Articles | Volume 26, issue 16
https://doi.org/10.5194/hess-26-4301-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-4301-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
In situ estimation of subsurface hydro-geomechanical properties using the groundwater response to semi-diurnal Earth and atmospheric tides
Gabriel C. Rau
CORRESPONDING AUTHOR
School of Environmental and Life Sciences, The University of Newcastle, Newcastle, Australia
Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
Timothy C. McMillan
School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia
School of Mineral and Energy Resource Engineering, The University of New South Wales, Sydney, Australia
Martin S. Andersen
School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia
Wendy A. Timms
School of Engineering, Deakin University, Waurn Ponds, Australia
Related authors
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau
EGUsphere, https://doi.org/10.5194/egusphere-2024-1949, https://doi.org/10.5194/egusphere-2024-1949, 2024
Short summary
Short summary
A systematic laboratory experiment elucidates two-phase heat transport due to water flow in saturated porous media to understand thermal propagation in aquifers. Results reveal delayed thermal arrival in the solid phase, depending on grain size and flow velocity. Analytical modeling using standard local thermal equilibrium (LTE) and advanced local thermal non-equilibrium (LTNE) theory fails to describe temperature breakthrough curves, highlighting the need for more advanced numerical approaches.
Patrick Haehnel, Todd C. Rasmussen, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 28, 2767–2784, https://doi.org/10.5194/hess-28-2767-2024, https://doi.org/10.5194/hess-28-2767-2024, 2024
Short summary
Short summary
While groundwater recharge is important for water resources management, nearshore sea levels can obscure this signal. Regression deconvolution has previously been used to remove other influences from groundwater levels (e.g., barometric pressure, Earth tides) by accounting for time-delayed responses from these influences. We demonstrate that it can also remove sea-level influences from measured groundwater levels.
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024, https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary
Short summary
Global groundwater recharge studies collate recharge values estimated using different methods that apply to different timescales. We develop a recharge prediction model, based solely on chloride, to produce a recharge map for Australia. We reveal that climate and vegetation have the most significant influence on recharge variability in Australia. Our recharge rates were lower than other models due to the long timescale of chloride in groundwater. Our method can similarly be applied globally.
Rémi Valois, Agnès Rivière, Jean-Michel Vouillamoz, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 28, 1041–1054, https://doi.org/10.5194/hess-28-1041-2024, https://doi.org/10.5194/hess-28-1041-2024, 2024
Short summary
Short summary
Characterizing aquifer systems is challenging because it is difficult to obtain in situ information. They can, however, be characterized using natural forces such as Earth tides. Models that account for more complex situations are still necessary to extend the use of Earth tides to assess hydromechanical properties of aquifer systems. Such a model is developed in this study and applied to a case study in Cambodia, where a combination of tides was used in order to better constrain the model.
Jose M. Bastias Espejo, Chris Turnadge, Russell S. Crosbie, Philipp Blum, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 27, 3447–3462, https://doi.org/10.5194/hess-27-3447-2023, https://doi.org/10.5194/hess-27-3447-2023, 2023
Short summary
Short summary
Analytical models estimate subsurface properties from subsurface–tidal load interactions. However, they have limited accuracy in representing subsurface physics and parameter estimation. We derived a new analytical solution which models flow to wells due to atmospheric tides. We applied it to field data and compared our findings with subsurface knowledge. Our results enhance understanding of subsurface systems, providing valuable information on their behavior.
José M. Bastías Espejo, Andy Wilkins, Gabriel C. Rau, and Philipp Blum
Geosci. Model Dev., 14, 6257–6272, https://doi.org/10.5194/gmd-14-6257-2021, https://doi.org/10.5194/gmd-14-6257-2021, 2021
Short summary
Short summary
The hydraulic and mechanical properties of the subsurface are inherently heterogeneous. RHEA is a simulator that can perform couple hydro-geomechanical processes in heterogeneous porous media with steep gradients. RHEA is able to fully integrate spatial heterogeneity, allowing allocation of distributed hydraulic and geomechanical properties at mesh element level. RHEA is a valuable tool that can simulate problems considering realistic heterogeneity inherent to geologic formations.
Gabriel C. Rau, Mark O. Cuthbert, R. Ian Acworth, and Philipp Blum
Hydrol. Earth Syst. Sci., 24, 6033–6046, https://doi.org/10.5194/hess-24-6033-2020, https://doi.org/10.5194/hess-24-6033-2020, 2020
Short summary
Short summary
This work provides an important generalisation of a previously developed method that quantifies subsurface barometric efficiency using the groundwater level response to Earth and atmospheric tides. The new approach additionally allows the quantification of hydraulic conductivity and specific storage. This enables improved and rapid assessment of subsurface processes and properties using standard pressure measurements.
Gabriel C. Rau, Vincent E. A. Post, Margaret Shanafield, Torsten Krekeler, Eddie W. Banks, and Philipp Blum
Hydrol. Earth Syst. Sci., 23, 3603–3629, https://doi.org/10.5194/hess-23-3603-2019, https://doi.org/10.5194/hess-23-3603-2019, 2019
Short summary
Short summary
The flow of water is often inferred from water levels and gradients whose measurements are considered trivial despite the many steps and complexity of the instruments involved. We systematically review the four measurement steps required and summarise the systematic errors. To determine the accuracy with which flow can be resolved, we quantify and propagate the random errors. Our results illustrate the limitations of current practice and provide concise recommendations to improve data quality.
Katie Coleborn, Gabriel C. Rau, Mark O. Cuthbert, Andy Baker, and Owen Navarre
Hydrol. Earth Syst. Sci., 20, 4439–4455, https://doi.org/10.5194/hess-20-4439-2016, https://doi.org/10.5194/hess-20-4439-2016, 2016
Short summary
Short summary
This is the first observation of tree water use in cave drip water. Our novel time series analysis using the synchrosqueeze transform identified daily and sub-daily oscillations in drip rate. The only hypothesis consistent with hydrologic theory and the data was that the oscillations were caused by solar driven pumping by trees above the cave. We propose a new protocol for inferring karst architecture and our findings support research on the impact trees on speleothem paleoclimate proxies.
N. P. Unland, I. Cartwright, M. S. Andersen, G. C. Rau, J. Reed, B. S. Gilfedder, A. P. Atkinson, and H. Hofmann
Hydrol. Earth Syst. Sci., 17, 3437–3453, https://doi.org/10.5194/hess-17-3437-2013, https://doi.org/10.5194/hess-17-3437-2013, 2013
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau
EGUsphere, https://doi.org/10.5194/egusphere-2024-1949, https://doi.org/10.5194/egusphere-2024-1949, 2024
Short summary
Short summary
A systematic laboratory experiment elucidates two-phase heat transport due to water flow in saturated porous media to understand thermal propagation in aquifers. Results reveal delayed thermal arrival in the solid phase, depending on grain size and flow velocity. Analytical modeling using standard local thermal equilibrium (LTE) and advanced local thermal non-equilibrium (LTNE) theory fails to describe temperature breakthrough curves, highlighting the need for more advanced numerical approaches.
Patrick Haehnel, Todd C. Rasmussen, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 28, 2767–2784, https://doi.org/10.5194/hess-28-2767-2024, https://doi.org/10.5194/hess-28-2767-2024, 2024
Short summary
Short summary
While groundwater recharge is important for water resources management, nearshore sea levels can obscure this signal. Regression deconvolution has previously been used to remove other influences from groundwater levels (e.g., barometric pressure, Earth tides) by accounting for time-delayed responses from these influences. We demonstrate that it can also remove sea-level influences from measured groundwater levels.
Andy Baker, Margaret Shanafield, Wendy Timms, Martin Sogaard Andersen, Stacey Priestley, and Marilu Melo Zurita
Geosci. Instrum. Method. Data Syst., 13, 117–129, https://doi.org/10.5194/gi-13-117-2024, https://doi.org/10.5194/gi-13-117-2024, 2024
Short summary
Short summary
Much of the world relies on groundwater as a water resource, yet it is hard to know when and where rainfall replenishes our groundwater aquifers. Caves, mines, and tunnels that are situated above the groundwater table are unique observatories of water transiting from the land surface to the aquifer. This paper will show how networks of loggers deployed in these underground spaces across Australia have helped understand when, where, and how much rainfall is needed to replenish the groundwater.
Stephen Lee, Dylan J. Irvine, Clément Duvert, Gabriel C. Rau, and Ian Cartwright
Hydrol. Earth Syst. Sci., 28, 1771–1790, https://doi.org/10.5194/hess-28-1771-2024, https://doi.org/10.5194/hess-28-1771-2024, 2024
Short summary
Short summary
Global groundwater recharge studies collate recharge values estimated using different methods that apply to different timescales. We develop a recharge prediction model, based solely on chloride, to produce a recharge map for Australia. We reveal that climate and vegetation have the most significant influence on recharge variability in Australia. Our recharge rates were lower than other models due to the long timescale of chloride in groundwater. Our method can similarly be applied globally.
