Articles | Volume 26, issue 14
https://doi.org/10.5194/hess-26-3825-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-3825-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Historical droughts manifest an abrupt shift to a wetter Tibetan Plateau
Yongwei Liu
Key Laboratory of Watershed Geography Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
Key Laboratory of Watershed Geography Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
Wen Wang
State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
Han Zhou
School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, China
Lide Tian
Institute of International Rivers and Eco-security Research, Yunnan University, Kunming, China
Related authors
Fidele Karamage, Yuanbo Liu, Xingwang Fan, Meta Francis Justine, Guiping Wu, Yongwei Liu, Han Zhou, and Ruonan Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-424, https://doi.org/10.5194/hess-2018-424, 2018
Preprint withdrawn
Suyi Liu, Xin Pan, Jie Yuan, Kevin Tansey, Zi Yang, Zhanchuan Wang, Xu Ding, Yuanbo Liu, and Yingbao Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-495, https://doi.org/10.5194/essd-2024-495, 2024
Preprint under review for ESSD
Short summary
Short summary
This study proposed the Remote Sensed Non-Parametric (RSNP) model to estimate global monthly evapotranspiration (ET) from 2001 to 2019 at a spatial resolution of 0.1°, without resistance parameterization. Evaluated with global FLUXNET sites and present global ET datasets, it shows high accuracy, particularly in forested regions, and captures spatial patterns of ET. Our dataset provides a global continuous and seamless ET, which is beneficial for global research and future water balance studies.
Di Wang, Camille Risi, Lide Tian, Di Yang, Gabriel Bowen, Siteng Fan, Yang Su, Hongxi Pang, and Laurent Li
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-151, https://doi.org/10.5194/amt-2024-151, 2024
Preprint under review for AMT
Short summary
Short summary
We developed and validated a theoretical model for water vapor diffusion through sampling bags. This model accurately reconstructs the initial isotopic composition of the vapor samples. When applied to upper troposphere samples, the corrected data aligned closely with IASI satellite observations, enhancing the accuracy of drone-based measurements.
Yu Zhu, Shiyin Liu, Ben W. Brock, Lide Tian, Ying Yi, Fuming Xie, Donghui Shangguan, and Yiyuan Shen
Hydrol. Earth Syst. Sci., 28, 2023–2045, https://doi.org/10.5194/hess-28-2023-2024, https://doi.org/10.5194/hess-28-2023-2024, 2024
Short summary
Short summary
This modeling-based study focused on Batura Glacier from 2000 to 2020, revealing that debris alters its energy budget, affecting mass balance. We propose that the presence of debris on the glacier surface effectively reduces the amount of latent heat available for ablation, which creates a favorable condition for Batura Glacier's relatively low negative mass balance. Batura Glacier shows a trend toward a less negative mass balance due to reduced ablation.
Di Wang, Lide Tian, Camille Risi, Xuejie Wang, Jiangpeng Cui, Gabriel J. Bowen, Kei Yoshimura, Zhongwang Wei, and Laurent Z. X. Li
Atmos. Chem. Phys., 23, 3409–3433, https://doi.org/10.5194/acp-23-3409-2023, https://doi.org/10.5194/acp-23-3409-2023, 2023
Short summary
Short summary
To better understand the spatial and temporal distribution of vapor isotopes, we present two vehicle-based spatially continuous snapshots of the near-surface vapor isotopes in China during the pre-monsoon and monsoon periods. These observations are explained well by different moisture sources and processes along the air mass trajectories. Our results suggest that proxy records need to be interpreted in the context of regional systems and sources of moisture.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 4147–4167, https://doi.org/10.5194/hess-26-4147-2022, https://doi.org/10.5194/hess-26-4147-2022, 2022
Short summary
Short summary
Tracer-aided hydrological models are useful tool to reduce uncertainty of hydrological modeling in cold basins, but there is little guidance on the sampling strategy for isotope analysis, which is important for large mountainous basins. This study evaluated the reliance of the tracer-aided modeling performance on the availability of isotope data in the Yarlung Tsangpo river basin, and provides implications for collecting water isotope data for running tracer-aided hydrological models.
Yi Nan, Zhihua He, Fuqiang Tian, Zhongwang Wei, and Lide Tian
Hydrol. Earth Syst. Sci., 25, 6151–6172, https://doi.org/10.5194/hess-25-6151-2021, https://doi.org/10.5194/hess-25-6151-2021, 2021
Short summary
Short summary
Hydrological modeling has large problems of uncertainty in cold regions. Tracer-aided hydrological models are increasingly used to reduce uncertainty and refine the parameterizations of hydrological processes, with limited application in large basins due to the unavailability of spatially distributed precipitation isotopes. This study explored the utility of isotopic general circulation models in driving a tracer-aided hydrological model in a large basin on the Tibetan Plateau.
Yi Nan, Lide Tian, Zhihua He, Fuqiang Tian, and Lili Shao
Hydrol. Earth Syst. Sci., 25, 3653–3673, https://doi.org/10.5194/hess-25-3653-2021, https://doi.org/10.5194/hess-25-3653-2021, 2021
Short summary
Short summary
This study integrated a water isotope module into the hydrological model THREW. The isotope-aided model was subsequently applied for process understanding in the glacierized watershed of Karuxung river on the Tibetan Plateau. The model was used to quantify the contribution of runoff component and estimate the water travel time in the catchment. Model uncertainties were significantly constrained by using additional isotopic data, improving the process understanding in the catchment.
Yanbin Lei, Tandong Yao, Lide Tian, Yongwei Sheng, Lazhu, Jingjuan Liao, Huabiao Zhao, Wei Yang, Kun Yang, Etienne Berthier, Fanny Brun, Yang Gao, Meilin Zhu, and Guangjian Wu
The Cryosphere, 15, 199–214, https://doi.org/10.5194/tc-15-199-2021, https://doi.org/10.5194/tc-15-199-2021, 2021
Short summary
Short summary
Two glaciers in the Aru range, western Tibetan Plateau (TP), collapsed suddenly on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The impact of the glacier collapses on the two downstream lakes (i.e., Aru Co and Memar Co) is investigated in terms of lake morphology, water level and water temperature. Our results provide a baseline in understanding the future lake response to glacier melting on the TP under a warming climate.
Ying Yao, Wei Cui, Wen Wang, Fu-Min Ma, and Ben-Yue Chen
Proc. IAHS, 383, 341–346, https://doi.org/10.5194/piahs-383-341-2020, https://doi.org/10.5194/piahs-383-341-2020, 2020
Short summary
Short summary
The Minjiang River is the largest river in Fujian Province. In 1993, the Shuikou Reservoir, which has an effective storage capacity of 700 million m3, was built at about 161 km above the estuary. The completion of the Shuikou Dam trapped most of the upstream sediment in the reservoir area, resulting in a drastic decrease in sediment in the lower reaches of the Minjiang River.
Fidele Karamage, Yuanbo Liu, Xingwang Fan, Meta Francis Justine, Guiping Wu, Yongwei Liu, Han Zhou, and Ruonan Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-424, https://doi.org/10.5194/hess-2018-424, 2018
Preprint withdrawn
Ruifang Guo, Yuanbo Liu, Han Zhou, and Yaqiao Zhu
Hydrol. Earth Syst. Sci., 22, 3685–3699, https://doi.org/10.5194/hess-22-3685-2018, https://doi.org/10.5194/hess-22-3685-2018, 2018
Short summary
Short summary
Existing satellite products are often insufficient for use in small-scale (< 10 km) hydrological and meteorological studies. We propose a new approach based on the cumulative distribution of frequency to downscale satellite precipitation products with geostationary (GEO) data. This paper uses CMORPH and FY2-E GEO data to examine the approach in six different climate regions. The downscaled precipitation performed better for convective systems.
