20, 2251–2266, https://doi.org/10.5194/hess-20-2251-2016, https://doi.org/10.5194/hess-20-2251-2016, 2016
Short summary
Short summary
Studies show that young people have difficulties with correctly understanding groundwater. We designed a multimedia learning program about groundwater and tested its learning efficacy with pupils and teacher-training students. A novelty is the theory-guided designing of the program on the basis of hydrogeology and science education. The pupils and students greatly benefited from working through the multimedia learning program.
Kosta Urumović and Kosta Urumović Sr.
Hydrol. Earth Syst. Sci., 20, 1669–1680, https://doi.org/10.5194/hess-20-1669-2016, https://doi.org/10.5194/hess-20-1669-2016, 2016
Short summary
Short summary
Calculation of hydraulic conductivity of porous materials is crucial for further use in hydrogeological modeling. The Kozeny–Carman model is theoretically impeccable but has not been properly used in recent scientific and expert literature. In this paper, proper use of the Kozeny-Carman formula is given through presentation of geometric mean grain size in the drilled-core sample as the referential mean grain size. Also, procedures for identification of real effective porosity of porous media are presented.
C.-S. Huang, J.-J. Chen, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 20, 55–71, https://doi.org/10.5194/hess-20-55-2016, https://doi.org/10.5194/hess-20-55-2016, 2016
Short summary
Short summary
Existing solutions for the problem of pumping at a radial collector well (RCW) in unconfined aquifers either require laborious calculation or predict divergent results at a middle period of pumping. This study relaxes the above two limitations to develop a new analytical solution for the problem. The application of the solution is convenient for those who are not familiar with numerical methods. New findings regarding the responses of flow to pumping at RCW are addressed.
R. A. Crane, M. O. Cuthbert, and W. Timms
Hydrol. Earth Syst. Sci., 19, 3991–4000, https://doi.org/10.5194/hess-19-3991-2015, https://doi.org/10.5194/hess-19-3991-2015, 2015
Short summary
Short summary
We present an interrupted-flow centrifugation technique to characterise the vertical hydraulic properties of dual porosity, low permeability media. Use of large core samples (100mm diameter) enables hydraulic-conductivity-scale issues in dual porosity media to be overcome. Elevated centrifugal force also enables simulating in situ total stress conditions. The methodology is an important tool to assess the ability of dual porosity aquitards to protect underlying aquifer systems.
B. L. Kurylyk, K. T. B. MacQuarrie, D. Caissie, and J. M. McKenzie
Hydrol. Earth Syst. Sci., 19, 2469–2489, https://doi.org/10.5194/hess-19-2469-2015, https://doi.org/10.5194/hess-19-2469-2015, 2015
Short summary
Short summary
Changes in climate and land cover are known to warm streams by altering surface heat fluxes. However, the influence of these disturbances on shallow groundwater temperature are not as well understood. In small streams, groundwater discharge may also exert a control on stream temperature, and thus groundwater warming may eventually produce additional stream warming not considered in most existing models. This study investigates these processes and suggests stream temperature model improvements.
S. Luoma, J. Okkonen, K. Korkka-Niemi, N. Hendriksson, and B. Backman
Hydrol. Earth Syst. Sci., 19, 1353–1370, https://doi.org/10.5194/hess-19-1353-2015, https://doi.org/10.5194/hess-19-1353-2015, 2015
N. P. Unland, I. Cartwright, D. I. Cendón, and R. Chisari
Hydrol. Earth Syst. Sci., 18, 5109–5124, https://doi.org/10.5194/hess-18-5109-2014, https://doi.org/10.5194/hess-18-5109-2014, 2014
Short summary
Short summary
Periodic flooding of rivers should result in increased groundwater recharge near rivers and thus - younger and fresher groundwater near rivers. This study found the age and salinity of shallow groundwater to increase with proximity to the Tambo River in South East Australia. This appears to be due to the upwelling of older, regional groundwater closer the river. Other chemical parameters are consistent with this. This is a process that may be occurring in other similar river systems.
