Articles | Volume 26, issue 14
https://doi.org/10.5194/hess-26-3825-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-3825-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Historical droughts manifest an abrupt shift to a wetter Tibetan Plateau
Yongwei Liu
Key Laboratory of Watershed Geography Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
Key Laboratory of Watershed Geography Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
Wen Wang
State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
Han Zhou
School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China
Lide Tian
Institute of International Rivers and Eco-security Research, Yunnan University, Kunming, China
Related authors
No articles found.
Zhongyin Cai, Rong Li, Cheng Wang, Qiukai Mao, and Lide Tian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3801, https://doi.org/10.5194/egusphere-2024-3801, 2025
Short summary
Short summary
Local and upstream specific humidity is the main factor determining non-monsoon season d-excess variability over southeast Tibetan Plateau (TP) due to the intrusion of cold and dry air from upper levels. During the summer monsoon season, d-excess and δ18O mainly reflect the effect of raindrop evaporation on humidity which leads to lower vapor δ18O but higher d-excess values. These findings provide new insights into using water isotopes to track moisture sources and dynamics over the TP.
Suyi Liu, Xin Pan, Jie Yuan, Kevin Tansey, Zi Yang, Zhanchuan Wang, Xu Ding, Yuanbo Liu, and Yingbao Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-495, https://doi.org/10.5194/essd-2024-495, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This study proposed the Remote Sensed Non-Parametric (RSNP) model to estimate global monthly evapotranspiration (ET) from 2001 to 2019 at a spatial resolution of 0.1°, without resistance parameterization. Evaluated with global FLUXNET sites and present global ET datasets, it shows high accuracy, particularly in forested regions, and captures spatial patterns of ET. Our dataset provides a global continuous and seamless ET, which is beneficial for global research and future water balance studies.
Di Wang, Camille Risi, Lide Tian, Di Yang, Gabriel Bowen, Siteng Fan, Yang Su, Hongxi Pang, and Laurent Li
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-151, https://doi.org/10.5194/amt-2024-151, 2024
Preprint under review for AMT
Short summary
Short summary
We developed and validated a theoretical model for water vapor diffusion through sampling bags. This model accurately reconstructs the initial isotopic composition of the vapor samples. When applied to upper troposphere samples, the corrected data aligned closely with IASI satellite observations, enhancing the accuracy of drone-based measurements.
Yu Zhu, Shiyin Liu, Ben W. Brock, Lide Tian, Ying Yi, Fuming Xie, Donghui Shangguan, and Yiyuan Shen
Hydrol. Earth Syst. Sci., 28, 2023–2045, https://doi.org/10.5194/hess-28-2023-2024, https://doi.org/10.5194/hess-28-2023-2024, 2024
Short summary
Short summary
This modeling-based study focused on Batura Glacier from 2000 to 2020, revealing that debris alters its energy budget, affecting mass balance. We propose that the presence of debris on the glacier surface effectively reduces the amount of latent heat available for ablation, which creates a favorable condition for Batura Glacier's relatively low negative mass balance. Batura Glacier shows a trend toward a less negative mass balance due to reduced ablation.
Di Wang, Lide Tian, Camille Risi, Xuejie Wang, Jiangpeng Cui, Gabriel J. Bowen, Kei Yoshimura, Zhongwang Wei, and Laurent Z. X. Li
Atmos. Chem. Phys., 23, 3409–3433, https://doi.org/10.5194/acp-23-3409-2023, https://doi.org/10.5194/acp-23-3409-2023, 2023
Short summary
Short summary
To better understand the spatial and temporal distribution of vapor isotopes, we present two vehicle-based spatially continuous snapshots of the near-surface vapor isotopes in China during the pre-monsoon and monsoon periods. These observations are explained well by different moisture sources and processes along the air mass trajectories. Our results suggest that proxy records need to be interpreted in the context of regional systems and sources of moisture.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 4147–4167, https://doi.org/10.5194/hess-26-4147-2022, https://doi.org/10.5194/hess-26-4147-2022, 2022
Short summary
Short summary
Tracer-aided hydrological models are useful tool to reduce uncertainty of hydrological modeling in cold basins, but there is little guidance on the sampling strategy for isotope analysis, which is important for large mountainous basins. This study evaluated the reliance of the tracer-aided modeling performance on the availability of isotope data in the Yarlung Tsangpo river basin, and provides implications for collecting water isotope data for running tracer-aided hydrological models.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 25, 6151–6172, https://doi.org/10.5194/hess-25-6151-2021, https://doi.org/10.5194/hess-25-6151-2021, 2021
Short summary
Short summary
Hydrological modeling has large problems of uncertainty in cold regions. Tracer-aided hydrological models are increasingly used to reduce uncertainty and refine the parameterizations of hydrological processes, with limited application in large basins due to the unavailability of spatially distributed precipitation isotopes. This study explored the utility of isotopic general circulation models in driving a tracer-aided hydrological model in a large basin on the Tibetan Plateau.