X. Pan, Y. Yang, Y. Liu, X. Fan, L. Shan, and X. Zhang
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1339–1345, https://doi.org/10.5194/isprs-archives-XLII-3-1339-2018, https://doi.org/10.5194/isprs-archives-XLII-3-1339-2018, 2018
Hongbo Zhang, Fan Zhang, Guoqing Zhang, Xiaobo He, and Lide Tian
Atmos. Chem. Phys., 16, 13681–13696, https://doi.org/10.5194/acp-16-13681-2016, https://doi.org/10.5194/acp-16-13681-2016, 2016
Short summary
Short summary
Based on MODIS LST, clouds are believed to affect Tair estimation; however, understanding of the cloud effect on the Tair–LST relationship remains limited. Our paper reveals the subtle influence of clouds that affects Tmin and Tmax estimation in clearly different ways. The results contribute to better understanding of cloud effects and more accurate estimation of Tair using satellite LST.
Yong Chen, Xiang-Kai Li, Jing Si, Guang-Jian WU, Li-De Tian, and Shu-Rong Xiang
Biogeosciences Discuss., https://doi.org/10.5194/bg-2015-637, https://doi.org/10.5194/bg-2015-637, 2016
Revised manuscript not accepted
Y. Liu and G. Wu
Hydrol. Earth Syst. Sci., 20, 93–107, https://doi.org/10.5194/hess-20-93-2016, https://doi.org/10.5194/hess-20-93-2016, 2016
Short summary
Short summary
Lake droughts result in significant hydrological, ecological and economic consequences. This study proposes approaches for quantifying the lake drought features and estimating the contributions from individual factors, taking China’s largest freshwater lake as a case examination. Our results showed that the recently increased lake droughts were due to hydroclimatic effects, with less important contributions from the water impoundments of the world’s largest dam affecting the lake outflows.
W. Yu, L. Tian, Y. Ma, B. Xu, and D. Qu
Atmos. Chem. Phys., 15, 10251–10262, https://doi.org/10.5194/acp-15-10251-2015, https://doi.org/10.5194/acp-15-10251-2015, 2015
Y. Chen, X.-K. Li, J. Si, G.-J. Wu, L.-D. Tian, and S.-R. Xiang
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-14531-2014, https://doi.org/10.5194/bgd-11-14531-2014, 2014
Revised manuscript not accepted
J. Peng, M. Borsche, Y. Liu, and A. Loew
Hydrol. Earth Syst. Sci., 17, 3913–3919, https://doi.org/10.5194/hess-17-3913-2013, https://doi.org/10.5194/hess-17-3913-2013, 2013
L. Zhao, L. Tian, T. Zwinger, R. Ding, J. Zong, Q. Ye, and J. C. Moore
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-145-2013, https://doi.org/10.5194/tcd-7-145-2013, 2013
Revised manuscript not accepted
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Theory development
Accelerated soil moisture drought onset link to high temperatures and asymmetric responses associated with the hit timing
Variation and attribution of probable maximum precipitation of China using a high-resolution dataset in a changing climate
Drought cascades across multiple systems in Central Asia identified based on the dynamic space–time motion approach
What is the Priestley–Taylor wet-surface evaporation parameter? Testing four hypotheses
Understanding the diurnal cycle of land–atmosphere interactions from flux site observations
Breakdown in precipitation–temperature scaling over India predominantly explained by cloud-driven cooling
Citizen rain gauges improve hourly radar rainfall bias correction using a two-step Kalman filter
Dynamical forcings in heavy precipitation events over Italy: lessons from the HyMeX SOP1 campaign
Water vapor isotopes indicating rapid shift among multiple moisture sources for the 2018–2019 winter extreme precipitation events in southeastern China
Spatiotemporal and cross-scale interactions in hydroclimate variability: a case-study in France
Relative humidity gradients as a key constraint on terrestrial water and energy fluxes
A climatological benchmark for operational radar rainfall bias reduction
The precipitation variability of the wet and dry season at the interannual and interdecadal scales over eastern China (1901–2016): the impacts of the Pacific Ocean
Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions
A skewed perspective of the Indian rainfall–El Niño–Southern Oscillation (ENSO) relationship
Imprints of evaporative conditions and vegetation type in diurnal temperature variations
A universal Standardized Precipitation Index candidate distribution function for observations and simulations
A review of the complementary principle of evaporation: from the original linear relationship to generalized nonlinear functions
Model representation of the coupling between evapotranspiration and soil water content at different depths
Combined impacts of ENSO and MJO on the 2015 growing season drought on the Canadian Prairies
Exploring the relationships between warm-season precipitation, potential evaporation, and “apparent” potential evaporation at site scale
Future extreme precipitation intensities based on a historic event
Interannual-to-multidecadal hydroclimate variability and its sectoral impacts in northeastern Argentina
Impact of ENSO regimes on developing- and decaying-phase precipitation during rainy season in China
Variations in the correlation between teleconnections and Taiwan's streamflow
A gain–loss framework based on ensemble flow forecasts to switch the urban drainage–wastewater system management towards energy optimization during dry periods
The residence time of water in the atmosphere revisited
A systematic assessment of drought termination in the United Kingdom
From meteorological to hydrological drought using standardised indicators
Impact of two different types of El Niño events on runoff over the conterminous United States
Flood sensitivity of the Bavarian Alpine Foreland since the late Middle Ages in the context of internal and external climate forcing factors
Novel indices for the comparison of precipitation extremes and floods: an example from the Czech territory
Multi-annual droughts in the English Lowlands: a review of their characteristics and climate drivers in the winter half-year
Fractional snow-covered area parameterization over complex topography
Comment on "Technical Note: On the Matt–Shuttleworth approach to estimate crop water requirements" by Lhomme et al. (2014)
A review of droughts on the African continent: a geospatial and long-term perspective
Synchronicity of historical dry spells in the Southern Hemisphere
Continental moisture recycling as a Poisson process
Linking ENSO and heavy rainfall events over coastal British Columbia through a weather pattern classification
Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest
A new perspective on the spatio-temporal variability of soil moisture: temporal dynamics versus time-invariant contributions
Understanding hydroclimate processes in the Murray-Darling Basin for natural resources management
An analytical model for soil-atmosphere feedback
Spatial horizontal correlation characteristics in the land data assimilation of soil moisture
On the factors influencing surface-layer energy closure and their seasonal variability over the semi-arid Loess Plateau of Northwest China
Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response
Scaling and trends of hourly precipitation extremes in two different climate zones – Hong Kong and the Netherlands
The response of Iberian rivers to the North Atlantic Oscillation
Copula-based downscaling of spatial rainfall: a proof of concept
Towards understanding hydroclimatic change in Victoria, Australia – preliminary insights into the "Big Dry"
Yi Liu, Zhimin Wang, Xinyu Zhang, Ye Zhu, Liliang Ren, Shanshui Yuan, and Junliang Jin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-199, https://doi.org/10.5194/hess-2024-199, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
A new drought characteristic, i.e., the duration of drought onset is proposed to depict how rapid drought develops. The roles of pre-drought and post-drought high temperatures on drought onset are quantified. High temperatures behave differently among areas with different vegetation conditions.
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci., 28, 1873–1895, https://doi.org/10.5194/hess-28-1873-2024, https://doi.org/10.5194/hess-28-1873-2024, 2024
Short summary
Short summary
Temporal variability and spatial heterogeneity of climate systems challenge accurate estimation of probable maximum precipitation (PMP) in China. We use high-resolution precipitation data and climate models to explore the variability, trends, and shifts of PMP under climate change. Validated with multi-source estimations, our observations and simulations show significant spatiotemporal divergence of PMP over the country, which is projected to amplify in future due to land–atmosphere coupling.