A. P. Atkinson, I. Cartwright, B. S. Gilfedder, D. I. Cendón, N. P. Unland, and H. Hofmann
Hydrol. Earth Syst. Sci., 18, 4951–4964, https://doi.org/10.5194/hess-18-4951-2014, https://doi.org/10.5194/hess-18-4951-2014, 2014
Short summary
Short summary
This research article uses of radiogenic isotopes, stable isotopes and groundwater geochemistry to study groundwater age and recharge processes in the Gellibrand Valley, a relatively unstudied catchment and potential groundwater resource. The valley is found to contain both "old", regionally recharged groundwater (300-10,000 years) in the near-river environment, and modern groundwater (0-100 years old) further back on the floodplain. There is no recharge of the groundwater by high river flows.
U. Lauber, P. Kotyla, D. Morche, and N. Goldscheider
Hydrol. Earth Syst. Sci., 18, 4437–4452, https://doi.org/10.5194/hess-18-4437-2014, https://doi.org/10.5194/hess-18-4437-2014, 2014
M. Huebsch, O. Fenton, B. Horan, D. Hennessy, K. G. Richards, P. Jordan, N. Goldscheider, C. Butscher, and P. Blum
Hydrol. Earth Syst. Sci., 18, 4423–4435, https://doi.org/10.5194/hess-18-4423-2014, https://doi.org/10.5194/hess-18-4423-2014, 2014
S. Hergarten, G. Winkler, and S. Birk
Hydrol. Earth Syst. Sci., 18, 4277–4288, https://doi.org/10.5194/hess-18-4277-2014, https://doi.org/10.5194/hess-18-4277-2014, 2014
M. Attwa and T. Günther
Hydrol. Earth Syst. Sci., 17, 4079–4094, https://doi.org/10.5194/hess-17-4079-2013, https://doi.org/10.5194/hess-17-4079-2013, 2013
C. Schmidt, A. Musolff, N. Trauth, M. Vieweg, and J. H. Fleckenstein
Hydrol. Earth Syst. Sci., 16, 3689–3697, https://doi.org/10.5194/hess-16-3689-2012, https://doi.org/10.5194/hess-16-3689-2012, 2012
T. Gleeson, D. M. Allen, and G. Ferguson
Hydrol. Earth Syst. Sci., 16, 2159–2168, https://doi.org/10.5194/hess-16-2159-2012, https://doi.org/10.5194/hess-16-2159-2012, 2012
G. H. de Rooij
Hydrol. Earth Syst. Sci., 16, 649–669, https://doi.org/10.5194/hess-16-649-2012, https://doi.org/10.5194/hess-16-649-2012, 2012
B. Hubinger and S. Birk
Hydrol. Earth Syst. Sci., 15, 3715–3729, https://doi.org/10.5194/hess-15-3715-2011, https://doi.org/10.5194/hess-15-3715-2011, 2011
E. Joigneaux, P. Albéric, H. Pauwels, C. Pagé, L. Terray, and A. Bruand
Hydrol. Earth Syst. Sci., 15, 2459–2470, https://doi.org/10.5194/hess-15-2459-2011, https://doi.org/10.5194/hess-15-2459-2011, 2011
P.-R. Tsou, Z.-Y. Feng, H.-D. Yeh, and C.-S. Huang
Hydrol. Earth Syst. Sci., 14, 1477–1485, https://doi.org/10.5194/hess-14-1477-2010, https://doi.org/10.5194/hess-14-1477-2010, 2010
Y.-C. Chang, D.-S. Jeng, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 14, 1341–1351, https://doi.org/10.5194/hess-14-1341-2010, https://doi.org/10.5194/hess-14-1341-2010, 2010
Cited articles
Andersen, C. M. and Bro, R.: Practical aspects of PARAFAC modelling of
fluorescence excitation-emission data, J. Chemom., 17, 200–215,
https://doi.org/10.1002/cem.790, 2003.
Audra, P., Bigot, J. Y., Camus, H., Gauchon, C., and Wienin, M.: La grotte-mine
du Piei (Lagnes, Vaucluse), paléokarst hypogène à remplissage de
minerai de fer oxydé, Karstologia, 58, 1–14, 2011.
