Articles | Volume 26, issue 12
https://doi.org/10.5194/hess-26-3125-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-3125-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Morphological controls on surface runoff: an interpretation of steady-state energy patterns, maximum power states and dissipation regimes within a thermodynamic framework
Samuel Schroers
CORRESPONDING AUTHOR
Institute of Water Resources and River Basin Management, Karlsruhe
Institute of Technology – KIT, Karlsruhe, Germany
Olivier Eiff
Institute for Hydromechanics, Karlsruhe Institute of Technology –
KIT, Karlsruhe, Germany
Axel Kleidon
Max Planck Institute for Biogeochemistry, Jena, Germany
Ulrike Scherer
Engler-Bunte-Institut, Water Chemistry and Water Technology – KIT,
Karlsruhe, Germany
Jan Wienhöfer
Institute of Water Resources and River Basin Management, Karlsruhe
Institute of Technology – KIT, Karlsruhe, Germany
Erwin Zehe
Institute of Water Resources and River Basin Management, Karlsruhe
Institute of Technology – KIT, Karlsruhe, Germany
Related authors
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023, https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Short summary
The hydrological cycle shapes our landscape. With an accelerating change of the world's climate and hydrological dynamics, concepts of evolution of natural systems become more important. In this study, we elaborated a thermodynamic framework for runoff and sediment transport and show from model results as well as from measurements during extreme events that the developed concept is useful for understanding the evolution of the system's mass, energy, and entropy fluxes.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-79, https://doi.org/10.5194/hess-2021-79, 2021
Manuscript not accepted for further review
Short summary
Short summary
In this study we ask the basic question why surface runoff forms drainage networks and confluences at all and how structural macro form and micro topography is a result of thermodynamic laws. We find that on a macro level hillslopes should tend from negative exponential towards exponential forms and that on a micro level the formation of rills goes hand in hand with drainage network formation of river basins. We hypothesize that we can learn more about erosion processes if we extend this theory.
Dan Elhanati, Erwin Zehe, Ishai Dror, and Brian Berkowitz
EGUsphere, https://doi.org/10.5194/egusphere-2025-3365, https://doi.org/10.5194/egusphere-2025-3365, 2025
Short summary
Short summary
Measurements of water isotopes are often used to estimate water transit time distributions and aquifer storage thickness in catchments. However, laboratory-scale measurements show that water isotopes exhibit transport behavior identical to that of inert chemical tracers rather than of pure water. The measured mean tracer and apparent mean water velocities are not necessarily equal; recognition of this inequality is critical when estimating catchment properties such as aquifer storage thickness.
Karl Nicolaus van Zweel, Laurent Gourdol, Jean François Iffly, Loïc Léonard, François Barnich, Laurent Pfister, Erwin Zehe, and Christophe Hissler
Earth Syst. Sci. Data, 17, 2217–2229, https://doi.org/10.5194/essd-17-2217-2025, https://doi.org/10.5194/essd-17-2217-2025, 2025
Short summary
Short summary
Our study monitored groundwater in a Luxembourg forest over a year to understand water and chemical changes. We found seasonal variations in water chemistry, influenced by rainfall and soil interactions. These data help predict environmental responses and manage water resources better. By measuring key parameters like pH and dissolved oxygen, our research provides valuable insights into groundwater behaviour and serves as a resource for future environmental studies.
Svenja Hoffmeister, Sibylle Kathrin Hassler, Friederike Lang, Rebekka Maier, Betserai Isaac Nyoka, and Erwin Zehe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1719, https://doi.org/10.5194/egusphere-2025-1719, 2025
Short summary
Short summary
Combining trees and crops in agroforestry systems can potentially be a sustainable option for agriculture facing climate change impacts. We used methods from soil science and hydrology to assess the effect of adding gliricidia trees to maize fields, on carbon content, soil properties and water availability. Our results show a clear increase in carbon contents and effects on physical soil characteristics and water uptake and retention as a consequence of the agroforestry treatment.
Evgeny Shavelzon, Erwin Zehe, and Yaniv Edery
EGUsphere, https://doi.org/10.22541/essoar.173687429.91307309/v1, https://doi.org/10.22541/essoar.173687429.91307309/v1, 2025
Short summary
Short summary
We analyze how chemical reactions and fluid movement interact in porous materials, focusing on how water paths form in underground environments. Using a thermodynamic approach, we track energy dissipation and entropy changes to understand this process. Over time, water channels become more defined, reducing chemical mixing and energy loss. Eventually, the system stabilizes, with flow concentrated in efficient pathways, minimizing further reactions and energy use.