Lu Tian, Markus Disse, and Jingshui Huang
Hydrol. Earth Syst. Sci., 27, 4115–4133, https://doi.org/10.5194/hess-27-4115-2023, https://doi.org/10.5194/hess-27-4115-2023, 2023
Short summary
Short summary
Anthropogenic global warming accelerates the drought evolution in the water cycle, increasing the unpredictability of drought. The evolution of drought is stealthy and challenging to track. This study proposes a new framework to capture the high-precision spatiotemporal progression of drought events in their evolutionary processes and characterize their feature further. It is crucial for addressing the systemic risks within the hydrological cycle associated with drought mitigation.
Richard D. Crago, Jozsef Szilagyi, and Russell J. Qualls
Hydrol. Earth Syst. Sci., 27, 3205–3220, https://doi.org/10.5194/hess-27-3205-2023, https://doi.org/10.5194/hess-27-3205-2023, 2023
Short summary
Short summary
The Priestley–Taylor equation is widely used in hydrologic, climate, and meteorological models to estimate evaporation. α represents the impact of dry air that is carried into the region; this occurs even in extensive saturated regions. Four hypotheses regarding the nature of α are evaluated. Data from 171 FLUXNET stations were used to test the hypotheses. The best-supported hypothesis sees α as a constant fraction of the distance between theoretical minimum and maximum values.
Eunkyo Seo and Paul A. Dirmeyer
Hydrol. Earth Syst. Sci., 26, 5411–5429, https://doi.org/10.5194/hess-26-5411-2022, https://doi.org/10.5194/hess-26-5411-2022, 2022
Short summary
Short summary
This study presents the climatology of the observed land–atmosphere interactions on a subdaily timescale during the warm season from flux site observations. Multivariate metrics are employed to examine the land, atmosphere, and combined couplings, and a mixing diagram is adopted to understand the coevolution of the moist and thermal energy budget within the atmospheric mixed layer. The diurnal cycles of both mixing diagrams and hourly land–atmosphere couplings exhibit hysteresis.
Sarosh Alam Ghausi, Subimal Ghosh, and Axel Kleidon
Hydrol. Earth Syst. Sci., 26, 4431–4446, https://doi.org/10.5194/hess-26-4431-2022, https://doi.org/10.5194/hess-26-4431-2022, 2022
Short summary
Short summary
The observed response of extreme precipitation to global warming remains unclear with significant regional variations. We show that a large part of this uncertainty can be removed when the imprint of clouds in surface temperatures is removed. We used a thermodynamic systems approach to remove the cloud radiative effect from temperatures. We then found that precipitation extremes intensified with global warming at positive rates which is consistent with physical arguments and model simulations.
Punpim Puttaraksa Mapiam, Monton Methaprayun, Thom Bogaard, Gerrit Schoups, and Marie-Claire Ten Veldhuis
Hydrol. Earth Syst. Sci., 26, 775–794, https://doi.org/10.5194/hess-26-775-2022, https://doi.org/10.5194/hess-26-775-2022, 2022
Short summary
Short summary
The density of rain gauge networks plays an important role in radar rainfall bias correction. In this work, we aimed to assess the extent to which daily rainfall observations from a dense network of citizen scientists improve the accuracy of hourly radar rainfall estimates in the Tubma Basin, Thailand. Results show that citizen rain gauges significantly enhance the performance of radar rainfall bias adjustment up to a range of about 40 km from the center of the citizen rain gauge network.
Mario Marcello Miglietta and Silvio Davolio
Hydrol. Earth Syst. Sci., 26, 627–646, https://doi.org/10.5194/hess-26-627-2022, https://doi.org/10.5194/hess-26-627-2022, 2022
Short summary
Short summary
The main results emerging from the HyMeX SOP1 campaign and in the subsequent research activity in three Italian target areas are highlighted through conceptual models and through the identification of the relevant mesoscale environmental characteristics conducive to heavy rain events.
Tao Xu, Hongxi Pang, Zhaojun Zhan, Wangbin Zhang, Huiwen Guo, Shuangye Wu, and Shugui Hou
Hydrol. Earth Syst. Sci., 26, 117–127, https://doi.org/10.5194/hess-26-117-2022, https://doi.org/10.5194/hess-26-117-2022, 2022
Short summary
Short summary
In this study, we presented stable isotopes in atmospheric water vapor and precipitation for five extreme winter precipitation events in Nanjing, southeastern China, from December 2018 to February 2019. Our results imply that multiple moisture sources and the rapid shift among them are important conditions for sustaining extreme precipitation events, especially in the relatively cold and dry winter.
Manuel Fossa, Bastien Dieppois, Nicolas Massei, Matthieu Fournier, Benoit Laignel, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 25, 5683–5702, https://doi.org/10.5194/hess-25-5683-2021, https://doi.org/10.5194/hess-25-5683-2021, 2021
Short summary
Short summary
Hydro-climate observations (such as precipitation, temperature, and river discharge time series) reveal very complex behavior inherited from complex interactions among the physical processes that drive hydro-climate viability. This study shows how even small perturbations of a physical process can have large consequences on some others. Those interactions vary spatially, thus showing the importance of both temporal and spatial dimensions in better understanding hydro-climate variability.
Yeonuk Kim, Monica Garcia, Laura Morillas, Ulrich Weber, T. Andrew Black, and Mark S. Johnson
Hydrol. Earth Syst. Sci., 25, 5175–5191, https://doi.org/10.5194/hess-25-5175-2021, https://doi.org/10.5194/hess-25-5175-2021, 2021
Short summary
Short summary
Here, we present a novel physically based evaporation model to demonstrate that vertical relative humidity (RH) gradients from the land surface to the atmosphere tend to evolve towards zero due to land–atmosphere equilibration processes. Collapsing RH gradients on daily to yearly timescales indicate an emergent land–atmosphere equilibrium, making it possible to determine evapotranspiration using only meteorological information, independent of land surface conditions and vegetation controls.
Ruben Imhoff, Claudia Brauer, Klaas-Jan van Heeringen, Hidde Leijnse, Aart Overeem, Albrecht Weerts, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 25, 4061–4080, https://doi.org/10.5194/hess-25-4061-2021, https://doi.org/10.5194/hess-25-4061-2021, 2021
Short summary
Short summary
Significant biases in real-time radar rainfall products limit the use for hydrometeorological forecasting. We introduce CARROTS (Climatology-based Adjustments for Radar Rainfall in an OperaTional Setting), a set of fixed bias reduction factors to correct radar rainfall products and to benchmark other correction algorithms. When tested for 12 Dutch basins, estimated rainfall and simulated discharges with CARROTS generally outperform those using the operational mean field bias adjustments.
Tao Gao, Fuqiang Cao, Li Dan, Ming Li, Xiang Gong, and Junjie Zhan
Hydrol. Earth Syst. Sci., 25, 1467–1481, https://doi.org/10.5194/hess-25-1467-2021, https://doi.org/10.5194/hess-25-1467-2021, 2021
Short summary
Short summary
The rainfall in eastern China is principally concentrated from April–September. Changes are roughly coincident with phase shifts of the El Niño–Southern Oscillation (ENSO) in both the dry (October–March) and wet (April–September) seasons, and the Pacific Decadal Oscillation (PDO) triggers a stronger effect on precipitation in the wet season. The interannual and interdecadal rainfall variability over eastern China is substantially modulated by drivers originating from the Pacific Ocean.
Mahmoud Osman, Benjamin F. Zaitchik, Hamada S. Badr, Jordan I. Christian, Tsegaye Tadesse, Jason A. Otkin, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 25, 565–581, https://doi.org/10.5194/hess-25-565-2021, https://doi.org/10.5194/hess-25-565-2021, 2021
Short summary
Short summary
Our study of flash droughts' definitions over the United States shows that published definitions yield markedly different inventories of flash drought geography and frequency. Results suggest there are several pathways that can lead to events that are characterized as flash droughts. Lack of consensus across definitions helps to explain apparent contradictions in the literature on trends and indicates the selection of a definition is important for accurate monitoring of different mechanisms.