Baker, A. and Lamont-Black, J.: Fluorescence of dissolved organic matter as a
natural tracer of ground water, Ground Water, 39, 745,
https://doi-org.ezpum.scdi-montpellier.fr/10.1111/j.1745-6584.2001.tb02365.x,
2001.
Barbel-Périneau, A.: Caractérisation du fonctionnement de la zone
non saturée des aquifères karstiques: Approche directe par
études hydrodynamiques et hydrochimiques sur le Bassin de Recherche,
d'Expérimentation et d'Observation de Fontaine de Vaucluse –
Laboratoire Souterrain à Bas Bruit de Rustrel – Pays d'Apt, PhD
thesis, Université d'Avignon et des Pays de Vaucluse, 30, 22, 2179, https://tel.archives-ouvertes.fr/tel-00990290 (last access: 10 May 2022), 2013.
Batiot, C.: Etude expérimentale du cycle du carbone en régions
karstiques: apport du carbone organique et du carbone minéral à la
connaissance hydrogéologique des systèmes, PhD thesis,
Université d'Avignon et des Pays de Vaucluse, France, https://www.theses.fr/2002AVIG0029 (last access: 10 May 2022), 2002.
Batiot, C., Liñán, C., Andreo, B., Emblanch, C., Carrasco, F.,
and Blavoux, B.: Use of Total Organic Carbon (TOC) as tracer of diffuse
infiltration in a dolomitic karstic system: The Nerja Cave (Andalusia,
southern Spain), Geophys. Res. Lett. 30, 2179,
https://doi.org/10.1029/2003GL018546, 2003.
Bicalho, C. C., Batiot-Guilhe, C., Seidel, J. L., Van Exter, S.,
and Jourde, H.: Geochemical evidence of water source characterization and
hydrodynamic responses in a karst aquifer, J. Hydrol., 450,
206–218, 2012.
Birdwell, J. E. and Engel, A. S.: Characterization of dissolved organic matter in
cave and spring waters using UV–Vis absorbance and fluorescence
spectroscopy, Org. Geochem. 41, 270–280,
https://doi.org/10.1016/j.orggeochem.2009.11.002, 2010.
Blondel, T.: Expérimentation et application sur les sites du Laboratoire
Souterrain à Bas Bruit (LSBB) de Rustrel – Pays d'Apt et de Fontaine de
Vaucluse, PhD thesis, Université d'Avignon et des Pays de Vaucluse, https://www.theses.fr/2008AVIG0044 (last access: 10 May 2022), 2008.
Blondel, T., Emblanch, C., Batiot-Guilhe, C., Dudal, Y., and Boyer, D.: Punctual
and continuous estimation of transit time from dissolved organic matter
fluorescence properties in karst aquifers, application to groundwaters of
“Fontaine de Vaucluse” experimental basin (SE France), Environ. Earth Sci.
65, 2299–2309, https://doi.org/10.1007/s12665-012-1562-x, 2012.
Choi, Y. Y., Baek, S. R., Kim, J. I., Choi, J. W., Hur, J., Lee, T. U.,
Park, C. J., and Lee, B. J.: Characteristics and biodegradability of wastewater
organic matter in municipal wastewater treatment plants collecting domestic
wastewater and industrial discharge, Water, 9, 409, https://doi.org/10.3390/w9060409, 2017.
Cognard-Plancq, A.-L., Gevaudan, C., and Emblanch, C.: Historical monthly
rainfall-runoff database on Fontaine de Vaucluse karst system: a review and
lessons, IIIe Symposium International Sur le Karst “Groundwater in the Mediterranean Countries”, 465–475, 2006.
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A.,
Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F. M.,
Hyvönon, R., Kirschbaum, M. U. F., Lavallee, J. M., Leifeld, J., Parton,
W. J., Steinweg, J. M., Wallenstein, M. D., Wetterstedt, A. M., and Bradford, M.
A.: Temperature and soil organic matter decomposition rates–synthesis of
current knowledge and a way forward, Glob. Change Biol., 17,
3392–3404, https://doi.org/10.1111/j.1365-2486.2011.02496.x, 2011.
De Willigen, P., Janssen, B. H., Heesmans, H. I. M., Conijn, J. G., Velthof,
G. L., and Chardon, W. J.: Decomposition and accumulation of organic matter in
soil; comparison of some models (No. 1726), Alterra, ISSN 1566-7197, 2008.