Rémi Valois, Agnès Rivière, Jean-Michel Vouillamoz, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 28, 1041–1054, https://doi.org/10.5194/hess-28-1041-2024, https://doi.org/10.5194/hess-28-1041-2024, 2024
Short summary
Short summary
Characterizing aquifer systems is challenging because it is difficult to obtain in situ information. They can, however, be characterized using natural forces such as Earth tides. Models that account for more complex situations are still necessary to extend the use of Earth tides to assess hydromechanical properties of aquifer systems. Such a model is developed in this study and applied to a case study in Cambodia, where a combination of tides was used in order to better constrain the model.
Jose M. Bastias Espejo, Chris Turnadge, Russell S. Crosbie, Philipp Blum, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 27, 3447–3462, https://doi.org/10.5194/hess-27-3447-2023, https://doi.org/10.5194/hess-27-3447-2023, 2023
Short summary
Short summary
Analytical models estimate subsurface properties from subsurface–tidal load interactions. However, they have limited accuracy in representing subsurface physics and parameter estimation. We derived a new analytical solution which models flow to wells due to atmospheric tides. We applied it to field data and compared our findings with subsurface knowledge. Our results enhance understanding of subsurface systems, providing valuable information on their behavior.
Philippa A. Higgins, Jonathan G. Palmer, Chris S. M. Turney, Martin S. Andersen, and Fiona Johnson
Clim. Past, 18, 1169–1188, https://doi.org/10.5194/cp-18-1169-2022, https://doi.org/10.5194/cp-18-1169-2022, 2022
Short summary
Short summary
We studied eight New Zealand tree species and identified differences in their responses to large volcanic eruptions. The response is dependent on the species and how well it can tolerate stress, but substantial within-species differences are also observed depending on site factors, including altitude and exposure. This has important implications for tree-ring temperature reconstructions because site selection and compositing methods can change the magnitude of observed volcanic cooling.
José M. Bastías Espejo, Andy Wilkins, Gabriel C. Rau, and Philipp Blum
Geosci. Model Dev., 14, 6257–6272, https://doi.org/10.5194/gmd-14-6257-2021, https://doi.org/10.5194/gmd-14-6257-2021, 2021
Short summary
Short summary
The hydraulic and mechanical properties of the subsurface are inherently heterogeneous. RHEA is a simulator that can perform couple hydro-geomechanical processes in heterogeneous porous media with steep gradients. RHEA is able to fully integrate spatial heterogeneity, allowing allocation of distributed hydraulic and geomechanical properties at mesh element level. RHEA is a valuable tool that can simulate problems considering realistic heterogeneity inherent to geologic formations.
Gabriel C. Rau, Mark O. Cuthbert, R. Ian Acworth, and Philipp Blum
Hydrol. Earth Syst. Sci., 24, 6033–6046, https://doi.org/10.5194/hess-24-6033-2020, https://doi.org/10.5194/hess-24-6033-2020, 2020
Short summary
Short summary
This work provides an important generalisation of a previously developed method that quantifies subsurface barometric efficiency using the groundwater level response to Earth and atmospheric tides. The new approach additionally allows the quantification of hydraulic conductivity and specific storage. This enables improved and rapid assessment of subsurface processes and properties using standard pressure measurements.
Karina T. Meredith, Andy Baker, Martin S. Andersen, Denis M. O'Carroll, Helen Rutlidge, Liza K. McDonough, Phetdala Oudone, Eliza Bryan, and Nur Syahiza Zainuddin
Hydrol. Earth Syst. Sci., 24, 2167–2178, https://doi.org/10.5194/hess-24-2167-2020, https://doi.org/10.5194/hess-24-2167-2020, 2020
Short summary
Short summary
Dissolved organic carbon within groundwater and processes controlling it remain largely unknown. The average groundwater concentration at this coastal site was 5 times higher than the global median, doubling with depth, but with no change in chromatographic character. The lack of oxygen limited the rate of organic matter processing, leading to enhanced preservation. Changes in coastal hydrology could lead to the flux of unreacted organic carbon.
Gabriel C. Rau, Vincent E. A. Post, Margaret Shanafield, Torsten Krekeler, Eddie W. Banks, and Philipp Blum
Hydrol. Earth Syst. Sci., 23, 3603–3629, https://doi.org/10.5194/hess-23-3603-2019, https://doi.org/10.5194/hess-23-3603-2019, 2019
Short summary
Short summary
The flow of water is often inferred from water levels and gradients whose measurements are considered trivial despite the many steps and complexity of the instruments involved. We systematically review the four measurement steps required and summarise the systematic errors. To determine the accuracy with which flow can be resolved, we quantify and propagate the random errors. Our results illustrate the limitations of current practice and provide concise recommendations to improve data quality.
Katarina David, Wendy Timms, Catherine E. Hughes, Jagoda Crawford, and Dayna McGeeney
Hydrol. Earth Syst. Sci., 22, 6023–6041, https://doi.org/10.5194/hess-22-6023-2018, https://doi.org/10.5194/hess-22-6023-2018, 2018
Short summary
Short summary
We investigated the wetland system classified as a threatened ecological community and found that organic-rich soil close to surfaces retains significant moisture necessary for ecosystems. At the base of the swamp an identified sand layer allows relatively rapid drainage and lateral groundwater interaction. Evaporation estimated from stable water isotopes from sediments indicated that groundwater contribution to the swamp is significant in dry periods, supporting ecosystems when water is scarce.
Charlotte P. Iverach, Dioni I. Cendón, Karina T. Meredith, Klaus M. Wilcken, Stuart I. Hankin, Martin S. Andersen, and Bryce F. J. Kelly
Hydrol. Earth Syst. Sci., 21, 5953–5969, https://doi.org/10.5194/hess-21-5953-2017, https://doi.org/10.5194/hess-21-5953-2017, 2017
Short summary
Short summary
This study uses a multi-tracer geochemical approach to determine the extent of artesian groundwater discharge into an economically important alluvial aquifer. We compare estimates for artesian discharge into the alluvial aquifer derived from water balance modelling and geochemical data to show that there is considerable divergence in the results. The implications of this work involve highlighting that geochemical data should be used as a critical component of water budget assessments.
Katie Coleborn, Gabriel C. Rau, Mark O. Cuthbert, Andy Baker, and Owen Navarre
Hydrol. Earth Syst. Sci., 20, 4439–4455, https://doi.org/10.5194/hess-20-4439-2016, https://doi.org/10.5194/hess-20-4439-2016, 2016
Short summary
Short summary
This is the first observation of tree water use in cave drip water. Our novel time series analysis using the synchrosqueeze transform identified daily and sub-daily oscillations in drip rate. The only hypothesis consistent with hydrologic theory and the data was that the oscillations were caused by solar driven pumping by trees above the cave. We propose a new protocol for inferring karst architecture and our findings support research on the impact trees on speleothem paleoclimate proxies.
W. A. Timms, R. Crane, D. J. Anderson, S. Bouzalakos, M. Whelan, D. McGeeney, P. F. Rahman, and R. I. Acworth
Hydrol. Earth Syst. Sci., 20, 39–54, https://doi.org/10.5194/hess-20-39-2016, https://doi.org/10.5194/hess-20-39-2016, 2016
Short summary
Short summary
Low permeability sediments and rock can leak slowly, yet can act as important barriers to flow for resource development and for waste sequestration. Relatively rapid and reliable hydraulic tests of "tight" geological materials are possible by accelerating gravity. Results from geotechnical centrifuge testing of drill core and in situ pore pressure monitoring were compared with a regional flow model, and considered in the context of inherent geological variability at site and formation scale.
R. A. Crane, M. O. Cuthbert, and W. Timms
Hydrol. Earth Syst. Sci., 19, 3991–4000, https://doi.org/10.5194/hess-19-3991-2015, https://doi.org/10.5194/hess-19-3991-2015, 2015
Short summary
Short summary
We present an interrupted-flow centrifugation technique to characterise the vertical hydraulic properties of dual porosity, low permeability media. Use of large core samples (100mm diameter) enables hydraulic-conductivity-scale issues in dual porosity media to be overcome. Elevated centrifugal force also enables simulating in situ total stress conditions. The methodology is an important tool to assess the ability of dual porosity aquitards to protect underlying aquifer systems.