Justin Schulte, Frederick Policielli, and Benjamin Zaitchik
Hydrol. Earth Syst. Sci., 24, 5473–5489, https://doi.org/10.5194/hess-24-5473-2020, https://doi.org/10.5194/hess-24-5473-2020, 2020
Short summary
Short summary
Wavelet coherence is now a commonly used method for detecting scale-dependent relationships between time series. In this study, the concept of wavelet coherence is generalized to higher-order wavelet coherence methods that quantify the relationship between higher-order statistical moments associated with two time series. The methods are applied to the El Niño–Southern Oscillation (ENSO) and the Indian monsoon to show that the ENSO–Indian monsoon relationship is impacted by ENSO nonlinearity.
Annu Panwar, Maik Renner, and Axel Kleidon
Hydrol. Earth Syst. Sci., 24, 4923–4942, https://doi.org/10.5194/hess-24-4923-2020, https://doi.org/10.5194/hess-24-4923-2020, 2020
Short summary
Short summary
Here we examine the effect of evaporative cooling across different vegetation types. Evaporation cools surface temperature significantly in short vegetation. In the forest, the high aerodynamic conductance explains 56 % of the reduced surface temperature. Therefore, the main cooling agent in the forest is the high aerodynamic conductance and not evaporation. Additionally, we propose the diurnal variation in surface temperature as being a potential indicator of evaporation in short vegetation.
Patrick Pieper, André Düsterhus, and Johanna Baehr
Hydrol. Earth Syst. Sci., 24, 4541–4565, https://doi.org/10.5194/hess-24-4541-2020, https://doi.org/10.5194/hess-24-4541-2020, 2020
Short summary
Short summary
The Standardized Precipitation Index (SPI) is a widely accepted drought index. SPI normalizes the precipitation distribution via a probability density function (PDF). However, which PDF properly normalizes SPI is still disputed. We suggest using a previously mostly overlooked PDF, namely the exponentiated Weibull distribution. The proposed PDF ensures the normality of the index. We demonstrate this – for the first time – for all common accumulation periods in both observations and simulations.
Songjun Han and Fuqiang Tian
Hydrol. Earth Syst. Sci., 24, 2269–2285, https://doi.org/10.5194/hess-24-2269-2020, https://doi.org/10.5194/hess-24-2269-2020, 2020
Short summary
Short summary
The complementary principle is an important methodology for estimating actual evaporation by using routinely observed meteorological variables. This review summaries its 56-year development, focusing on how related studies have shifted from adopting a symmetric linear complementary relationship to employing generalized nonlinear functions. We also compare the polynomial and sigmoid types of generalized complementary functions and discuss their future development.
Jianxiu Qiu, Wade T. Crow, Jianzhi Dong, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 24, 581–594, https://doi.org/10.5194/hess-24-581-2020, https://doi.org/10.5194/hess-24-581-2020, 2020
Short summary
Short summary
Accurately estimating coupling of evapotranspiration (ET) and soil water content (θ) at different depths is key to investigating land–atmosphere interaction. Here we examine whether the model can accurately represent surface θ (θs) versus ET coupling and vertically integrated θ (θv) versus ET coupling. We find that all models agree with observations that θs contains slightly more information with fPET than θv. In addition, an ET scheme is crucial for accurately estimating coupling of θ and ET.
Zhenhua Li, Yanping Li, Barrie Bonsal, Alan H. Manson, and Lucia Scaff
Hydrol. Earth Syst. Sci., 22, 5057–5067, https://doi.org/10.5194/hess-22-5057-2018, https://doi.org/10.5194/hess-22-5057-2018, 2018
Short summary
Short summary
The research started by investigating the 2015 growing season drought over the Canadian Prairies and evolved into investigating the connection between growing season rain deficit in the Prairies and MJO (20–90 days tropical oscillation in convective storms). With warm central Pacific sea surface temperature, strong MJOs in the western Pacific cause Rossby wave trains that propagate downstream and favour upper-level ridges and rain deficits over the Canadian Prairies during the growing season.
Xi Chen and Steven G. Buchberger
Hydrol. Earth Syst. Sci., 22, 4535–4545, https://doi.org/10.5194/hess-22-4535-2018, https://doi.org/10.5194/hess-22-4535-2018, 2018
Short summary
Short summary
Based on warm season data from 259 weather stations across the US, we analyze the correlation between precipitation, potential evaporation, and “apparent” potential evaporation (measured by pan evaporation). Over 93 % of the stations show negative correlation between precipitation and
apparentpotential evaporation, but no clear relationship is shown between precipitation and potential evaporation. The collected data points follow the trend of the newly derived Bouchet–Budyko curve.
Iris Manola, Bart van den Hurk, Hans De Moel, and Jeroen C. J. H. Aerts
Hydrol. Earth Syst. Sci., 22, 3777–3788, https://doi.org/10.5194/hess-22-3777-2018, https://doi.org/10.5194/hess-22-3777-2018, 2018
Short summary
Short summary
In a warmer climate, it is expected that precipitation intensities will increase and form a considerable risk of high-impact precipitation extremes. We investigate how observed extreme precipitation events would look like if they took place in a future warmer climate. This study applies three methods to transform a historic extreme precipitation event in the Netherlands to a similar event in a future warmer climate, thus compiling a
future weatherscenario.
Miguel A. Lovino, Omar V. Müller, Gabriela V. Müller, Leandro C. Sgroi, and Walter E. Baethgen
Hydrol. Earth Syst. Sci., 22, 3155–3174, https://doi.org/10.5194/hess-22-3155-2018, https://doi.org/10.5194/hess-22-3155-2018, 2018
Short summary
Short summary
This study examines hydroclimate variability in northeastern Argentina; advances the understanding of its links with global SST forcing; and discusses its impacts on water resources, agriculture and human settlements. Interannual-to-multidecadal variability led to frequent extreme events. Severe floods affected agriculture, livestock productivity, and forced population displacements. Droughts affected water resources, causing water and food scarcity. Increased temperatures reduced crop yields.
Qing Cao, Zhenchun Hao, Feifei Yuan, Zhenkuan Su, Ronny Berndtsson, Jie Hao, and Tsring Nyima
Hydrol. Earth Syst. Sci., 21, 5415–5426, https://doi.org/10.5194/hess-21-5415-2017, https://doi.org/10.5194/hess-21-5415-2017, 2017
Short summary
Short summary
This study analyzed the rainy-season precipitation in China influenced by various ENSO types. The precipitation anomalies were investigated under different ENSO types, which may be attributed to the combined influence of anti-cyclone in the western North Pacific and the Indian monsoon. The results improve the understanding of linkages between the precipitation and global teleconnection patterns. The results suggest a certain predictability of flood and drought related to different ENSO types.
Chia-Jeng Chen and Tsung-Yu Lee
Hydrol. Earth Syst. Sci., 21, 3463–3481, https://doi.org/10.5194/hess-21-3463-2017, https://doi.org/10.5194/hess-21-3463-2017, 2017
Short summary
Short summary
Regional hydro-climatic variables are modulated by large-scale, reoccurring climate oscillations. In this article, the authors provide both statistical and physical evidence of how Taiwan’s summertime streamflow is strongly correlated with specific teleconnection patterns dominating cyclonic activity in the western North Pacific. However, such correlation can be strengthened or weakened by notable climate regime shifts, illustrating the pitfall of empirical seasonal forecasting.
Vianney Courdent, Morten Grum, Thomas Munk-Nielsen, and Peter S. Mikkelsen
Hydrol. Earth Syst. Sci., 21, 2531–2544, https://doi.org/10.5194/hess-21-2531-2017, https://doi.org/10.5194/hess-21-2531-2017, 2017
Short summary
Short summary
Urban drainage and wastewater systems are heavily impacted by precipitation. Hence, weather forecasts are valuable in improving their management. However, forecasts are intrinsically uncertain, especially when fine model resolution is required, which is the case for urban hydrology. Handling uncertainty is challenging for decision makers. This study presents an economic framework to support the decision-making process by providing information on when acting on the forecast is beneficial.