Emblanch, C., Blavoux, B., Puig, J. M., and Couren, M.: Le marquage de la zone
non saturée du karst à l'aide du Carbone 13: The use of carbon 13 as
a tracer of the karst unsaturated zone, Comptes-Rendus Séances
Académie Sci. Séries IIA-Earth and Planetary Science, 327–332,
1998.
Emblanch, C., Charmoille, A., Jimenez, P., Andreo, B., Mudry, J., Bertrand,
C., Batiot-Guilhe, C., and Lastennet, R.: Variabilité du type et de la
qualité de l'information issue du traçage naturel en fonction des
caractéristiques des systèmes étudiés, Quelques exemples
français et espagnols, in: Proceedings of the 8th Conference on
Limestone Hydrogeology, Neuchâtel, 101–104, 2006.
Ewald, M., Berger, P., and Visser, S. A.: UV-visible absorption and fluorescence
properties of fulvic acids of microbial origin as functions of their
molecular weights, Geoderma, 43, 11–20,
https://doi.org/10.1016/0016-7061(88)90051-1, 1988.
Frank, S., Goeppert, N., and Goldscheider, N.: Field tracer tests to evaluate
transport properties of tryptophan and humic acid in karst, Groundwater,
59, 59–70, https://doi.org/10.1111/gwat.13015, 2021.
Frey, S., Kuells, C., and Schlosser, C.: New Hydrological Age-Dating techniques
using cosmogenic radionuclides Beryllium-7 and Sodium-22, IAEA-CN–186,
2011.
Garry, B.: Etude des processus d'écoulements de la zone non saturée
pour la modélisation des aquifères karstiques – Expérimentation
hydrodynamique et hydrochimique sur les sites du Laboratoire Souterrain
à Bas Bruit (LSBB) de Rustrel et de Fontaine de Vaucluse, PhD thesis,
Université d'Avignon et des Pays de Vaucluse, https://www.theses.fr/2007AVIG0038 (last access: 10 May 2022), 2007.
Guo, Y., Niu, Q., Sugano, T., and Li, Y. Y.: Biodegradable organic
matter-containing ammonium wastewater treatment through simultaneous partial
nitritation, anammox, denitrification and COD oxidization process, Sci. Total Environ., 714, 136740, https://doi.org/10.1016/j.scitotenv.2020.136740, 2020.
Kalbitz, K., Schmerwitz, J., Schwesig, D., and Matzner, E.: Biodegradation of
soil-derived dissolved organic matter as related to its properties,
Geoderma, 113, 273–291, https://doi.org/10.1016/S0016-7061(02)00365-8, 2003.
Lakowicz, J. R.: Principles of fluorescence spectroscopy, 3 Edn.
Springer, New York, ISBN: 978-0-387-31278-1, 2006.
Lapworth, D. J., Gooddy, D. C., Butcher, A. S., and Morris, B. L.: Tracing
groundwater flow and sources of organic carbon in sandstone aquifers using
fluorescence properties of dissolved organic matter (DOM), Appl. Geochem.,
23, 3384–3390, https://doi.org/10.1016/j.apgeochem.2008.07.011, 2008.
Lastennet, R.: Rôle de la zone non saturée dans le fonctionnement
des aquifères karstiques: approche par l'étude physico-chimique et
isotopique du signal d'entrée et des exutoires du massif du Ventoux
(Vaucluse), PhD thesis, Université d'Avignon et des Pays du Vaucluse,
Avignon, France, https://www.theses.fr/1994AVIG0018 (last access: 10 May 2022), 1994.
Lastennet, R. and Mudry, J.: Role of karstification and rainfall in the
behavior of a heterogeneous karst system, Environ. Geol., 32,
114–123, 1997.
Lawaetz, A. J. and Stedmon, C. A.: Fluorescence Intensity Calibration Using the
Raman Scatter Peak of Water, Appl. Spectrosc., 63, 936–940,
https://doi.org/10.1366/000370209788964548, 2009.