W. A. Timms, R. Crane, D. J. Anderson, S. Bouzalakos, M. Whelan, D. McGeeney, P. F. Rahman, A. Guinea, and R. I. Acworth
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-11-3155-2014, https://doi.org/10.5194/hessd-11-3155-2014, 2014
Revised manuscript not accepted
N. P. Unland, I. Cartwright, M. S. Andersen, G. C. Rau, J. Reed, B. S. Gilfedder, A. P. Atkinson, and H. Hofmann
Hydrol. Earth Syst. Sci., 17, 3437–3453, https://doi.org/10.5194/hess-17-3437-2013, https://doi.org/10.5194/hess-17-3437-2013, 2013
Related subject area
Subject: Groundwater hydrology | Techniques and Approaches: Theory development
Identification, mapping, and eco-hydrological signal analysis for groundwater-dependent ecosystems (GDEs) in Langxi River basin, north China
Solutions and case studies for thermally driven reactive transport and porosity evolution in geothermal systems (reactive Lauwerier problem)
Technical note: Analytical solution for well water response to Earth tides in leaky aquifers with storage and compressibility in the aquitard
Flow recession behavior of preferential subsurface flow patterns with minimum energy dissipation
Towards a hydrogeomorphological understanding of proglacial catchments: an assessment of groundwater storage and release in an Alpine catchment
Effect of topographic slope on the export of nitrate in humid catchments: a 3D model study
Transit Time index (TTi) as an adaptation of the humification index to illustrate transit time differences in karst hydrosystems: application to the karst springs of the Fontaine de Vaucluse system (southeastern France)
The Thiem team – Adolf and Günther Thiem, two forefathers of hydrogeology
Effects of aquifer geometry on seawater intrusion in annulus segment island aquifers
Depth to water table correction for initial carbon-14 activities in groundwater mean residence time estimation
Preferential pathways for fluid and solutes in heterogeneous groundwater systems: self-organization, entropy, work
Statistical characterization of environmental hot spots and hot moments and applications in groundwater hydrology
Technical note: Disentangling the groundwater response to Earth and atmospheric tides to improve subsurface characterisation
Flowing wells: terminology, history and role in the evolution of groundwater science
Asymmetric impact of groundwater use on groundwater droughts
New model of reactive transport in a single-well push–pull test with aquitard effect and wellbore storage
HESS Opinions: The myth of groundwater sustainability in Asia
Groundwater salinity variation in Upazila Assasuni (southwestern Bangladesh), as steered by surface clay layer thickness, relative elevation and present-day land use
Changes in groundwater drought associated with anthropogenic warming
Application of environmental tracers for investigation of groundwater mean residence time and aquifer recharge in fault-influenced hydraulic drop alluvium aquifers
HESS Opinions: Linking Darcy's equation to the linear reservoir
Effects of microarrangement of solid particles on PCE migration and its remediation in porous media
Hydrological connectivity from glaciers to rivers in the Qinghai–Tibet Plateau: roles of suprapermafrost and subpermafrost groundwater
Temporal variations of groundwater tables and implications for submarine groundwater discharge: a 3-decade case study in central Japan
Consequences and mitigation of saltwater intrusion induced by short-circuiting during aquifer storage and recovery in a coastal subsurface
Understanding groundwater – students' pre-conceptions and conceptual change by means of a theory-guided multimedia learning program
The referential grain size and effective porosity in the Kozeny–Carman model
Approximate analysis of three-dimensional groundwater flow toward a radial collector well in a finite-extent unconfined aquifer
Technical Note: The use of an interrupted-flow centrifugation method to characterise preferential flow in low permeability media
Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling
Confronting the vicinity of the surface water and sea shore in a shallow glaciogenic aquifer in southern Finland
Residence times and mixing of water in river banks: implications for recharge and groundwater–surface water exchange
Using 14C and 3H to understand groundwater flow and recharge in an aquifer window
Hydrogeology of an Alpine rockfall aquifer system and its role in flood attenuation and maintaining baseflow
Mobilisation or dilution? Nitrate response of karst springs to high rainfall events
Transferring the concept of minimum energy dissipation from river networks to subsurface flow patterns
Spectral induced polarization measurements for predicting the hydraulic conductivity in sandy aquifers
Transient analysis of fluctuations of electrical conductivity as tracer in the stream bed
Teaching hydrogeology: a review of current practice
Transient flow between aquifers and surface water: analytically derived field-scale hydraulic heads and fluxes
Influence of initial heterogeneities and recharge limitations on the evolution of aperture distributions in carbonate aquifers
Impact of climate change on groundwater point discharge: backflooding of karstic springs (Loiret, France)
Stream depletion rate with horizontal or slanted wells in confined aquifers near a stream
Tidal propagation in an oceanic island with sloping beaches
Mingyang Li, Fulin Li, Shidong Fu, Huawei Chen, Kairan Wang, Xuequn Chen, and Jiwen Huang
Hydrol. Earth Syst. Sci., 28, 4623–4642, https://doi.org/10.5194/hess-28-4623-2024, https://doi.org/10.5194/hess-28-4623-2024, 2024
Short summary
Short summary
Research on groundwater-dependent ecosystems (GDEs) started earlier, but because there is no good identification and classification method, most of the related research is concentrated in Europe and Australia. In this study, the lower Yellow River basin in northern China, with well-developed karsts, was selected as the study area, and a four-diagnostic-criteria framework for identifying the GDEs based on remote sensing, GIS data dredging, and hydrogeological surveys was proposed.
Roi Roded, Einat Aharonov, Piotr Szymczak, Manolis Veveakis, Boaz Lazar, and Laura E. Dalton
Hydrol. Earth Syst. Sci., 28, 4559–4576, https://doi.org/10.5194/hess-28-4559-2024, https://doi.org/10.5194/hess-28-4559-2024, 2024
Short summary
Short summary
Common practices in water resource management and geothermal applications involve the injection of hot or cold water into aquifers. The resulting thermal changes may lead to chemical disequilibrium and consequent mineral dissolution/precipitation in the rock void space. A mathematical model is developed to study the effects of such thermal fluid injection on the evolution of water composition, aquifer porosity, and permeability. The model is then applied to two important case studies.
Rémi Valois, Agnès Rivière, Jean-Michel Vouillamoz, and Gabriel C. Rau
Hydrol. Earth Syst. Sci., 28, 1041–1054, https://doi.org/10.5194/hess-28-1041-2024, https://doi.org/10.5194/hess-28-1041-2024, 2024
Short summary
Short summary
Characterizing aquifer systems is challenging because it is difficult to obtain in situ information. They can, however, be characterized using natural forces such as Earth tides. Models that account for more complex situations are still necessary to extend the use of Earth tides to assess hydromechanical properties of aquifer systems. Such a model is developed in this study and applied to a case study in Cambodia, where a combination of tides was used in order to better constrain the model.
Jannick Strüven and Stefan Hergarten
Hydrol. Earth Syst. Sci., 27, 3041–3058, https://doi.org/10.5194/hess-27-3041-2023, https://doi.org/10.5194/hess-27-3041-2023, 2023
Short summary
Short summary
This study uses dendritic flow patterns to analyze the recession behavior of aquifer springs. The results show that the long-term recession becomes slower for large catchments. After a short recharge event, however, the short-term behavior differs strongly from the exponential recession that would be expected from a linear reservoir. The exponential component still accounts for more than 80 % of the total discharge, much more than typically assumed for karst aquifers.
Tom Müller, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 26, 6029–6054, https://doi.org/10.5194/hess-26-6029-2022, https://doi.org/10.5194/hess-26-6029-2022, 2022
Short summary
Short summary
This research provides a comprehensive analysis of groundwater storage in Alpine glacier forefields, a zone rapidly evolving with glacier retreat. Based on data analysis of a case study, it provides a simple perceptual model showing where and how groundwater is stored and released in a high Alpine environment. It especially points out the presence of groundwater storages in both fluvial and bedrock aquifers, which may become more important with future glacier retreat.
Jie Yang, Qiaoyu Wang, Ingo Heidbüchel, Chunhui Lu, Yueqing Xie, Andreas Musolff, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 5051–5068, https://doi.org/10.5194/hess-26-5051-2022, https://doi.org/10.5194/hess-26-5051-2022, 2022
Short summary
Short summary
We assessed the effect of catchment topographic slopes on the nitrate export dynamics in terms of the nitrogen mass fluxes and concentration level using a coupled surface–subsurface model. We found that flatter landscapes tend to retain more nitrogen mass in the soil and export less nitrogen mass to the stream, explained by the reduced leaching and increased potential of degradation in flat landscapes. We emphasized that stream water quality is potentially less vulnerable in flatter landscapes.