Ruud J. van der Ent and Obbe A. Tuinenburg
Hydrol. Earth Syst. Sci., 21, 779–790, https://doi.org/10.5194/hess-21-779-2017, https://doi.org/10.5194/hess-21-779-2017, 2017
Short summary
Short summary
This research seeks out to answer a fundamental question about the functioning of the water cycle in the atmosphere: how much time does a water particle spend in the atmosphere? Based on state-of-the-art data, we derive a global average residence time of water in the atmosphere of 8–10 days. We further show in this paper how the residence time of water varies in time and space. This serves to illustrate why it is so difficult to make weather predictions on timescales longer than a week.
Simon Parry, Robert L. Wilby, Christel Prudhomme, and Paul J. Wood
Hydrol. Earth Syst. Sci., 20, 4265–4281, https://doi.org/10.5194/hess-20-4265-2016, https://doi.org/10.5194/hess-20-4265-2016, 2016
Short summary
Short summary
This paper identifies periods of recovery from drought in 52 river flow records from the UK between 1883 and 2013. The approach detects 459 events that vary in space and time. This large dataset allows individual events to be compared with others in the historical record. The ability to objectively appraise contemporary events against the historical record has not previously been possible, and may allow water managers to prepare for a range of outcomes at the end of a drought.
Lucy J. Barker, Jamie Hannaford, Andrew Chiverton, and Cecilia Svensson
Hydrol. Earth Syst. Sci., 20, 2483–2505, https://doi.org/10.5194/hess-20-2483-2016, https://doi.org/10.5194/hess-20-2483-2016, 2016
Short summary
Short summary
Standardised meteorological indicators are widely used in drought monitoring, but applications to hydrological drought are less extensive. Here we assess the utility of standardised indicators for characterising drought duration, severity and propagation in a diverse set of 121 UK catchments. Spatial variations in streamflow drought characteristics reflect differences in drought propagation behaviour that are themselves largely driven by heterogeneity in catchment properties around the UK.
T. Tang, W. Li, and G. Sun
Hydrol. Earth Syst. Sci., 20, 27–37, https://doi.org/10.5194/hess-20-27-2016, https://doi.org/10.5194/hess-20-27-2016, 2016
O. Böhm, J. Jacobeit, R. Glaser, and K.-F. Wetzel
Hydrol. Earth Syst. Sci., 19, 4721–4734, https://doi.org/10.5194/hess-19-4721-2015, https://doi.org/10.5194/hess-19-4721-2015, 2015
M. Müller, M. Kašpar, A. Valeriánová, L. Crhová, E. Holtanová, and B. Gvoždíková
Hydrol. Earth Syst. Sci., 19, 4641–4652, https://doi.org/10.5194/hess-19-4641-2015, https://doi.org/10.5194/hess-19-4641-2015, 2015
Short summary
Short summary
Three proposed indices combine return periods of precipitation totals or discharges with the size of the affected area. Precipitation indices also determine actual duration of either extreme or seasonally abnormal precipitation events. A unified design of the indices enables one to easily compare inter-annual and seasonal distributions of events, which is demonstrated by 50 maximum events in the Czech Republic during the period 1961-2010, including the June 2013 floods.
C. K. Folland, J. Hannaford, J. P. Bloomfield, M. Kendon, C. Svensson, B. P. Marchant, J. Prior, and E. Wallace
Hydrol. Earth Syst. Sci., 19, 2353–2375, https://doi.org/10.5194/hess-19-2353-2015, https://doi.org/10.5194/hess-19-2353-2015, 2015
Short summary
Short summary
The English Lowlands is a heavily populated, water-stressed region, which is vulnerable to long droughts typically associated with dry winters. We conduct a long-term (1910-present) quantitative analysis of precipitation, flow and groundwater droughts for the region, and then review potential climatic drivers. No single driver is dominant, but we demonstrate a physical link between La Nina conditions, winter rainfall and long droughts in the region.
N. Helbig, A. van Herwijnen, J. Magnusson, and T. Jonas
Hydrol. Earth Syst. Sci., 19, 1339–1351, https://doi.org/10.5194/hess-19-1339-2015, https://doi.org/10.5194/hess-19-1339-2015, 2015
W. J. Shuttleworth
Hydrol. Earth Syst. Sci., 18, 4403–4406, https://doi.org/10.5194/hess-18-4403-2014, https://doi.org/10.5194/hess-18-4403-2014, 2014
Short summary
Short summary
This paper explains the Matt-Shuttleworth approach clearly, simply and concisely. It shows how this approach can be implemented using a few simple equations and provides access to ancillary calculation resources that can be used for such implementation. If the crop water requirement community considered it preferable to use the Penman-Monteith equation to estimate crop water requirements directly for all crops, this could now be done using the Matt-Shuttleworth approach.
I. Masih, S. Maskey, F. E. F. Mussá, and P. Trambauer
Hydrol. Earth Syst. Sci., 18, 3635–3649, https://doi.org/10.5194/hess-18-3635-2014, https://doi.org/10.5194/hess-18-3635-2014, 2014
D. C. Verdon-Kidd and A. S. Kiem
Hydrol. Earth Syst. Sci., 18, 2257–2264, https://doi.org/10.5194/hess-18-2257-2014, https://doi.org/10.5194/hess-18-2257-2014, 2014
H. F. Goessling and C. H. Reick
Hydrol. Earth Syst. Sci., 17, 4133–4142, https://doi.org/10.5194/hess-17-4133-2013, https://doi.org/10.5194/hess-17-4133-2013, 2013
P. Brigode, Z. Mićović, P. Bernardara, E. Paquet, F. Garavaglia, J. Gailhard, and P. Ribstein
Hydrol. Earth Syst. Sci., 17, 1455–1473, https://doi.org/10.5194/hess-17-1455-2013, https://doi.org/10.5194/hess-17-1455-2013, 2013
D. Windhorst, T. Waltz, E. Timbe, H.-G. Frede, and L. Breuer
Hydrol. Earth Syst. Sci., 17, 409–419, https://doi.org/10.5194/hess-17-409-2013, https://doi.org/10.5194/hess-17-409-2013, 2013
H. Mittelbach and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 16, 2169–2179, https://doi.org/10.5194/hess-16-2169-2012, https://doi.org/10.5194/hess-16-2169-2012, 2012
A. J. E. Gallant, A. S. Kiem, D. C. Verdon-Kidd, R. C. Stone, and D. J. Karoly
Hydrol. Earth Syst. Sci., 16, 2049–2068, https://doi.org/10.5194/hess-16-2049-2012, https://doi.org/10.5194/hess-16-2049-2012, 2012
B. Schaefli, R. J. van der Ent, R. Woods, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 16, 1863–1878, https://doi.org/10.5194/hess-16-1863-2012, https://doi.org/10.5194/hess-16-1863-2012, 2012
X. Han, X. Li, H. J. Hendricks Franssen, H. Vereecken, and C. Montzka
Hydrol. Earth Syst. Sci., 16, 1349–1363, https://doi.org/10.5194/hess-16-1349-2012, https://doi.org/10.5194/hess-16-1349-2012, 2012
X. Xiao, H. C. Zuo, Q. D. Yang, S. J. Wang, L. J. Wang, J. W. Chen, B. L. Chen, and B. D. Zhang
Hydrol. Earth Syst. Sci., 16, 893–910, https://doi.org/10.5194/hess-16-893-2012, https://doi.org/10.5194/hess-16-893-2012, 2012
D. Zoccatelli, M. Borga, A. Viglione, G. B. Chirico, and G. Blöschl
Hydrol. Earth Syst. Sci., 15, 3767–3783, https://doi.org/10.5194/hess-15-3767-2011, https://doi.org/10.5194/hess-15-3767-2011, 2011
G. Lenderink, H. Y. Mok, T. C. Lee, and G. J. van Oldenborgh
Hydrol. Earth Syst. Sci., 15, 3033–3041, https://doi.org/10.5194/hess-15-3033-2011, https://doi.org/10.5194/hess-15-3033-2011, 2011
J. Lorenzo-Lacruz, S. M. Vicente-Serrano, J. I. López-Moreno, J. C. González-Hidalgo, and E. Morán-Tejeda
Hydrol. Earth Syst. Sci., 15, 2581–2597, https://doi.org/10.5194/hess-15-2581-2011, https://doi.org/10.5194/hess-15-2581-2011, 2011
M. J. van den Berg, S. Vandenberghe, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 15, 1445–1457, https://doi.org/10.5194/hess-15-1445-2011, https://doi.org/10.5194/hess-15-1445-2011, 2011
A. S. Kiem and D. C. Verdon-Kidd
Hydrol. Earth Syst. Sci., 14, 433–445, https://doi.org/10.5194/hess-14-433-2010, https://doi.org/10.5194/hess-14-433-2010, 2010
Cited articles
Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., and Lettenmaier, D. P.:
Twentieth-century drought in the conterminous United States, J. Hydrometeorol., 6, 985–1001, https://doi.org/10.1175/Jhm450.1, 2005.