Lee, S., Wolberg, G., and Shin, S. Y.: Scattered data interpolation with
multilevel B-splines, IEEE T. Vis. Comput. Graph., 3, 228–244,
https://doi.org/10.1109/2945.620490, 1997.
Malík, P., Švasta, J., Michalko, J., and Gregor, M.: Indicative mean
transit time estimation from δ18O values as groundwater
vulnerability indicator in karst-fissure aquifers, Environ. Earth Sci. 75,
988, https://doi.org/10.1007/s12665-016-5791-2, 2016.
Margrita, R., Evin, J., Flandrin, J., and Paloc, H.: Contribution des
mesures isotopiques à l'étude de la Fontaine de Vaucluse, AIEA (Vienna) SM,
129, 333–348, 1970.
Mazzilli, N., Cinkus, G., Masseron, L., and Emblanch, C.: Discharge time series for Millet spring (fontaine de Vaucluse karst system), OSU OREME, [data set], https://doi.org/10.15148/bbae7eab-8abd-40d9-834e-9a0683e59da5, 2022.
McDonough, L. K., Andersen, M. S., Behnke, M. I. Rutlidge, H., Oudone, P.,
Meredith, K., O'Carroll, D. M., Santos, I. R, Marjo, C. E., Spencer, R. G. M.,
McKenna, A. M., and Baker, A.: A new conceptual framework for the transformation
of groundwater dissolved organic matter, Nat. Commun., 13, 2153,
https://doi.org/10.1038/s41467-022-29711-9, 2022.
Mobed, J. J., Hemmingsen, S. L., Autry, J. L., and McGown, L. B.: Fluorescence
Characterization of IHSS Humic Substances: Total Luminescence Spectra with
Absorbance Correction, Environ. Sci. Technol., 30, 3061–3065,
https://doi.org/10.1021/es960132l, 1996.
Mudarra, M., Andreo, B., and Baker, A.: Characterisation of dissolved organic
matter in karst spring waters using intrinsic fluorescence: Relationship
with infiltration processes, Sci. Total Environ., 409, 3448–3462,
https://doi.org/10.1016/j.scitotenv.2011.05.026, 2011.
Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescence spectroscopy
and multi-way techniques, PARAFAC, Anal. Methods, 5, 6557,
https://doi.org/10.1039/c3ay41160e, 2013.
Musadji, N. Y., Lemée, L., Caner, L., Porel, G., Poinot, P.,
and Geffroy-Rodier, C.: Spectral characteristics of soil dissolved organic matter: Long-term effects of exogenous organic matter on soil organic matter and spatial-temporal changes, Chemosphere, 27, 104665,
https://doi.org/10.1016/j.chemosphere.2019.124808, 2019.
Musgrove, M., Solder, J. E., Opsahl, S. P., and Wilson, J. T.: Timescales of
water-quality change in a karst aquifer, south-central Texas, J. Hydrol. X,
4, 100041, https://doi.org/10.1016/j.hydroa.2019.100041, 2019.
Ohno, T.: Fluorescence Inner-Filtering Correction for Determining the
Humification Index of Dissolved Organic Matter, Environ. Sci. Technol., 36,
742–746, https://doi.org/10.1021/es0155276, 2002.
Ollivier, C.: Caractérisation et spatialisation de la recharge des
hydrosystèmes karstiques: Application à l'aquifère de Fontaine
de Vaucluse, France, PhD thesis, Université d'Avignon, https://www.theses.fr/2019AVIG0056 (last access: 10 May 2022), 2020.
Pérotin, L., de Montety, V., Ladouche, B., Bailly-Comte, V., Labasque,
T., Vergnaud, V., Muller, R., Champollion, C., Tweed, S., and Seidel, J.-L.:
Transfer of dissolved gases through a thick karstic vadose zone –
Implications for recharge characterisation and groundwater age dating in
karstic aquifers, J. Hydrol., 601, 126576,
https://doi.org/10.1016/j.jhydrol.2021.126576, 2021.
Pronk, M., Goldscheider, N., and Zopfi, J.: Microbial communities in karst
groundwater and their potential use for biomonitoring, Hydrogeol. J., 17,
37–48, https://doi.org/10.1007/s10040-008-0350-x, 2009.