Leïla Serène, Christelle Batiot-Guilhe, Naomi Mazzilli, Christophe Emblanch, Milanka Babic, Julien Dupont, Roland Simler, Matthieu Blanc, and Gérard Massonnat
Hydrol. Earth Syst. Sci., 26, 5035–5049, https://doi.org/10.5194/hess-26-5035-2022, https://doi.org/10.5194/hess-26-5035-2022, 2022
Short summary
Short summary
This work aims to develop the Transit Time index (TTi) as a natural tracer of karst groundwater transit time, usable in the 0–6-month range. Based on the fluorescence of organic matter, TTi shows its relevance to detect a small proportion of fast infiltration water within a mix, while other natural transit time tracers provide no or less sensitive information. Comparison of the average TTi of different karst springs also provides consistent results with the expected relative transit times.
Georg J. Houben and Okke Batelaan
Hydrol. Earth Syst. Sci., 26, 4055–4091, https://doi.org/10.5194/hess-26-4055-2022, https://doi.org/10.5194/hess-26-4055-2022, 2022
Short summary
Short summary
Unbeknown to most hydrologists, many methods used in groundwater hydrology today go back to work by Adolf and Günther Thiem. Their work goes beyond the Dupuit–Thiem analytical model for pump tests mentioned in many textbooks. It includes, e.g., the development and improvement of isopotential maps, tracer tests, and vertical well constructions. Extensive literature and archive research has been conducted to identify how and where the Thiems developed their methods and how they spread.
Zhaoyang Luo, Jun Kong, Chengji Shen, Pei Xin, Chunhui Lu, Ling Li, and David Andrew Barry
Hydrol. Earth Syst. Sci., 25, 6591–6602, https://doi.org/10.5194/hess-25-6591-2021, https://doi.org/10.5194/hess-25-6591-2021, 2021
Short summary
Short summary
Analytical solutions are derived for steady-state seawater intrusion in annulus segment aquifers. These analytical solutions are validated by comparing their predictions with experimental data. We find seawater intrusion is the most extensive in divergent aquifers, and the opposite is the case for convergent aquifers. The analytical solutions facilitate engineers and hydrologists in evaluating seawater intrusion more efficiently in annulus segment aquifers with a complex geometry.
Dylan J. Irvine, Cameron Wood, Ian Cartwright, and Tanya Oliver
Hydrol. Earth Syst. Sci., 25, 5415–5424, https://doi.org/10.5194/hess-25-5415-2021, https://doi.org/10.5194/hess-25-5415-2021, 2021
Short summary
Short summary
It is widely assumed that 14C is in contact with the atmosphere until recharging water reaches the water table. Unsaturated zone (UZ) studies have shown that 14C decreases with depth below the land surface. We produce a relationship between UZ 14C and depth to the water table to estimate input 14C activities for groundwater age estimation. Application of the new relationship shows that it is important for UZ processes to be considered in groundwater mean residence time estimation.
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021, https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Short summary
This study uses the concepts of entropy and work to quantify and explain the emergence of preferential flow and transport in heterogeneous saturated porous media. We found that the downstream concentration of solutes in preferential pathways implies a downstream declining entropy in the transverse distribution of solute transport pathways. Preferential flow patterns with lower entropies emerged within media of higher heterogeneity – a stronger self-organization despite a higher randomness.
Jiancong Chen, Bhavna Arora, Alberto Bellin, and Yoram Rubin
Hydrol. Earth Syst. Sci., 25, 4127–4146, https://doi.org/10.5194/hess-25-4127-2021, https://doi.org/10.5194/hess-25-4127-2021, 2021
Short summary
Short summary
We developed a stochastic framework with indicator random variables to characterize the spatiotemporal distribution of environmental hot spots and hot moments (HSHMs) that represent rare locations and events exerting a disproportionate influence over the environment. HSHMs are characterized by static and dynamic indicators. This framework is advantageous as it allows us to calculate the uncertainty associated with HSHMs based on uncertainty associated with its contributors.
Gabriel C. Rau, Mark O. Cuthbert, R. Ian Acworth, and Philipp Blum
Hydrol. Earth Syst. Sci., 24, 6033–6046, https://doi.org/10.5194/hess-24-6033-2020, https://doi.org/10.5194/hess-24-6033-2020, 2020
Short summary
Short summary
This work provides an important generalisation of a previously developed method that quantifies subsurface barometric efficiency using the groundwater level response to Earth and atmospheric tides. The new approach additionally allows the quantification of hydraulic conductivity and specific storage. This enables improved and rapid assessment of subsurface processes and properties using standard pressure measurements.
Xiao-Wei Jiang, John Cherry, and Li Wan
Hydrol. Earth Syst. Sci., 24, 6001–6019, https://doi.org/10.5194/hess-24-6001-2020, https://doi.org/10.5194/hess-24-6001-2020, 2020
Short summary
Short summary
The gushing of water from flowing wells is a natural phenomenon of interest to the public. This review demonstrates that this spectacular phenomenon also instigated the science of groundwater and can be considered a root of groundwater hydrology. Observations of flowing wells not only led to the foundation of many principles of traditional groundwater hydrology but also played a vital role in the paradigm shift from aquitard-bound flow to cross-formational flow driven by topography.
Doris E. Wendt, Anne F. Van Loon, John P. Bloomfield, and David M. Hannah
Hydrol. Earth Syst. Sci., 24, 4853–4868, https://doi.org/10.5194/hess-24-4853-2020, https://doi.org/10.5194/hess-24-4853-2020, 2020
Short summary
Short summary
Groundwater use changes the availability of groundwater, especially during droughts. This study investigates the impact of groundwater use on groundwater droughts. A methodological framework is presented that was developed and applied to the UK. We identified an asymmetric impact of groundwater use on droughts, which highlights the relation between short-term and long-term strategies for sustainable groundwater use.
Quanrong Wang, Junxia Wang, Hongbin Zhan, and Wenguang Shi
Hydrol. Earth Syst. Sci., 24, 3983–4000, https://doi.org/10.5194/hess-24-3983-2020, https://doi.org/10.5194/hess-24-3983-2020, 2020
Franklin W. Schwartz, Ganming Liu, and Zhongbo Yu
Hydrol. Earth Syst. Sci., 24, 489–500, https://doi.org/10.5194/hess-24-489-2020, https://doi.org/10.5194/hess-24-489-2020, 2020
Short summary
Short summary
We are concerned about the sad state of affairs around groundwater in the developing countries of Asia and the obvious implications for sustainability. Groundwater production for irrigated agriculture has led to water-level declines that continue to worsen. Yet in the most populous countries, China, India, Pakistan, and Iran, there are only token efforts towards evidence-based sustainable management. It is unrealistic to expect evidence-based groundwater sustainability to develop any time soon.
Floris Loys Naus, Paul Schot, Koos Groen, Kazi Matin Ahmed, and Jasper Griffioen
Hydrol. Earth Syst. Sci., 23, 1431–1451, https://doi.org/10.5194/hess-23-1431-2019, https://doi.org/10.5194/hess-23-1431-2019, 2019
Short summary
Short summary
In this paper, we postulate a possible evolution of the groundwater salinity around a village in southwestern Bangladesh, based on high-density fieldwork. We identified that the thickness of the surface clay layer, the surface elevation and the present-day land use determine whether fresh or saline groundwater has formed. The outcomes show how the large groundwater salinity variation in southwestern Bangladesh can be understood, which is valuable for the water management in the region.
John P. Bloomfield, Benjamin P. Marchant, and Andrew A. McKenzie
Hydrol. Earth Syst. Sci., 23, 1393–1408, https://doi.org/10.5194/hess-23-1393-2019, https://doi.org/10.5194/hess-23-1393-2019, 2019
Short summary
Short summary
Groundwater is susceptible to drought due to natural variations in climate; however, to date there is no evidence of a relationship between climate change and groundwater drought. Using two long groundwater level records from the UK, we document increases in frequency, magnitude and intensity and changes in duration of groundwater drought associated with climate warming and infer that, given the extent of shallow groundwater globally, warming may widely effect changes to groundwater droughts.
Bin Ma, Menggui Jin, Xing Liang, and Jing Li
Hydrol. Earth Syst. Sci., 23, 427–446, https://doi.org/10.5194/hess-23-427-2019, https://doi.org/10.5194/hess-23-427-2019, 2019
Short summary
Short summary
Groundwater supplies the most freshwater for industrial and agricultural production and domestic use in the arid northwest of China. This research uses environmental tracers to enhance one's understanding of groundwater, including aquifer recharge sources and groundwater mean residence times in the alluvium aquifers. The results provide valuable implications for groundwater resources regulation and sustainable development and have practical significance for other arid areas.
Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 22, 1911–1916, https://doi.org/10.5194/hess-22-1911-2018, https://doi.org/10.5194/hess-22-1911-2018, 2018
Short summary
Short summary
This paper provides the connection between two simple equations describing groundwater flow at different scales: the Darcy equation describes groundwater flow at pore scale, the linear reservoir equation at catchment scale. The connection between the two appears to be very simple. The two parameters of the equations are proportional, depending on the porosity of the subsoil and the resistance for the groundwater to enter the surface drainage network.
Ming Wu, Jianfeng Wu, Jichun Wu, and Bill X. Hu
Hydrol. Earth Syst. Sci., 22, 1001–1015, https://doi.org/10.5194/hess-22-1001-2018, https://doi.org/10.5194/hess-22-1001-2018, 2018
Short summary
Short summary
Fractal models of regular triangle arrangement (RTA) and square pitch arrangement (SPA) are developed in this study. Results suggest RTA can cause more groundwater contamination and make remediation more difficult. In contrast, the cleanup of contaminants in aquifers with SPA is easier. This study demonstrates how microscale arrangements control contaminant migration and remediation, which is helpful in designing successful remediation schemes for subsurface contamination.
Rui Ma, Ziyong Sun, Yalu Hu, Qixin Chang, Shuo Wang, Wenle Xing, and Mengyan Ge
Hydrol. Earth Syst. Sci., 21, 4803–4823, https://doi.org/10.5194/hess-21-4803-2017, https://doi.org/10.5194/hess-21-4803-2017, 2017
Short summary
Short summary
The roles of groundwater flow in the hydrological cycle within the alpine area characterized by permafrost or seasonal frost are poorly known. We investigated the role of permafrost in controlling groundwater flow and hydrological connections between glaciers and river. The recharge, flow path and discharge of permafrost groundwater at the study site were explored. Two mechanisms were proposed to explain the significantly seasonal variation in interaction between groundwater and surface water.
Bing Zhang, Jing Zhang, and Takafumi Yoshida
Hydrol. Earth Syst. Sci., 21, 3417–3425, https://doi.org/10.5194/hess-21-3417-2017, https://doi.org/10.5194/hess-21-3417-2017, 2017
Short summary
Short summary
Since groundwater is the linkage between climate changes and fresh submarine groundwater discharge, the variations of and relationships among monthly groundwater table, rainfall, snowfall, and climate change events from 1985 to 2015 were analyzed by wavelet coherence to discuss the implications for climate changes. The results show the increase in precipitation and the groundwater table, indicating that fresh submarine groundwater discharge flux may increase under climate change.
Koen Gerardus Zuurbier and Pieter Jan Stuyfzand
Hydrol. Earth Syst. Sci., 21, 1173–1188, https://doi.org/10.5194/hess-21-1173-2017, https://doi.org/10.5194/hess-21-1173-2017, 2017
Short summary
Short summary
The subsurface is increasingly perforated for exploitation of water and energy. This has increased the risk of leakage between originally separated aquifers. It is shown how this leakage can have a very negative impact on the recovery of freshwater during aquifer storage and recovery (ASR) in brackish-saline aquifers. Deep interception of intruding brackish-saline water can mitigate the negative effects and buoyancy of freshwater to some extent, but not completely.
Ulrike Unterbruner, Sylke Hilberg, and Iris Schiffl
Hydrol. Earth Syst. Sci., 20, 2251–2266, https://doi.org/10.5194/hess-20-2251-2016, https://doi.org/10.5194/hess-20-2251-2016, 2016
Short summary
Short summary
Studies show that young people have difficulties with correctly understanding groundwater. We designed a multimedia learning program about groundwater and tested its learning efficacy with pupils and teacher-training students. A novelty is the theory-guided designing of the program on the basis of hydrogeology and science education. The pupils and students greatly benefited from working through the multimedia learning program.
Kosta Urumović and Kosta Urumović Sr.
Hydrol. Earth Syst. Sci., 20, 1669–1680, https://doi.org/10.5194/hess-20-1669-2016, https://doi.org/10.5194/hess-20-1669-2016, 2016
Short summary
Short summary
Calculation of hydraulic conductivity of porous materials is crucial for further use in hydrogeological modeling. The Kozeny–Carman model is theoretically impeccable but has not been properly used in recent scientific and expert literature. In this paper, proper use of the Kozeny-Carman formula is given through presentation of geometric mean grain size in the drilled-core sample as the referential mean grain size. Also, procedures for identification of real effective porosity of porous media are presented.
C.-S. Huang, J.-J. Chen, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 20, 55–71, https://doi.org/10.5194/hess-20-55-2016, https://doi.org/10.5194/hess-20-55-2016, 2016
Short summary
Short summary
Existing solutions for the problem of pumping at a radial collector well (RCW) in unconfined aquifers either require laborious calculation or predict divergent results at a middle period of pumping. This study relaxes the above two limitations to develop a new analytical solution for the problem. The application of the solution is convenient for those who are not familiar with numerical methods. New findings regarding the responses of flow to pumping at RCW are addressed.
R. A. Crane, M. O. Cuthbert, and W. Timms
Hydrol. Earth Syst. Sci., 19, 3991–4000, https://doi.org/10.5194/hess-19-3991-2015, https://doi.org/10.5194/hess-19-3991-2015, 2015
Short summary
Short summary
We present an interrupted-flow centrifugation technique to characterise the vertical hydraulic properties of dual porosity, low permeability media. Use of large core samples (100mm diameter) enables hydraulic-conductivity-scale issues in dual porosity media to be overcome. Elevated centrifugal force also enables simulating in situ total stress conditions. The methodology is an important tool to assess the ability of dual porosity aquitards to protect underlying aquifer systems.
B. L. Kurylyk, K. T. B. MacQuarrie, D. Caissie, and J. M. McKenzie
Hydrol. Earth Syst. Sci., 19, 2469–2489, https://doi.org/10.5194/hess-19-2469-2015, https://doi.org/10.5194/hess-19-2469-2015, 2015
Short summary
Short summary
Changes in climate and land cover are known to warm streams by altering surface heat fluxes. However, the influence of these disturbances on shallow groundwater temperature are not as well understood. In small streams, groundwater discharge may also exert a control on stream temperature, and thus groundwater warming may eventually produce additional stream warming not considered in most existing models. This study investigates these processes and suggests stream temperature model improvements.
S. Luoma, J. Okkonen, K. Korkka-Niemi, N. Hendriksson, and B. Backman
Hydrol. Earth Syst. Sci., 19, 1353–1370, https://doi.org/10.5194/hess-19-1353-2015, https://doi.org/10.5194/hess-19-1353-2015, 2015
N. P. Unland, I. Cartwright, D. I. Cendón, and R. Chisari
Hydrol. Earth Syst. Sci., 18, 5109–5124, https://doi.org/10.5194/hess-18-5109-2014, https://doi.org/10.5194/hess-18-5109-2014, 2014
Short summary
Short summary
Periodic flooding of rivers should result in increased groundwater recharge near rivers and thus - younger and fresher groundwater near rivers. This study found the age and salinity of shallow groundwater to increase with proximity to the Tambo River in South East Australia. This appears to be due to the upwelling of older, regional groundwater closer the river. Other chemical parameters are consistent with this. This is a process that may be occurring in other similar river systems.
A. P. Atkinson, I. Cartwright, B. S. Gilfedder, D. I. Cendón, N. P. Unland, and H. Hofmann
Hydrol. Earth Syst. Sci., 18, 4951–4964, https://doi.org/10.5194/hess-18-4951-2014, https://doi.org/10.5194/hess-18-4951-2014, 2014
Short summary
Short summary
This research article uses of radiogenic isotopes, stable isotopes and groundwater geochemistry to study groundwater age and recharge processes in the Gellibrand Valley, a relatively unstudied catchment and potential groundwater resource. The valley is found to contain both "old", regionally recharged groundwater (300-10,000 years) in the near-river environment, and modern groundwater (0-100 years old) further back on the floodplain. There is no recharge of the groundwater by high river flows.