Beaudoing, H., Rodell, M., and NASA/GSFC/HSL: GLDAS Noah Land Surface Model L4 monthly 0.25 × 0.25 degree V2.0, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/9SQ1B3ZXP2C5, 2019.
Bi, H., Ma, J., Zheng, W., and Zeng, J.:
Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau, J. Geophys. Res.-Atmos., 121, 2658–2678, https://doi.org/10.1002/2015JD024131, 2016.
Chen, H., Zhu, Q., Peng, C., Wu, N., Wang, Y., Fang, X., Gao, Y., Zhu, D., Yang, G., Tian, J., Kang, X., Piao, S., Ouyang, H., Xiang, W., Luo, Z., Jiang, H., Song, X., Zhang, Y., Yu, G., Zhao, X., Gong, P., Yao, T., and Wu, J. H.:
The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau, Glob. Change Biol., 19, 2940–2955, https://doi.org/10.1111/gcb.12277, 2013.
Chen, Y., Yang, K., Qin, J., Zhao, L., Tang, W., and Han, M.:
Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau, J. Geophys. Res.-Atmos, 118, 4466–4475, https://doi.org/10.1002/jgrd.50301, 2013.
Cheng, G. and Wu, T.:
Responses of permafrost to climate change and their environmental significance, Qinghai–Tibet Plateau. J. Geophys. Res., 112, F02S03, https://doi.org/10.1029/2006JF000631, 2007.
Chinese Meteorological Administration (CMA): China land-surface meteorological daily dataset, CMA [data set], http://data.cma.cn/, last access: 10 May 2020.
Cuo, L., Zhang, Y., Zhu, F., and Liang, L.:
Characteristics and changes of streamflow on the Tibetan Plateau: A review, J. Hydrol. Reg. Stud., 2, 49–68, https://doi.org/10.1016/j.ejrh.2014.08.004, 2014.
Diro, G. T. and Sushama, L.:
The role of soil moisture-atmosphere interaction on future hot-spells over North America as simulated by the Canadian Regional Climate Model (CRCM5), J. Climate, 30, 5041–5058, https://doi.org/10.1175/JCLI-D-16-0068.1, 2017.
Dorigo, W. A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T.: The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements, Hydrol. Earth Syst. Sci., 15, 1675–1698, https://doi.org/10.5194/hess-15-1675-2011, 2011 (data available at: https://ismn.geo.tuwien.ac.at/en/, last acces: 20 May 2022).
Duan, A. and Xiao, Z.:
Does the climate warming hiatus exist over the Tibetan Plateau?, Sci. Rep., 5, 13711, https://doi.org/10.1038/srep13711, 2015.
European Center for Medium-Range Weather Forecast (ECMWF): ERA5-Land monthly averaged data from 1950 to present, ECMWF [data set], https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means, last acces: 26 June 2022.
Fu, Q. and Feng, S.:
Responses of terrestrial aridity to global warming, J. Geophys. Res.-Atmos., 119, 7863–75, https://doi.org/10.1002/2014JD021608, 2014.
Gao, G., Chen, D. Xu, C. Y., and Simelton, E.:
Trend of estimated actual evapotranspiration over China during 1960–2002, J. Geophys. Res.-Atmos., 112, D11120, https://doi.org/10.1029/2006JD008010, 2007.
Gao, Y., Cuo, L., and Zhang, Y.:
Changes in moisture flux over the Tibetan Plateau during 1979–2011 and possible mechanisms, J. Clim., 27, 1876–1893, https://doi.org/10.1175/Jcli-D-13-00321.1, 2014.
Guttman, N. B.:
Accepting the standardized precipitation index: A calculation algorithm, J. Am. Water Resour. As., 35, 311–322, https://doi.org/10.1111/j.1752-1688.1999.tb03592.x,1999.
Han, C., Ma, Y., Wang, B., Zhong, L., Ma, W., Chen, X., and Su, Z.:
Monthly mean evapotranspiration data set of the Tibet Plateau (2001–2018), National Tibetan Plateau Data Center, https://doi.org/10.11888/Hydro.tpdc.270995, CSTR: 18406.11.Hydro.tpdc.270995, 2020.
Han, C., Ma, Y., Wang, B., Zhong, L., Ma, W., Chen, X., and Su, Z.:
Long-term variations in actual evapotranspiration over the Tibetan Plateau, Earth Syst. Sci. Data, 13, 3513–3524, https://doi.org/10.5194/essd-13-3513-2021, 2021.
He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., and Li, X.:
The first high-resolution meteorological forcing dataset for land process studies over China, Scientific Data, 7, 1–11, https://doi.org/10.1038/s41597-020-0369-y,2020.
Herrera-Estrada, J. E., Satoh, Y., and Sheffield, J.:
SpatioTemporal dynamics of global drought, Geophys. Res. Lett., 44, 2254–2263, https://doi.org/10.1002/2016GL071768, 2017.
Koster, R. D., Mahanama, S. P. P., Yamada, T. J., Balsamo, G., Berg, A. A., Boisserie, M., Dirmeyer, P. A., Doblas-Reyes, F. J., Drewitt, G., Gordon, C. T., Guo, Z., Jeong, J. H., Lee, W. S., Li, Z., Luo, L., Malyshev, S., Merryfield, W. J., Seneviratne, S. I., Stanelle, T., van den Hurk, B. J. J. M., Vitart, F., and Wood, E. F.:
The Second Phase of the Global Land-Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill, J. Hydrometeorol., 12, 805–822, https://doi.org/10.1175/2011jhm1365.1, 2011.
Koster, R. D., Chang, Y., Wang, H., and Schubert, S. D.:
Impacts of Local Soil Moisture Anomalies on the Atmospheric Circulation and on Remote Surface Meteorological Fields during Boreal Summer: A Comprehensive Analysis over North America, J. Climate, 29, 7345–7364, https://doi.org/10.1175/jcli-d-16-0192.1, 2016.
Kuang, X. and Jiao, J. J.:
Review on climate change on the Tibetan Plateau during the last half century, J. Geophys. Res.-Atmos., 121, 3979–4007, https://doi.org/10.1002/2015jd024728, 2016.
Lansu, E. M., van Heerwaarden, C. C., Stegehuis, A. I., and Teuling, A. J.:
Atmospheric Aridity and Apparent Soil Moisture Drought in European Forest During Heat Waves, Geophys. Res. Lett., 47, e2020GL087091, https://doi.org/10.1029/2020GL087091, 2020.