Pucher, M., Wünsch, U., Weigelhofer, G., Murphy, K., Hein, T., and Graeber,
D.: staRdom: Versatile Software for Analyzing Spectroscopic Data of
Dissolved Organic Matter in R, Water, 11, 2366,
https://doi.org/10.3390/w11112366, 2019.
Quiers, M., Batiot-Guilhe, C., Bicalho, C. C., Perrette, Y., Seidel, J.-L.,
and Van Exter, S.: Characterisation of rapid infiltration flows and
vulnerability in a karst aquifer using a decomposed fluorescence signal of
dissolved organic matter, Environ. Earth Sci., 71, 553–561,
https://doi.org/10.1007/s12665-013-2731-2, 2014.
Ravbar, N., Engelhardt, I., and Goldscheider, N.: Anomalous behaviour of
specific electrical conductivity at a karst spring induced by variable
catchment boundaries: the case of the Podstenjšek spring, Slovenia,
Hydrol. Proc., 25, 2130–2140, 2011.
Serene, L., Batiot-Guilhe, C., Emblanch, C., Mazzilli, N., and Massonat, G.: Natural fluorescence of organic matter excitation-emission matrix (EEM) of underground water from Fontaine de Vaucluse system (2020 to 2021), OSU OREME, [data set], https://doi.org/10.15148/8d6104e1-ae78-4b4e-8e50-198ccc5b19c9, 2022.
SNO KARST: Time series of type chemistry in Fontaine de Vaucluse basin, FONTAINE DE VAUCLUSE observatory, KARST observatory network, OZCAR Critical Zone network Research Infrastructure, OSU OREME, [data set], https://doi.org/10.15148/7b94438a-7bb2-4382-bb25-a4a0c3fdc5d7, 2021.
Sorensen, J. P. R., Carr, A. F., Nayebare, J., Diongue, D. M. L., Pouye, A.,
Roffo, R., Gwengweya, G., Ward, J. S. T., Kanoti, J., Okotto-Okotto, J., van
der Marel, L., Ciric, L., Faye, S. C., Gaye, C. B., Goodall, T., Kulabako, R.,
Lapworth, D. J., MacDonald, A. M., Monjerezi, M., Olago, D., Owor, M., Read,
D. S., and Taylor, R. G.: Tryptophan-like and humic-like fluorophores are
extracellular in groundwater: implications as real-time faecal indicators,
Sci. Rep., 10, 15379, https://doi.org/10.1038/s41598-020-72258-2, 2020.
Stevanović, Z.: Karst waters in potable water supply: a global scale
overview, Environ. Earth Sci., 78, 662,
https://doi.org/10.1007/s12665-019-8670-9, 2019.
Tucker, S. A., Amszi, V. L., and Acree, W. E.: Primary and secondary inner
filtering. Effect of K2Cr2O7 on fluorescence emission
intensities of quinine sulfate, J. Chem. Educ., 69,
https://doi.org/10.1021/ed069pA8, 1992.
White, W. B.: Karst hydrology: recent developments and open questions, Eng.
Geol., 65, 85–105, https://doi.org/10.1016/S0013-7952(01)00116-8, 2002.
Zhang, Z., Chen, X., Li, S., Yue, F., Cheng, Q., Peng, T., and Soulsby, C.:
Linking nitrate dynamics to water age in underground conduit flows in a
karst catchment, J. Hydrol., 596, 125699,
https://doi.org/10.1016/j.jhydrol.2020.125699, 2021
Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, F.:
Differentiating with fluorescence spectroscopy the sources of dissolved
organic matter in soils subjected to drying, Chemosphere, 38, 45–50,
https://doi.org/10.1016/S0045-6535(98)00166-0, 1999.
Short summary
This work aims to develop the Transit Time index (TTi) as a natural tracer of karst groundwater transit time, usable in the 0–6-month range. Based on the fluorescence of organic matter, TTi shows its relevance to detect a small proportion of fast infiltration water within a mix, while other natural transit time tracers provide no or less sensitive information. Comparison of the average TTi of different karst springs also provides consistent results with the expected relative transit times.
This work aims to develop the Transit Time index (TTi) as a natural tracer of karst groundwater...