U. Lauber, P. Kotyla, D. Morche, and N. Goldscheider
Hydrol. Earth Syst. Sci., 18, 4437–4452, https://doi.org/10.5194/hess-18-4437-2014, https://doi.org/10.5194/hess-18-4437-2014, 2014
M. Huebsch, O. Fenton, B. Horan, D. Hennessy, K. G. Richards, P. Jordan, N. Goldscheider, C. Butscher, and P. Blum
Hydrol. Earth Syst. Sci., 18, 4423–4435, https://doi.org/10.5194/hess-18-4423-2014, https://doi.org/10.5194/hess-18-4423-2014, 2014
S. Hergarten, G. Winkler, and S. Birk
Hydrol. Earth Syst. Sci., 18, 4277–4288, https://doi.org/10.5194/hess-18-4277-2014, https://doi.org/10.5194/hess-18-4277-2014, 2014
M. Attwa and T. Günther
Hydrol. Earth Syst. Sci., 17, 4079–4094, https://doi.org/10.5194/hess-17-4079-2013, https://doi.org/10.5194/hess-17-4079-2013, 2013
C. Schmidt, A. Musolff, N. Trauth, M. Vieweg, and J. H. Fleckenstein
Hydrol. Earth Syst. Sci., 16, 3689–3697, https://doi.org/10.5194/hess-16-3689-2012, https://doi.org/10.5194/hess-16-3689-2012, 2012
T. Gleeson, D. M. Allen, and G. Ferguson
Hydrol. Earth Syst. Sci., 16, 2159–2168, https://doi.org/10.5194/hess-16-2159-2012, https://doi.org/10.5194/hess-16-2159-2012, 2012
G. H. de Rooij
Hydrol. Earth Syst. Sci., 16, 649–669, https://doi.org/10.5194/hess-16-649-2012, https://doi.org/10.5194/hess-16-649-2012, 2012
B. Hubinger and S. Birk
Hydrol. Earth Syst. Sci., 15, 3715–3729, https://doi.org/10.5194/hess-15-3715-2011, https://doi.org/10.5194/hess-15-3715-2011, 2011
E. Joigneaux, P. Albéric, H. Pauwels, C. Pagé, L. Terray, and A. Bruand
Hydrol. Earth Syst. Sci., 15, 2459–2470, https://doi.org/10.5194/hess-15-2459-2011, https://doi.org/10.5194/hess-15-2459-2011, 2011
P.-R. Tsou, Z.-Y. Feng, H.-D. Yeh, and C.-S. Huang
Hydrol. Earth Syst. Sci., 14, 1477–1485, https://doi.org/10.5194/hess-14-1477-2010, https://doi.org/10.5194/hess-14-1477-2010, 2010
Y.-C. Chang, D.-S. Jeng, and H.-D. Yeh
Hydrol. Earth Syst. Sci., 14, 1341–1351, https://doi.org/10.5194/hess-14-1341-2010, https://doi.org/10.5194/hess-14-1341-2010, 2010
Cited articles
Acworth, R. I., Timms, W. A., Kelly, B. F., Mcgeeney, D. E., Ralph, T. J.,
Larkin, Z. T., and Rau, G. C.: Late Cenozoic paleovalley fill sequence from
the Southern Liverpool Plains, New South Wales – implications for groundwater resource evaluation, Aust. J. Earth Sci., 62, 657–680,
https://www.tandfonline.com/doi/abs/10.1080/08120099.2015.1086815, 2015. a, b, c
Acworth, R. I., Halloran, L. J. S., Rau, G. C., Cuthbert, M. O., and Bernardi, T. L.: An objective frequency domain method for quantifying confined aquifer compressible storage using Earth and atmospheric tides, Geophys. Res. Lett., 43, 611–671, https://doi.org/10.1002/2016GL071328, 2016.
a, b, c, d, e, f, g, h, i, j, k
Acworth, R. I., Rau, G. C., Halloran, L. J. S., and Timms, W. A.: Vertical
groundwater storage properties and changes in confinement determined using
hydraulic head response to atmospheric tides, Water Resour. Res., 53,
2983–2997, https://doi.org/10.1002/2016WR020311, 2017. a
Allègre, V., Brodsky, E. E., Xue, L., Nale, S. M., Parker, B. L., and
Cherry, J. A.: Using earth-tide induced water pressure changes to measure in
situ permeability: A comparison with long-term pumping tests, Water Resour. Res., 52, 3113–3126, https://doi.org/10.1002/2015WR017346, 2016. a, b, c, d, e, f
Attoh, K., Dallmeyer, R. D., and Affaton, P.: Chronology of nappe assembly in
the Pan-African Dahomeyide orogen, West Africa: evidence from 40Ar39Ar mineral ages, Precamb. Res., 82, 153–171,
https://doi.org/10.1016/S0301-9268(96)00031-9, 1997. a
Barr, A. G., van der Kamp, G., Schmidt, R., and Black, T. A.: Monitoring the
moisture balance of a boreal aspen forest using a deep groundwater piezometer, Agr. Forest Meteorol., 102, 13–24, 2000. a
Beavan, J., Evans, K., Mousa, S., and Simpson, D.: Estimating aquifer
parameters from analysis of forced fluctuations in well level: An example from the Nubian Formation near Aswan, Egypt: 2. Poroelastic properties, J. Geophys. Res.-Solid, 96, 12139–12160, https://doi.org/10.1029/91JB00956, 1991. a, b, c, d
Bertuzzi, R.: Sydney sandstone and shale parameters for tunnel design, Aust. Geomech. J., 49, 1–39, 2014. a
Bower, D. R.: Bedrock fracture parameters from the interpretation of well
tides, J. Geophys. Res.-Solid, 88, 5025–5035, https://doi.org/10.1029/JB088iB06p05025, 1983. a, b
Bowles, L. E.: Foundation analysis and design, McGraw-Hill,
ISBN 13 978-0071188449, 1996. a
Bredehoeft, J. D.: Response of well-aquifer systems to Earth tides, J. Geophys. Res., 72, 3075–3087, https://doi.org/10.1029/JZ072i012p03075, 1967. a, b, c, d
Burbey, T. J.: Fracture characterization using Earth tide analysis, J. Hydrol., 380, 237–246, https://doi.org/10.1016/j.jhydrol.2009.10.037, 2010. a, b
Burbey, T. J., Hisz, D., Murdoch, L. C., and Zhang, M.: Quantifying fractured
crystalline-rock properties using well tests, earth tides and barometric
effects, J. Hydrology, 414, 317–328, https://doi.org/10.1016/j.jhydrol.2011.11.013, 2012. a
Condon, K. J., Sone, H., Wang, H. F., Ajo-Franklin, J., Baumgartner, T.,
Beckers, K., Blankenship, D., Bonneville, A., Boyd, L., Brown, S., Burghardt,
J. A., Chai, C., Chen, Y., Chi, B., Condon, K., Cook, P. J., Crandall, D.,
Dobson, P. F., Doe, T., Doughty, C. A., Elsworth, D., Feldman, J., Feng, Z.,
Foris, A., Frash, L. P., Frone, Z., Fu, P., Gao, K., Ghassemi, A., Guglielmi,
Y., Haimson, B., Hawkins, A., Heise, J., Hopp, C., Horn, M., Horne, R. N.,
Horner, J., Hu, M., Huang, H., Huang, L., Im, K. J., Ingraham, M., Jafarov,
E., Jayne, R. S., Johnson, S. E., Johnson, T. C., Johnston, B., Kim, K.,
King, D. K., Kneafsey, T., Knox, H., Knox, J., Kumar, D., Lee, M., Li, K.,
Li, Z., Maceira, M., Mackey, P., Makedonska, N., Mattson, E., McClure, M. W.,
McLennan, J., Medler, C., Mellors, R. J., Metcalfe, E., Moore, J., Morency,
C. E., Morris, J. P., Myers, T., Nakagawa, S., Neupane, G., Newman, G.,
Nieto, A., Oldenburg, C. M., Paronish, T., Pawar, R., Petrov, P., Pietzyk, B., Podgorney, R., Polsky, Y., Pope, J., Porse, S., Primo, J. C., Reimers,
C., Roberts, B. Q., Robertson, M., Roggenthen, W., Rutqvist, J., Rynders, D.,
Schoenball, M., Schwering, P., Sesetty, V., Sherman, C. S., Singh, A., Smith,
M. M., Sone, H., Sonnenthal, E. L., Soom, F. A., Sprinkle, P., Strickland, C. E., Su, J., Templeton, D., Thomle, J. N., Tribaldos, V. R., Ulrich, C.,
Uzunlar, N., Vachaparampil, A., Valladao, C. A., Vandermeer, W., Vandine, G.,
Vardiman, D., Vermeul, V. R., Wagoner, J. L., Wang, H. F., Weers, J., Welch,
N., White, J., White, M. D., Winterfeld, P., Wood, T., Workman, S., Wu, H.,
Wu, Y. S., Yildirim, E. C., Zhang, Y., Zhang, Y. Q., Zhou, Q., Zoback, M. D.,
and CollabTeam, E. G. S.: Low Static Shear Modulus Along Foliation and Its
Influence on the Elastic and Strength Anisotropy of Poorman Schist Rocks,
Homestake Mine, South Dakota, Rock Mech. Rock Eng., 53, 5257–5281, https://doi.org/10.1007/s00603-020-02182-4, 2020. a
Cundall, P. A., Pierce, M. E., and Mas Ivars, D.: Quantifying the Size Effect
of Rock Mass Strength, in: SHIRMS 2008: Proceedings of the First Southern Hemisphere International Rock Mechanics Symposium, Australian Centre for Geomechanics, Perth, 3–15, https://doi.org/0.36487/ACG_repo/808_31, 2008. a, b, c