Li, H., Dai, A., Zhou, T., and Lu, J.:
Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000, Clim. Dyn., 34, 501–514, https://doi.org/10.1007/s00382-008-0482-7, 2010.
Li, J. and Zeng, Q.:
A unified monsoon index, Geophys Res. Lett., 29, 1274, https://doi.org/10.1029/2001GL013874, 2002 (data availavble at: http://ljp.gcess.cn/dct/page/65540, last acces: 23 March 2021).
Li, Y., Su, F., Chen, D., and Tang, Q.: Atmospheric water transport to the endorheic Tibetan Plateau and its effect on the hydrological status in the region, J. Geophys. Res.-Atmos, 124, 12864–12881, https://doi.org/10.1029/2019JD031297, 2019.
Liu, X. and Chen, B.:
Climatic warming in the Tibetan Plateau during recent decades, Int. J. Climatol., 20, 1729–1742, https://doi.org/10.1002/1097-0088[20001130]20:14<1729::AID-JOC556>3.0.CO;2-Y, 2000.
Liu, Y., Liu, Y., and Wang, W.:
Inter-comparison of satellite-retrieved and Global Land Data Assimilation System-simulated soil moisture datasets for global drought analysis, Remote Sens. Environ., 220, 1–18, https://doi.org/10.1016/j.rse.2018.10.026, 2019a.
Liu, Y., Zhu, Y., Ren, L., Singh, V. P., Yong, B., Jiang, S., and Yang, X.:
Understanding the SpatioTemporal Links Between Meteorological and Hydrological Droughts From a Three-Dimensional Perspective. J. Geophys. Res.-Atmos., 124, 3090–3109, https://doi.org/10.1029/2018JD028947, 2019b.
Liu, Y., Liu, Y., Wang, W., and Zhou, H.:
Propagation of soil moisture droughts in a hotspot region: Spatial patternand Temporal trajectory, J. Hydrol., 593, 125906, https://doi.org/10.1016/j.jhydrol.2020.125906, 2021.
Lloyd-Hughes, B.:
A spatio-Temporal structure-based approach to drought characterisation: a structure-based approach to drought characterization, Int. J. Climatol., 32, 406–418, https://doi.org/10.1002/joc.2280, 2012.
Ma, N. and Zhang, Y.:
Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation, Agr. Forest Meteorol., 317, 108887, https://doi.org/10.1016/j.agrformet.2022.108887,2022.
Muñoz-Sabater, J., Dutra, E., Balsamo, G., Schepers, D., Albergel, C., Boussetta, S., Agusti-Panareda, A., Zsoter, E., and Hersbach, H.:
ERA5-Land: An Improved Version of the ERA5 Reanalysis Land Component, Joint ISWG and LSA-SAF Workshop IPMA, Lisbon, 26–28 June, 26–28, 2018.
National Oceanic and Atmosphere Administration National Centers for Environmental Information (NOAA NCEI): Pacific Decadal Oscillation (PDO), NOAA NCEI [data set], https://www.ncdc.noaa.gov/teleconnections/pdo/, last acces: 10 June 2020.
National Oceanic and Atmosphere Administration Physical Sciences Laboratory (NOAA PSL): Monthly or seasonal time series of climate variables, NOAA PSL [data set], http://www.psl.noaa.gov/data/, last acces: 20 June 2020.
Pettitt, A.:
A nonparametric approach to the change-point problem, Appl. Stat., 28, 126–135, 1979.
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.:
Investigating soil moisture–climate interactions in a changing climate: A review, Earth Sci. Rev., 99, 125–161, https://doi.org/10.1016/j.earscirev.2010.02.004, 2010.
Sheffield, J., Goteti, G., and Wood, E. F.:
Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling, J. Climate, 19, 3088–3111, https://doi.org/10.1175/JCLI3790.1, 2006.
Su, Z., Wen, J., Dente, L., van der Velde, R., Wang, L., Ma, Y., Yang, K., and Hu, Z.:
The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products, Hydrol. Earth Syst. Sci., 15, 2303–2316, https://doi.org/10.5194/hess-15-2303-2011, 2011.
Su, Z., Timmermans, W., Zeng, Y., Schulz, J., John, V. O., Roebeling, R. A., Poli, P., Tan, D., Kaspar, F., Kaiser-Weiss, A. K., Swinnen, E., Tote, C., Gregow, H., Manninen, T., Riihela, A., Calvet, J. C., Ma, Y., and Wen, J.:
AN OVERVIEW OF EUROPEAN EFFORTS IN GENERATING CLIMATE DATA RECORDS, B. Am. Meteorol. Soc., 99, 349–359, https://doi.org/10.1175/BAMS-D-16-0074.1, 2018.
Su, Z., Ma, Y., Chen, X., Dong, X., Du, J., Han, C., He, Y., Hofste, J. G., Li, M., Li, M., Lv, S., Ma, W., Polo, M. J., Peng, J., Qian, H., Sobrino, J., Van der Velde, R., Wen, J., Wang, B., Wang, X., Yu, L., Zhang, P., Zhao, H., Zheng, H., Zheng, D., Zhong, L., and Zeng, Y.:
Monitoring Water and Energy Cycles at Climate Scale in the Third Pole Environment (CLIMATE-TPE), Remote Sens.-Basel, 13, 3661, https://doi.org/10.3390/rs13183661, 2021.
Sun, J., Yang, K., and Guo, W.:
Why Has the Inner Tibetan Plateau Become Wetter since the Mid-1990s?, J. Climate, 33, 8507–8522, https://doi.org/10.1175/Jcli-D-19-0471.1, 2020.
Tallaksen, L. M. and Van Lanen, H. A. J. (Eds.): Hydrological drought: processes and estimation methods for streamflow and groundwater, Developments in water science, 48, Elsevier Science B. V., Amsterdam, the Netherlands, 2004.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.:
An overview of CMIP5 and the experiment design, B. Am. Meteorol. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Teng, H. F., Luo, Z. K., Chang, J. F., Shi, Z., Chen, S. C., Zhou, Y., Ciais, P., and Tian, H. Q.:
Climate change-induced greening on the Tibetan Plateau modulated by mountainous characteristics, Environ. Res. Lett., 16, 064064, https://doi.org/10.1088/1748-9326/abfeeb, 2021.
Van Loon, A. F. and Van Lanen, H. A. J.:
A process-based typology of hydrological drought, Hydrol. Earth Syst. Sci., 16, 1915–1946, https://doi.org/10.5194/hess-16-1915-2012, 2012.
Wan, W., Long, D., Hong, Y., Ma, Y., Yuan, Y., Xiao, P., Duan, H., Han, Z., and Gu, X.:
A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014, Scientific Data, 3, 160039, https://doi.org/10.1038/sdata.2016.39, 2016.
Wanders, N., Bierkens, M. F. P., Jong, S. M., Roo, A., and Karssenberg, D.:
The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models, Water Resour. Res., 50, 6874–6891, https://doi.org/10.1002/2013WR014639, 2014.
Wang, B., Wu, R., and Lau, K. M.:
Interannual variability of Asian summer monsoon: Contrast between the Indian and western North Pacific–East Asian monsoons, J. Climate, 14, 4073–4090, https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2, 2001 (data available at: http://apdrc.soest.hawaii.edu/projects/monsoon/seasonal-monidx.html, last acces: 10 March 2021).
Wang, B., Bao, Q., Hoskins, B., Wu, G., and Liu, Y.:
Tibetan Plateau warming and precipitation changes in East Asia, Geophys. Res. Lett., 35, L14702, https://doi.org/10.1029/2008GL034330, 2008.
Wang, T., Miao, J., Sun, J., and Fu, Y.:
Intensified East Asian summer monsoon and associated precipitation mode shift under the 1.5 ∘C global warming target, Adv. Climate Change Res., 9, 102–111, https://doi.org/10.1016/j.accre.2017.12.002, 2018.