Yi Nan, Lide Tian, Zhihua He, Fuqiang Tian, and Lili Shao
Hydrol. Earth Syst. Sci., 25, 3653–3673, https://doi.org/10.5194/hess-25-3653-2021, https://doi.org/10.5194/hess-25-3653-2021, 2021
Short summary
Short summary
This study integrated a water isotope module into the hydrological model THREW. The isotope-aided model was subsequently applied for process understanding in the glacierized watershed of Karuxung river on the Tibetan Plateau. The model was used to quantify the contribution of runoff component and estimate the water travel time in the catchment. Model uncertainties were significantly constrained by using additional isotopic data, improving the process understanding in the catchment.
Yanbin Lei, Tandong Yao, Lide Tian, Yongwei Sheng, Lazhu, Jingjuan Liao, Huabiao Zhao, Wei Yang, Kun Yang, Etienne Berthier, Fanny Brun, Yang Gao, Meilin Zhu, and Guangjian Wu
The Cryosphere, 15, 199–214, https://doi.org/10.5194/tc-15-199-2021, https://doi.org/10.5194/tc-15-199-2021, 2021
Short summary
Short summary
Two glaciers in the Aru range, western Tibetan Plateau (TP), collapsed suddenly on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The impact of the glacier collapses on the two downstream lakes (i.e., Aru Co and Memar Co) is investigated in terms of lake morphology, water level and water temperature. Our results provide a baseline in understanding the future lake response to glacier melting on the TP under a warming climate.
Ying Yao, Wei Cui, Wen Wang, Fu-Min Ma, and Ben-Yue Chen
Proc. IAHS, 383, 341–346, https://doi.org/10.5194/piahs-383-341-2020, https://doi.org/10.5194/piahs-383-341-2020, 2020
Short summary
Short summary
The Minjiang River is the largest river in Fujian Province. In 1993, the Shuikou Reservoir, which has an effective storage capacity of 700 million m3, was built at about 161 km above the estuary. The completion of the Shuikou Dam trapped most of the upstream sediment in the reservoir area, resulting in a drastic decrease in sediment in the lower reaches of the Minjiang River.
Cited articles
Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., and Lettenmaier, D. P.:
Twentieth-century drought in the conterminous United States, J. Hydrometeorol., 6, 985–1001, https://doi.org/10.1175/Jhm450.1, 2005.
Beaudoing, H., Rodell, M., and NASA/GSFC/HSL: GLDAS Noah Land Surface Model L4 monthly 0.25 × 0.25 degree V2.0, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/9SQ1B3ZXP2C5, 2019.
Bi, H., Ma, J., Zheng, W., and Zeng, J.:
Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau, J. Geophys. Res.-Atmos., 121, 2658–2678, https://doi.org/10.1002/2015JD024131, 2016.
Chen, H., Zhu, Q., Peng, C., Wu, N., Wang, Y., Fang, X., Gao, Y., Zhu, D., Yang, G., Tian, J., Kang, X., Piao, S., Ouyang, H., Xiang, W., Luo, Z., Jiang, H., Song, X., Zhang, Y., Yu, G., Zhao, X., Gong, P., Yao, T., and Wu, J. H.:
The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau, Glob. Change Biol., 19, 2940–2955, https://doi.org/10.1111/gcb.12277, 2013.
Chen, Y., Yang, K., Qin, J., Zhao, L., Tang, W., and Han, M.:
Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau, J. Geophys. Res.-Atmos, 118, 4466–4475, https://doi.org/10.1002/jgrd.50301, 2013.