Dehant, V. and Zschau, J.: The Effect of Mantle Inelasticity On Tidal Gravity: A Comparison Between the Spherical and the Elliptical Earth Model,
Geophys. J. Int., 97, 549–555, https://doi.org/10.1111/j.1365-246X.1989.tb00522.x, 1989. a
Foppen, J. W., Lutterodt, G., Rau, G. C., and Minkah, O.: Groundwater flow
system analysis in the regolith of Dodowa on the Accra Plains, Ghana, J. Hydrol.: Reg. Stud., 28, 100663, https://doi.org/10.1016/j.ejrh.2020.100663, 2020. a, b, c, d
Fuentes-Arreazola, M., Ramírez-Hernández, J., and Vázquez-González, R.: Hydrogeological Properties Estimation from
Groundwater Level Natural Fluctuations Analysis as a Low-Cost Tool for the
Mexicali Valley Aquifer, Water, 10, 586, https://doi.org/10.3390/w10050586, 2018. a, b
Gao, X., Sato, K., and Horne, R. N.: General Solution for Tidal Behavior in
Confined and Semiconfined Aquifers Considering Skin and Wellbore Storage
Effects, Water Resour. Res., 56, e2020WR027195, https://doi.org/10.1029/2020WR027195, 2020. a
Gercek, H.: Poisson's ratio values for rocks, Int. J. Rock Mech. Min. Sci., 44, 1–13, https://doi.org/10.1016/j.ijrmms.2006.04.011, 2007. a, b
Gonthier, G.: A Graphical Method for Estimation of Barometric Efficiency from
Continuous Data – Concepts and Application to a Site in the Piedmont, Air
Force Plant 6, Marietta, Georgia, Tech. rep., US Geological Survey,
https://doi.org/10.3133/sir20075111, 2003. a, b
Green, D. H. and Wang, H. F.: Specific storage as a poroelastic coefficient,
Water Resour. Res., 26, 1631–1637, https://doi.org/10.1029/WR026i007p01631, 1990. a
Handin, J., Hager Jr., R. V., Friedman, M., and Feather, J. N.: Experimental
deformation of sedimentary rocks under confining pressure: pore pressure
tests, AAPG Bull., 47, 717–755, 1963. a
Hanson, J. M. and Owen, L. B.: Fracture orientation analysis by the solid
earth tidal strain method, in: vol. 1982, Proceedings – SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, New Orleans, Louisiana, p. 18, https://doi.org/10.2118/11070-MS, 1982. a
Hoek, E. and Diederichs, M. S.: Empirical estimation of rock mass modulus,
Int. J. Rock Mech. Min. Sci., 43, 203–215, https://doi.org/10.1016/j.ijrmms.2005.06.005, 2006. a, b
Homand-Etienne, F. and Houpert, R.: Thermally induced microcracking in granites: characterization and analysis, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 26, 125–134, https://doi.org/10.1016/0148-9062(89)90001-6, 1989. a
Hsieh, P. A., Bredehoeft, J. D., and Rojstaczer, S. A.: Response of well
aquifer systems to Earth tides: Problem revisited, Water Resour. Res., 24, 468–472, https://doi.org/10.1029/WR024i003p00468, 1988. a, b
Impax: Permeability testing in borehole Thirlmere 2, Tech. rep., Sigra Job Reference Number 489, Sigra Pty Ltd., 2019. a
Jentzsch, G.: Earth tides and ocean tidal loading, Springer, Berlin, Heidelberg, 145–171, https://doi.org/10.1007/BFb0011461, 1997. a
Johnson, P. A. and Rasolofosaon, P. N. J.: Nonlinear elasticity and
stress-induced anisotropy in rock, J. Geophys. Res.-Solid, 101, 3113–3124, https://doi.org/10.1029/95JB02880, 1996. a, b
Khan, A. S., Xiang, Y., and Huang, S.: Behavior of Berea sandstone under
confining pressure part I: Yield and failure surfaces, and nonlinear elastic
response, Int. J. Plasticity, 7, 607–624, https://doi.org/10.1016/0749-6419(91)90046-2, 1991. a
Kümpel, H.-J.: Tides in water saturated rock BT – Tidal Phenomena,
Springer, Berlin, Heidelberg, 277–291, https://doi.org/10.1007/BFb0011467, 1997. a
Lakes, R.: Deformation mechanisms in negative Poisson's ratio materials:
structural aspects, J. Mater. Sci., 26, 2287–2292, https://doi.org/10.1007/BF01130170, 1991. a, b
Lakes, R. S. and Witt, R.: Making and characterizing negative Poisson's ratio
materials, Int. J. Mech. Eng. Educ., 30, –58, 2002. a
Leriche, A.: Stress estimation from borehole scans for prediction of excavation overbreak in brittle rock, PhD thesis, Queen's University, Kingston, Ontario, Canada, http://hdl.handle.net/1974/22825 (last access: 22 August 2022), 2017. a
Masoumi, H., Douglas, K. J., and Russell, A. R.: A Bounding Surface Plasticity Model for Intact Rock Exhibiting Size-Dependent Behaviour, Rock Mech. Rock Eng., 49, 47–62, https://doi.org/10.1007/s00603-015-0744-8, 2016.
a
Matviichuk, B., King, M. A., Watson, C. S., and Bos, M. S.: Limitations in
One-Dimensional (an)Elastic Earth Models for Explaining GPS-Observed
M2 Ocean Tide Loading Displacements in New Zealand, J. Geophys. Res.-Solid, 126, e2021JB021992, https://doi.org/10.1029/2021jb021992, 2021. a
Merritt, M. L.: Estimating hydraulic properties of the Floridan Aquifer System by analysis of earth-tide, ocean-tide, and barometric effects, Collier and Hendry Counties, Florida, Tech. rep., USGS, https://doi.org/10.3133/wri034267, 2004. a
Miall, A. D. and Jones, B. G.: Fluvial architecture of the Hawkesbury
sandstone (Triassic), near Sydney, Australia, J. Sediment. Res., 4, 531–545, 2003. a
Narasimhan, T. N., Kanehiro, B. Y., and Witherspoon, P. A.: Interpretation of
Earth tide response of three deep, confined aquifers, J. Geophys. Res.-Solid, 89, 1913–1924, https://doi.org/10.1029/JB089iB03p01913, 1984. a
Parent, T., Domede, N., Sellier, A., and Mouatt, L.: Mechanical
characterization of limestone from sound velocity measurement, Int. J. Rock Mech. Min. Sci., 79, 149–156, https://doi.org/10.1016/j.ijrmms.2015.08.009, 2015. a
Penna, N. T., Bos, M. S., Baker, T. F., and Scherneck, H. G.: Assessing the
accuracy of predicted ocean tide loading displacement values, J. Geod., 82, 893–907, https://doi.org/10.1007/s00190-008-0220-2, 2008. a
Pimienta, L., Fortin, J., and Guéguen, Y.: Effect of fluids and
frequencies on Poisson’s ratio of sandstone samples, Geophysics, 81, D183–D195, https://doi.org/10.1190/geo2015-0310.1, 2016. a, b
Rasmussen, T. C. and Crawford, L. A.: Identifying and Removing Barometric
Pressure Effects in Confined and Unconfined Aquifers, Ground Water, 35,
502–511, https://doi.org/10.1111/j.1745-6584.1997.tb00111.x, 1997. a
Rau, G. C.: PyGTide: A Python module and wrapper for ETERNA PREDICT to compute synthetic model tides on Earth, Zenodo [code], https://doi.org/10.5281/zenodo.1346260, 2018. a
Rau, G. C., Acworth, R. I., Halloran, L. J. S., Timms, W. A., and Cuthbert, M. O.: Quantifying Compressible Groundwater Storage by Combining Cross-Hole
Seismic Surveys and Head Response to Atmospheric Tides, J. Geophys. Res.-Earth, 123, 1910–1930, https://doi.org/10.1029/2018JF004660, 2018. a, b, c, d, e, f, g, h, i, j
Rau, G. C., Post, V. E. A., Shanafield, M., Krekeler, T., Banks, E. W., and
Blum, P.: Error in hydraulic head and gradient time-series measurements: a
quantitative appraisal, Hydrol. Earth Syst. Sci., 23, 3603–3629,
https://doi.org/10.5194/hess-23-3603-2019, 2019. a, b
Rau, G. C., Cuthbert, M. O., Acworth, R. I., and Blum, P.: Technical note:
Disentangling the groundwater response to Earth and atmospheric tides to