Wang, Z., Duan, A., Yang, S., and Ullah, K.:
Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau, J. Geophys Res.-Atmos., 122, 614–630, https://doi.org/10.1002/2016JD025515, 2017.
Xie, H. and Zhu, X.:
Reference evapotranspiration trends and their sensitivity to climatic change on the Tibetan Plateau (1970–2009), Hydrol. Process, 27, 3685–3693, https://doi.org/10.1002/hyp.9487, 2013.
Xie, H., Ye, J. Liu, X., and E, C.:
Warming and drying trends on the Tibetan Plateau (1971–2005), Theor. Appl. Climatol., 101, 241–253, https://doi.org/10.1007/s00704-009-0215-9, 2010.
Xing, Z., Fan, L., Zhao, L., De Lannoy, G., Frappart, F., Peng, J., Li, X., Zeng, J., Al-Yaari, A., Yang, K., Zhao, T., Shi, J., Wang, M., Liu, X., Hu, G., Xiao, Y., Du, E., Li, R., Qiao, Y., Shi, J., Wen, J., Ma, M., and Wigneron, J. P.:
A first assessment of satellite and reanalysis estimates of surface and root-zone soil moisture over the permafrost region of Qinghai-Tibet Plateau, Remote Sens. Environ., 206, 112666, https://doi.org/10.1016/j.rse.2021.112666,2021.
Xu, K., Yang, D., Yang, H., Li, Z., Qin, Y., and Shen, Y.:
Spatio-Temporal variation of drought in China during 1961–2012: A climatic perspective, J. Hydrol., 526,253–264, https://doi.org/10.1016/j.jhydrol.2014.09.047, 2015.
Xu, Z., Gong, T., and Li, J.:
Decadal trend of climate in the Tibetan Plateau-regional Temperature and precipitation, Hydrol. Process, 22, 3056–3065, https://doi.org/10.1002/hyp.6892, 2008.
Xue, Y. K., Ma, Y., and Li, Q.:
Land–climate interaction over the Tibetan Plateau, Oxford Research Encyclopedia of Climate Science, https://doi.org/10.1093/acrefore/9780190228620.013.592, 2017.
Yanai, M., Li, C., and Song, Z.:
Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon, J. Meteorol. Soc. Jpn., 70, 319–351, https://doi.org/10.2151/jmsj1965.70.1B_319,1992.
Yang, K., Ye, B., Zhou, D., Wu, B., Foken, T., Qin, J., and Zhou, Z.:
Response of hydrological cycle to recent climate changes in the Tibetan Plateau, Clim. Change, 109, 517–534, https://doi.org/10.1007/s10584-011-0099-4, 2011.
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D., and Joswiak, D.:
Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings, Nat. Clim. Change, 2, 663–667, https://doi.org/10.1038/nclimate1580, 2012.
Yao, T., Xue, Y., Chen, D., Chen, F., Thompson, L., Cui, P., and Li, Q.:
Recent third pole's rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis, B. Am. Meteorol. Soc., 100, 423–444, https://doi.org/10.1175/BAMS-D-17-0057.1, 2019.
Yang, K., Wu, H., Qin, J., Lin, C.,Tang, W., and Chen, Y.:
Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review, Global Planet. Change, 112, 79–91, https://doi.org/10.1016/j.gloplacha.2013.12.001, 2014.
Yin, Y., Wu, S., Zhao, D., Zheng, D., and Pan, T.:
Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan Plateau, J. Geogr. Sci., 23, 195–207, https://doi.org/10.1007/s11442-013-1003-0, 2013.
You, Q., Min, J., Jiao, Y., Sillanpää, M., and Kang, S.:
Observed trend of diurnal temperature range in the Tibetan Plateau in recent decades, Int. J. Climatol., 36, 2633–2643, https://doi.org/10.1002/joc.4517, 2016.
Zhang, C., Tang, Q., Chen, D., van der Ent, R., Liu, X., Li, W., and Haile, G. G.:
Moisture Source Changes Contributed to Different Precipitation Changes over the Northern and Southern Tibetan Plateau, J. Hydrometeorol., 20, 217–229, https://doi.org/10.1175/Jhm-D-18-0094.1, 2019.
Zhang, D., Huang, J., Guan, X., and Chen, B.:
Long-term trends of precipitable water and precipitation over the Tibetan Plateau derived from satellite and surface measurements, J. Quant. Spectrosc. Ra., 122, 64–71, https://doi.org/10.1016/j.jqsrt.2012.11.028, 2013.
Zhang, L. and Zhou, T.:
Drought over East Asia: A Review, J. Climate, 28, 3375–3399, https://doi.org/10.1175/Jcli-D-14-00259.1, 2015.
Zhang, Q., Fan, K., Singh, V. P., Sun, P., and Shi, P.:
Evaluation of remotely sensed and reanalysis soil moisture against in situ observations on the Himalayan-Tibetan plateau, J. Geophys. Res.-Atmos., 123, 7132–7148, https://doi.org/10.1029/2017jd027763, 2018.
Zhang, Q., Fan, K., and Singh V. P.:
Is Himalayan-Tibetan Plateau “drying”? Historical estimations and future trends of surface soil moisture, Sci. Total Environ., 658, 374–384, https://doi.org/10.1016/j.scitotenv.2018.12.209, 2019.
Zhang, X., Ren, Y., Yin, Z., Lin, Z., and Zheng, D.:
Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai–Tibetan Plateau during 1971–2004, J. Geophys. Res.-Atmos., 114, D15105, https://doi.org/10.1029/2009JD011753, 2009.
Zeng, J., Li, Z., Chen, Q., Bi, H., Qiu, J., and Zou, P.:
Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations, Remote Sens. Environ., 163, 91–110, https://doi.org/10.1016/j.rse.2015.03.008, 2015.
Zeng, J., Shi, P., Chen, K., Ma, H., Bi, H., and Cui, C.:
Assessment and Error Analysis of Satellite Soil Moisture Products Over the Third Pole, IEEE T. Geosci. Remote, 60, 4405418, https://doi.org/10.1109/TGRS.2021.3116078, 2022.
Zhong, L., Ma, Y., Salama, M. S., and Su., Z.:
Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau, Climatic Change, 103, 519–535, https://doi.org/10.1007/s10584-009-9787-8, 2010.
Zhou, C., Zhao, P., and Chen, J.:
The Interdecadal Change of Summer Water Vapor over the Tibetan Plateau and Associated Mechanisms, J. Climate, 32, 4103–4119, https://doi.org/10.1175/Jcli-D-18-0364.1, 2019.
Zhou, J., Wang, L., Zhong, X., Yao, T., Qi, J., Wang, Y., and Xue, Y.:
Quantifying the major drivers for the expanding lakes in the interior Tibetan Plateau, Sci. Bull., 67, 474–478, https://doi.org/10.1016/j.scib.2021.11.010, 2022.
Zhu, Y., Liu, Y., Wang, W., Vijay, P. S., Ma, X., and Yu, Z.:
Three dimensional characterization of meteorological and hydrological droughts and their probabilistic links, J. Hydrol., 578, 124016, https://doi.org/10.1016/j.jhydrol.2019.124016, 2019.
Zwieback, S., Paulik, C., and Wagner, W.:
Frozen soil detection based on advanced scatterometer observations and air Temperature data as part of soil moisture retrieval, Remote Sens.-Basel, 7, 3206–3231, https://doi.org/10.3390/rs70303206, 2015.
Short summary
This study investigated the wetting and drying of the Tibetan Plateau (TP) from variations in soil moisture (SM) droughts. We found the TP experienced an abrupt and significant wetting shift in the middle to late 1990s, not merely the steady trends given in literature. This shift is dominated by precipitation and attributed to the North Atlantic Oscillation. The wetting shift indicates a climate regime change. Our innovative work provides implications for further knowledge of the TP climate.
This study investigated the wetting and drying of the Tibetan Plateau (TP) from variations in...