Cheng, G. and Wu, T.:
Responses of permafrost to climate change and their environmental significance, Qinghai–Tibet Plateau. J. Geophys. Res., 112, F02S03, https://doi.org/10.1029/2006JF000631, 2007.
Chinese Meteorological Administration (CMA): China land-surface meteorological daily dataset, CMA [data set], http://data.cma.cn/, last access: 10 May 2020.
Cuo, L., Zhang, Y., Zhu, F., and Liang, L.:
Characteristics and changes of streamflow on the Tibetan Plateau: A review, J. Hydrol. Reg. Stud., 2, 49–68, https://doi.org/10.1016/j.ejrh.2014.08.004, 2014.
Diro, G. T. and Sushama, L.:
The role of soil moisture-atmosphere interaction on future hot-spells over North America as simulated by the Canadian Regional Climate Model (CRCM5), J. Climate, 30, 5041–5058, https://doi.org/10.1175/JCLI-D-16-0068.1, 2017.
Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T.: The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698, https://doi.org/10.5194/hess-15-1675-2011, 2011 (data available at: https://ismn.geo.tuwien.ac.at/en/, last acces: 20 May 2022).
Duan, A. and Xiao, Z.:
Does the climate warming hiatus exist over the Tibetan Plateau?, Sci. Rep., 5, 13711, https://doi.org/10.1038/srep13711, 2015.
European Center for Medium-Range Weather Forecast (ECMWF): ERA5-Land monthly averaged data from 1950 to present, ECMWF [data set], https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means, last acces: 26 June 2022.
Fu, Q. and Feng, S.:
Responses of terrestrial aridity to global warming, J. Geophys. Res.-Atmos., 119, 7863–75, https://doi.org/10.1002/2014JD021608, 2014.
Gao, G., Chen, D. Xu, C. Y., and Simelton, E.:
Trend of estimated actual evapotranspiration over China during 1960–2002, J. Geophys. Res.-Atmos., 112, D11120, https://doi.org/10.1029/2006JD008010, 2007.
Gao, Y., Cuo, L., and Zhang, Y.:
Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms, J. Clim., 27, 1876–1893, https://doi.org/10.1175/Jcli-D-13-00321.1, 2014.
Guttman, N. B.:
Accepting the standardized precipitation index: A calculation algorithm, J. Am. Water Resour. As., 35, 311–322, https://doi.org/10.1111/j.1752-1688.1999.tb03592.x,1999.
Han, C., Ma, Y., Wang, B., Zhong, L., Ma, W., Chen, X., and Su, Z.:
Monthly mean evapotranspiration data set of the Tibet Plateau (2001–2018), National Tibetan Plateau Data Center, https://doi.org/10.11888/Hydro.tpdc.270995, CSTR: 18406.11.Hydro.tpdc.270995, 2020.
Han, C., Ma, Y., Wang, B., Zhong, L., Ma, W., Chen, X., and Su, Z.:
Long-term variations in actual evapotranspiration over the Tibetan Plateau, Earth Syst. Sci. Data, 13, 3513–3524, https://doi.org/10.5194/essd-13-3513-2021, 2021.
He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., and Li, X.:
The first high-resolution meteorological forcing dataset for land process studies over China, Scientific Data, 7, 1–11, https://doi.org/10.1038/s41597-020-0369-y,2020.
Herrera-Estrada, J. E., Satoh, Y., and Sheffield, J.:
SpatioTemporal dynamics of global drought, Geophys. Res. Lett., 44, 2254–2263, https://doi.org/10.1002/2016GL071768, 2017.
Koster, R. D., Mahanama, S. P. P., Yamada, T. J., Balsamo, G., Berg, A. A., Boisserie, M., Dirmeyer, P. A., Doblas-Reyes, F. J., Drewitt, G., Gordon, C. T., Guo, Z., Jeong, J. H., Lee, W. S., Li, Z., Luo, L., Malyshev, S., Merryfield, W. J., Seneviratne, S. I., Stanelle, T., van den Hurk, B. J. J. M., Vitart, F., and Wood, E. F.:
The Second Phase of the Global Land-Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill, J. Hydrometeorol., 12, 805–822, https://doi.org/10.1175/2011jhm1365.1, 2011.