improve subsurface characterisation, Hydrol. Earth Syst. Sci., 24, 6033–6046, https://doi.org/10.5194/hess-24-6033-2020, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m
Rau, G., McMillan, T., Andersen, M. S., and Timms, W. A.: Dataset: In-situ estimation of subsurface hydro-geomechanical properties using the groundwater response to semi-diurnal Earth and atmospheric tides, figshare [data set], https://doi.org/10.6084/M9.FIGSHARE.20353209.V1, 2022. a
Richardson, N. D., Williams, K. L., Briggs, K. B., and Thorsos, E. I.: Dynamic measurement of sediment grain compressibility at atmospheric pressure: acoustic applications, IEEE J. Ocean. Eng., 27, 593–601,
https://doi.org/10.1109/JOE.2002.1040941, 2002. a
Ritzi, R. W., Sorooshian, S., and Hsieh, P. A.: The estimation of fluid flow
properties from the response of water levels in wells to the combined
atmospheric and Earth tide forces, Water Resour. Res., 27, 883–893,
https://doi.org/10.1029/91WR00070, 1991. a
Roeloffs, E.: Poroelastic Techniques in the Study of Earthquake-Related
Hydrologic Phenomena, Adv. Geophys., 38, 135–195, https://doi.org/10.1016/S0065-2687(08)60270-8, 1996. a, b
Roeloffs, E. A., Burford, S. S., Riley, F. S., and Records, A. W.: Hydrologic
effects on water level changes associated with episodic fault creep near
Parkfield, California, J. Geophys. Res., 94, 12387, https://doi.org/10.1029/jb094ib09p12387, 1989. a
Rojstaczer, S.: Determination of fluid flow properties from the response of
water levels in wells to atmospheric loading, Water Resour. Res., 24,
1927–1938, https://doi.org/10.1029/WR024i011p01927, 1988. a
Rojstaczer, S. and Riley, F. S.: Response of the water level in a well to
Earth tides and atmospheric loading under unconfined conditions, Water Resour. Res., 26, 1803–1817, https://doi.org/10.1029/WR026i008p01803, 1990. a
Ross, J. B.: Groundwater resource potential of the Triassic Sandstones of the
Southern Sydney Basin: an improved understanding, Aust. J. Earth Sci., 61, 463–474, https://doi.org/10.1080/08120099.2014.910548, 2014. a, b
Russell, G.: Thirlmere Lakes drilling report, Tech. rep., NSW Office of
Water, Sydney, https://www.industry.nsw.gov.au/__data/assets/pdf_file/0004/153436/thirlmere_lakes_drilling_report.pdf
(last access: 22 August 2022), 2012. a
SCA: Metropolitan Water Plan. Priority Groundwater Investigations for
Emergency Drought Relief, Area 2: Upper Nepean Catchment, Tech. rep. 05-GL31A/2, 2005. a
SCA: Upper Nepean Groundwater Pilot Studies – Pumping Test Interpretation
and Data Logger Installation, Tech. rep., Project 5078 RP01, 2006. a
Schulze, K. C., Kümpel, H.-J., and Huenges, E.: In-Situ Petrohydraulic
Parameters from Tidal and Barometric Analysis of Fluid Level Variations in
Deep Wells: Some Results From KTB BT – Hydrogeology of Crystalline Rocks,
Springer Netherlands, Dordrecht, 79–104, https://doi.org/10.1007/978-94-017-1816-5_4, 2000. a, b, c
Shi, Z. and Wang, G.: Aquifers switched from confined to semiconfined by
earthquakes, Geophys. Res. Lett., 43, 111–166, https://doi.org/10.1002/2016GL070937, 2016.
a, b
Timms, W. A. and Acworth, R. I.: Propagation of pressure change through thick
clay sequences: an example from Liverpool Plains, NSW, Australia, Hydrogeol. J., 13, 858–870, https://doi.org/10.1007/s10040-005-0436-7, 2005. a
Timms, W. A., Acworth, R. I., Crane, R. A., Arns, C. H., Arns, J., McGeeney,
D. E., Rau, G. C., and Cuthbert, M. O.: The influence of syndepositional
macropores on the hydraulic integrity of thick alluvial clay aquitards, Water Resour. Res., 54, 3122–3138, 2018. a
Turnadge, C., Crosbie, R. S., Barron, O., and Rau, G. C.: Comparing Methods of Barometric Efficiency Characterization for Specific Storage Estimation,
Groundwater, 57, 844–859, https://doi.org/10.1111/gwat.12923, 2019. a
Tutuncu, A. N., Podio, A. L., Gregory, A. R., and Sharma, M. M.: Nonlinear
viscoelastic behavior of sedimentary rocks, Part I: Effect of frequency and
strain amplitude, Geophysics, 63, 184–194, https://doi.org/10.1190/1.1444311, 1998. a, b, c
Van Camp, M. and Vauterin, P.: Tsoft: graphical and interactive software for
the analysis of time series and Earth tides, Comput. Geosci., 31, 631–640, https://doi.org/10.1016/j.cageo.2004.11.015, 2005. a
van der Kamp, G. and Gale, J. E.: Theory of earth tide and barometric effects
in porous formations with compressible grains, Water Resour. Res., 19,
538–544, https://doi.org/10.1029/WR019i002p00538, 1983. a, b, c
Villeneuve, M. C., Heap, M. J., Kushnir, A. R. L., Qin, T., Baud, P., Zhou, G., and Xu, T.: Estimating in situ rock mass strength and elastic modulus of
granite from the Soultz-sous-Forêts geothermal reservoir (France), Geoth. Energy, 6, 11, https://doi.org/10.1186/s40517-018-0096-1, 2018. a
Wahr, J. M.: Body tides on an elliptical, rotating, elastic and oceanless
earth, Geophys. J. Roy. Astron. Soc., 64, 677–703, https://doi.org/10.1111/j.1365-246X.1981.tb02690.x, 1981. a
Wang, H. F.: Quasi-static poroelastic parameters in rock and their geophysical applications, Pure Appl. Geophys., 141, 269–286,
https://doi.org/10.1007/BF00998332, 1993. a
Wang, K. and Davis, E. E.: Theory for the propagation of tidally induced pore
pressure variations in layered subseafloor formations, J. Geophys. Res.-Solid, 101, 11483–11495, 1996. a
Wenzel, H.-G.: Accuracy assessment for tidal potential catalogues, Bulletin
d'Informations des Marées Terrestres, 124, 9394–9416, 1996. a
Zaitsev, V. Y., Radostin, A. V., Pasternak, E., and Dyskin, A.: Extracting
real-crack properties from non-linear elastic behaviour of rocks: abundance
of cracks with dominating normal compliance and rocks with negative Poisson
ratios, Nonlin. Processes Geophys., 24, 543–551,
https://doi.org/10.5194/npg-24-543-2017, 2017. a, b, c
Zhang, C. and Lu, N.: What Is the Range of Soil Water Density? Critical Reviews With a Unified Model, Rev. Geophys., 56, 532–562, https://doi.org/10.1029/2018RG000597, 2018.
a
Zhang, C., Mitra, R., Oh, J., and Hebblewhite, B.: Analysis of Mining-induced
Valley Closure Movements, Rock Mech. Rock Eng., 49, 1923–1941, https://doi.org/10.1007/s00603-015-0880-1, 2016. a
Zhang, S., Shi, Z., and Wang, G.: Comparison of aquifer parameters inferred
from water level changes induced by slug test, earth tide and earthquake –
A case study in the three Gorges area, J. Hydrol., 579, 124169,
https://doi.org/10.1016/j.jhydrol.2019.124169, 2019.
a, b, c, d
Zhao, Z., Xu, H., Wang, J., Zhao, X., Cai, M., and Yang, Q.: Auxetic behavior
of Beishan granite after thermal treatment: A microcracking perspective, Eng. Fract. Mech., 231, 107017, https://doi.org/10.1016/j.engfracmech.2020.107017, 2020. a
Short summary
This work develops and applies a new method to estimate hydraulic and geomechanical subsurface properties in situ using standard groundwater and atmospheric pressure records. The estimated properties comply with expected values except for the Poisson ratio, which we attribute to the investigated scale and conditions. Our new approach can be used to cost-effectively investigate the subsurface using standard monitoring datasets.
This work develops and applies a new method to estimate hydraulic and geomechanical subsurface...