Koster, R. D., Chang, Y., Wang, H., and Schubert, S. D.:
Impacts of Local Soil Moisture Anomalies on the Atmospheric Circulation and on Remote Surface Meteorological Fields during Boreal Summer: A Comprehensive Analysis over North America, J. Climate, 29, 7345–7364, https://doi.org/10.1175/jcli-d-16-0192.1, 2016.
Kuang, X. and Jiao, J. J.:
Review on climate change on the Tibetan Plateau during the last half century, J. Geophys. Res.-Atmos., 121, 3979–4007, https://doi.org/10.1002/2015jd024728, 2016.
Lansu, E. M., van Heerwaarden, C. C., Stegehuis, A. I., and Teuling, A. J.:
Atmospheric Aridity and Apparent Soil Moisture Drought in European Forest During Heat Waves, Geophys. Res. Lett., 47, e2020GL087091, https://doi.org/10.1029/2020GL087091, 2020.
Li, H., Dai, A., Zhou, T., and Lu, J.:
Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000, Clim. Dyn., 34, 501–514, https://doi.org/10.1007/s00382-008-0482-7, 2010.
Li, J. and Zeng, Q.:
A unified monsoon index, Geophys Res. Lett., 29, 1274, https://doi.org/10.1029/2001GL013874, 2002 (data availavble at: http://ljp.gcess.cn/dct/page/65540, last acces: 23 March 2021).
Li, Y., Su, F., Chen, D., and Tang, Q.: Atmospheric water transport to the endorheic Tibetan Plateau and its effect on the hydrological status in the region, J. Geophys. Res.-Atmos, 124, 12864–12881, https://doi.org/10.1029/2019JD031297, 2019.
Liu, X. and Chen, B.:
Climatic warming in the Tibetan Plateau during recent decades, Int. J. Climatol., 20, 1729–1742, https://doi.org/10.1002/1097-0088[20001130]20:14<1729::AID-JOC556>3.0.CO;2-Y, 2000.
Liu, Y., Liu, Y., and Wang, W.:
Inter-comparison of satellite-retrieved and Global Land Data Assimilation System-simulated soil moisture datasets for global drought analysis, Remote Sens. Environ., 220, 1–18, https://doi.org/10.1016/j.rse.2018.10.026, 2019a.
Liu, Y., Zhu, Y., Ren, L., Singh, V. P., Yong, B., Jiang, S., and Yang, X.:
Understanding the SpatioTemporal Links Between Meteorological and Hydrological Droughts From a Three-Dimensional Perspective. J. Geophys. Res.-Atmos., 124, 3090–3109, https://doi.org/10.1029/2018JD028947, 2019b.
Liu, Y., Liu, Y., Wang, W., and Zhou, H.:
Propagation of soil moisture droughts in a hotspot region: Spatial patternand Temporal trajectory, J. Hydrol., 593, 125906, https://doi.org/10.1016/j.jhydrol.2020.125906, 2021.
Lloyd-Hughes, B.:
A spatio-Temporal structure-based approach to drought characterisation: a structure-based approach to drought characterization, Int. J. Climatol., 32, 406–418, https://doi.org/10.1002/joc.2280, 2012.
Ma, N. and Zhang, Y.:
Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation, Agr. Forest Meteorol., 317, 108887, https://doi.org/10.1016/j.agrformet.2022.108887,2022.
Muñoz-Sabater, J., Dutra, E., Balsamo, G., Schepers, D., Albergel, C., Boussetta, S., Agusti-Panareda, A., Zsoter, E., and Hersbach, H.:
ERA5-Land: An Improved Version of the ERA5 Reanalysis Land Component, Joint ISWG and LSA-SAF Workshop IPMA, Lisbon, 26–28 June, 26–28, 2018.
National Oceanic and Atmosphere Administration National Centers for Environmental Information (NOAA NCEI): Pacific Decadal Oscillation (PDO), NOAA NCEI [data set], https://www.ncdc.noaa.gov/teleconnections/pdo/, last acces: 10 June 2020.
National Oceanic and Atmosphere Administration Physical Sciences Laboratory (NOAA PSL): Monthly or seasonal time series of climate variables, NOAA PSL [data set], http://www.psl.noaa.gov/data/, last acces: 20 June 2020.
Pettitt, A.:
A nonparametric approach to the change-point problem, Appl. Stat., 28, 126–135, 1979.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.:
Investigating soil moisture–climate interactions in a changing climate: A review, Earth Sci. Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Sheffield, J., Goteti, G., and Wood, E. F.:
Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1, 2006.
Su, Z., Wen, J., Dente, L., van der Velde, R., Wang, L., Ma, Y., Yang, K., and Hu, Z.:
The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products, Hydrol. Earth Syst. Sci., 15, 2303–2316, https://doi.org/10.5194/hess-15-2303-2011, 2011.
Su, Z., Timmermans, W., Zeng, Y., Schulz, J., John, V. O., Roebeling, R. A., Poli, P., Tan, D., Kaspar, F., Kaiser-Weiss, A. K., Swinnen, E., Tote, C., Gregow, H., Manninen, T., Riihela, A., Calvet, J. C., Ma, Y., and Wen, J.:
AN OVERVIEW OF EUROPEAN EFFORTS IN GENERATING CLIMATE DATA RECORDS, B. Am. Meteorol. Soc., 99, 349–359, https://doi.org/10.1175/BAMS-D-16-0074.1, 2018.
Su, Z., Ma, Y., Chen, X., Dong, X., Du, J., Han, C., He, Y., Hofste, J. G., Li, M., Li, M., Lv, S., Ma, W., Polo, M. J., Peng, J., Qian, H., Sobrino, J., Van der Velde, R., Wen, J., Wang, B., Wang, X., Yu, L., Zhang, P., Zhao, H., Zheng, H., Zheng, D., Zhong, L., and Zeng, Y.:
Monitoring Water and Energy Cycles at Climate Scale in the Third Pole Environment (CLIMATE-TPE), Remote Sens.-Basel, 13, 3661, https://doi.org/10.3390/rs13183661, 2021.
Sun, J., Yang, K., and Guo, W.:
Why Has the Inner Tibetan Plateau Become Wetter since the Mid-1990s?, J. Climate, 33, 8507–8522, https://doi.org/10.1175/Jcli-D-19-0471.1, 2020.
Tallaksen, L. M. and Van Lanen, H. A. J. (Eds.): Hydrological drought: processes and estimation methods for streamflow and groundwater, Developments in water science, 48, Elsevier Science B. V., Amsterdam, the Netherlands, 2004.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.:
An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Teng, H. F., Luo, Z. K., Chang, J. F., Shi, Z., Chen, S. C., Zhou, Y., Ciais, P., and Tian, H. Q.:
Climate change-induced greening on the Tibetan Plateau modulated by mountainous characteristics, Environ. Res. Lett., 16, 064064, https://doi.org/10.1088/1748-9326/abfeeb, 2021.
Van Loon, A. F. and Van Lanen, H. A. J.:
A process-based typology of hydrological drought, Hydrol. Earth Syst. Sci., 16, 1915–1946, https://doi.org/10.5194/hess-16-1915-2012, 2012.
Wan, W., Long, D., Hong, Y., Ma, Y., Yuan, Y., Xiao, P., Duan, H., Han, Z., and Gu, X.:
A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014, Scientific Data, 3, 160039, https://doi.org/10.1038/sdata.2016.39, 2016.
Wanders, N., Bierkens, M. F. P., Jong, S. M., Roo, A., and Karssenberg, D.:
The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models, Water Resour. Res., 50, 6874–6891, https://doi.org/10.1002/2013WR014639, 2014.
Wang, B., Wu, R., and Lau, K. M.:
Interannual variability of Asian summer monsoon: Contrast between the Indian and western North Pacific–East Asian monsoons, J. Climate, 14, 4073–4090, https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2, 2001 (data available at: http://apdrc.soest.hawaii.edu/projects/monsoon/seasonal-monidx.html, last acces: 10 March 2021).
Wang, B., Bao, Q., Hoskins, B., Wu, G., and Liu, Y.:
Tibetan Plateau warming and precipitation changes in East Asia, Geophys. Res. Lett., 35, L14702, https://doi.org/10.1029/2008GL034330, 2008.
Wang, T., Miao, J., Sun, J., and Fu, Y.:
Intensified East Asian summer monsoon and associated precipitation mode shift under the 1.5 ∘C global warming target, Adv. Climate Change Res., 9, 102–111, https://doi.org/10.1016/j.accre.2017.12.002, 2018.
Wang, Z., Duan, A., Yang, S., and Ullah, K.:
Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau, J. Geophys Res.-Atmos., 122, 614–630, https://doi.org/10.1002/2016JD025515, 2017.
Xie, H. and Zhu, X.:
Reference evapotranspiration trends and their sensitivity to climatic change on the Tibetan Plateau (1970–2009), Hydrol. Process, 27, 3685–3693, https://doi.org/10.1002/hyp.9487, 2013.
Xie, H., Ye, J. Liu, X., and E, C.:
Warming and drying trends on the Tibetan Plateau (1971–2005), Theor. Appl. Climatol., 101, 241–253, https://doi.org/10.1007/s00704-009-0215-9, 2010.
Xing, Z., Fan, L., Zhao, L., De Lannoy, G., Frappart, F., Peng, J., Li, X., Zeng, J., Al-Yaari, A., Yang, K., Zhao, T., Shi, J., Wang, M., Liu, X., Hu, G., Xiao, Y., Du, E., Li, R., Qiao, Y., Shi, J., Wen, J., Ma, M., and Wigneron, J. P.:
A first assessment of satellite and reanalysis estimates of surface and root-zone soil moisture over the permafrost region of Qinghai-Tibet Plateau, Remote Sens. Environ., 206, 112666, https://doi.org/10.1016/j.rse.2021.112666,2021.
Xu, K., Yang, D., Yang, H., Li, Z., Qin, Y., and Shen, Y.:
Spatio-Temporal variation of drought in China during 1961–2012: A climatic perspective, J. Hydrol., 526,253–264, https://doi.org/10.1016/j.jhydrol.2014.09.047, 2015.
Xu, Z., Gong, T., and Li, J.:
Decadal trend of climate in the Tibetan Plateau-regional Temperature and precipitation, Hydrol. Process, 22, 3056–3065, https://doi.org/10.1002/hyp.6892, 2008.
Xue, Y. K., Ma, Y., and Li, Q.:
Land–climate interaction over the Tibetan Plateau, Oxford Research Encyclopedia of Climate Science, https://doi.org/10.1093/acrefore/9780190228620.013.592, 2017.
Yanai, M., Li, C., and Song, Z.:
Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon, J. Meteorol. Soc. Jpn., 70, 319–351, https://doi.org/10.2151/jmsj1965.70.1B_319,1992.
Yang, K., Ye, B., Zhou, D., Wu, B., Foken, T., Qin, J., and Zhou, Z.:
Response of hydrological cycle to recent climate changes in the Tibetan Plateau, Clim. Change, 109, 517–534, https://doi.org/10.1007/s10584-011-0099-4, 2011.
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D., and Joswiak, D.:
Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings, Nat. Clim. Change, 2, 663–667, https://doi.org/10.1038/nclimate1580, 2012.
Yao, T., Xue, Y., Chen, D., Chen, F., Thompson, L., Cui, P., and Li, Q.:
Recent third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis, B. Am. Meteorol. Soc., 100, 423–444, https://doi.org/10.1175/BAMS-D-17-0057.1, 2019.
Yang, K., Wu, H., Qin, J., Lin, C.,Tang, W., and Chen, Y.:
Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review, Global Planet. Change, 112, 79–91, https://doi.org/10.1016/j.gloplacha.2013.12.001, 2014.
Yin, Y., Wu, S., Zhao, D., Zheng, D., and Pan, T.:
Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan Plateau, J. Geogr. Sci., 23, 195–207, https://doi.org/10.1007/s11442-013-1003-0, 2013.
You, Q., Min, J., Jiao, Y., Sillanpää, M., and Kang, S.:
Observed trend of diurnal temperature range in the Tibetan Plateau in recent decades, Int. J. Climatol., 36, 2633–2643, https://doi.org/10.1002/joc.4517, 2016.
Zhang, C., Tang, Q., Chen, D., van der Ent, R., Liu, X., Li, W., and Haile, G. G.:
Moisture Source Changes Contributed to Different Precipitation Changes over the Northern and Southern Tibetan Plateau, J. Hydrometeorol., 20, 217–229, https://doi.org/10.1175/Jhm-D-18-0094.1, 2019.
Zhang, D., Huang, J., Guan, X., and Chen, B.:
Long-term trends of precipitable water and precipitation over the Tibetan Plateau derived from satellite and surface measurements, J. Quant. Spectrosc. Ra., 122, 64–71, https://doi.org/10.1016/j.jqsrt.2012.11.028, 2013.
Zhang, L. and Zhou, T.:
Drought over East Asia: A Review, J. Climate, 28, 3375–3399, https://doi.org/10.1175/Jcli-D-14-00259.1, 2015.
Zhang, Q., Fan, K., Singh, V. P., Sun, P., and Shi, P.:
Evaluation of remotely sensed and reanalysis soil moisture against in situ observations on the Himalayan-Tibetan plateau, J. Geophys. Res.-Atmos., 123, 7132–7148, https://doi.org/10.1029/2017jd027763, 2018.
Zhang, Q., Fan, K., and Singh V. P.:
Is Himalayan-Tibetan Plateau “drying”? Historical estimations and future trends of surface soil moisture, Sci. Total Environ., 658, 374–384, https://doi.org/10.1016/j.scitotenv.2018.12.209, 2019.
Zhang, X., Ren, Y., Yin, Z., Lin, Z., and Zheng, D.:
Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai–Tibetan Plateau during 1971–2004, J. Geophys. Res.-Atmos., 114, D15105, https://doi.org/10.1029/2009JD011753, 2009.
Zeng, J., Li, Z., Chen, Q., Bi, H., Qiu, J., and Zou, P.:
Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations, Remote Sens. Environ., 163, 91–110, https://doi.org/10.1016/j.rse.2015.03.008, 2015.
Zeng, J., Shi, P., Chen, K., Ma, H., Bi, H., and Cui, C.:
Assessment and Error Analysis of Satellite Soil Moisture Products Over the Third Pole, IEEE T. Geosci. Remote, 60, 4405418, https://doi.org/10.1109/TGRS.2021.3116078, 2022.
Zhong, L., Ma, Y., Salama, M. S., and Su., Z.:
Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau, Climatic Change, 103, 519–535, https://doi.org/10.1007/s10584-009-9787-8, 2010.
Zhou, C., Zhao, P., and Chen, J.:
The Interdecadal Change of Summer Water Vapor over the Tibetan Plateau and Associated Mechanisms, J. Climate, 32, 4103–4119, https://doi.org/10.1175/Jcli-D-18-0364.1, 2019.
Zhou, J., Wang, L., Zhong, X., Yao, T., Qi, J., Wang, Y., and Xue, Y.:
Quantifying the major drivers for the expanding lakes in the interior Tibetan Plateau, Sci. Bull., 67, 474–478, https://doi.org/10.1016/j.scib.2021.11.010, 2022.
Zhu, Y., Liu, Y., Wang, W., Vijay, P. S., Ma, X., and Yu, Z.:
Three dimensional characterization of meteorological and hydrological droughts and their probabilistic links, J. Hydrol., 578, 124016, https://doi.org/10.1016/j.jhydrol.2019.124016, 2019.
Zwieback, S., Paulik, C., and Wagner, W.:
Frozen soil detection based on advanced scatterometer observations and air Temperature data as part of soil moisture retrieval, Remote Sens.-Basel, 7, 3206–3231, https://doi.org/10.3390/rs70303206, 2015.
Short summary
This study investigated the wetting and drying of the Tibetan Plateau (TP) from variations in soil moisture (SM) droughts. We found the TP experienced an abrupt and significant wetting shift in the middle to late 1990s, not merely the steady trends given in literature. This shift is dominated by precipitation and attributed to the North Atlantic Oscillation. The wetting shift indicates a climate regime change. Our innovative work provides implications for further knowledge of the TP climate.
This study investigated the wetting and drying of the Tibetan Plateau (TP) from variations in...