Ashish Manoj J, Ralf Loritz, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-375, https://doi.org/10.5194/hess-2024-375, 2024
Revised manuscript under review for HESS
Short summary
Short summary
Traditional hydrological models typically operate in a forward mode, simulating streamflow and other catchment fluxes based on precipitation input. In this study, we explored the possibility of reversing this process—inferring precipitation from streamflow data—to improve flood event modelling. We then used the generated precipitation series to run hydrological models, resulting in more accurate estimates of streamflow and soil moisture.
Jonathan Minz, Axel Kleidon, and Nsilulu T. Mbungu
Wind Energ. Sci., 9, 2147–2169, https://doi.org/10.5194/wes-9-2147-2024, https://doi.org/10.5194/wes-9-2147-2024, 2024
Short summary
Short summary
Estimates of power output from regional wind turbine deployments in energy scenarios assume that the impact of the atmospheric feedback on them is minimal. But numerical models show that the impact is large at the proposed scales of future deployment. We show that this impact can be captured by accounting only for the kinetic energy removed by turbines from the atmosphere. This can be easily applied to energy scenarios and leads to more physically representative estimates.
Pin-Hsin Hu, Christian H. Reick, Reiner Schnur, Axel Kleidon, and Martin Claussen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-111, https://doi.org/10.5194/gmd-2024-111, 2024
Revised manuscript under review for GMD
Short summary
Short summary
We introduce the new plant functional diversity model JeDi-BACH, a novel tool that integrates the Jena Diversity Model (JeDi) within the land component of the ICON Earth System Model. JeDi-BACH captures a richer set of plant trait variations based on environmental filtering and functional tradeoffs without a priori knowledge of the vegetation types. JeDi-BACH represents a significant advancement in modeling the complex interactions between plant functional diversity and climate.
Svenja Hoffmeister, Rafael Bohn Reckziegel, Ben du Toit, Sibylle K. Hassler, Florian Kestel, Rebekka Maier, Jonathan P. Sheppard, and Erwin Zehe
Hydrol. Earth Syst. Sci., 28, 3963–3982, https://doi.org/10.5194/hess-28-3963-2024, https://doi.org/10.5194/hess-28-3963-2024, 2024
Short summary
Short summary
We studied a tree–crop ecosystem consisting of a blackberry field and an alder windbreak. In the water-scarce region, irrigation provides sufficient water for plant growth. The windbreak lowers the irrigation amount by reducing wind speed and therefore water transport into the atmosphere. These ecosystems could provide sustainable use of water-scarce landscapes, and we studied the complex interactions by observing several aspects (e.g. soil, nutrients, carbon assimilation, water).
Yinglin Tian, Deyu Zhong, Sarosh Alam Ghausi, Guangqian Wang, and Axel Kleidon
Earth Syst. Dynam., 14, 1363–1374, https://doi.org/10.5194/esd-14-1363-2023, https://doi.org/10.5194/esd-14-1363-2023, 2023
Short summary
Short summary
Downward longwave radiation (Rld) is critical for the surface energy budget, but its climatological variation on a global scale is not yet well understood physically. We use a semi-empirical equation derived by Brutsaert (1975) to identify the controlling role that atmospheric heat storage plays in spatiotemporal variations of Rld. Our work helps us to better understand aspects of climate variability, extreme events, and global warming by linking these to the mechanistic contributions of Rld.
Axel Kleidon
Earth Syst. Dynam., 14, 861–896, https://doi.org/10.5194/esd-14-861-2023, https://doi.org/10.5194/esd-14-861-2023, 2023
Short summary
Short summary
The second law of thermodynamics has long intrigued scientists, but what role does it play in the Earth system? This review shows that its main role is that it shapes the conversion of sunlight into work. This work can then maintain the dynamics of the physical climate system, the biosphere, and human societies. The relevance of it is that apparently many processes work at their limits, directly or indirectly, so they become predictable by simple means.
Samuel Schroers, Ulrike Scherer, and Erwin Zehe
Hydrol. Earth Syst. Sci., 27, 2535–2557, https://doi.org/10.5194/hess-27-2535-2023, https://doi.org/10.5194/hess-27-2535-2023, 2023
Short summary
Short summary
The hydrological cycle shapes our landscape. With an accelerating change of the world's climate and hydrological dynamics, concepts of evolution of natural systems become more important. In this study, we elaborated a thermodynamic framework for runoff and sediment transport and show from model results as well as from measurements during extreme events that the developed concept is useful for understanding the evolution of the system's mass, energy, and entropy fluxes.
Axel Kleidon, Gabriele Messori, Somnath Baidya Roy, Ira Didenkulova, and Ning Zeng
Earth Syst. Dynam., 14, 241–242, https://doi.org/10.5194/esd-14-241-2023, https://doi.org/10.5194/esd-14-241-2023, 2023
Judith Meyer, Malte Neuper, Luca Mathias, Erwin Zehe, and Laurent Pfister
Hydrol. Earth Syst. Sci., 26, 6163–6183, https://doi.org/10.5194/hess-26-6163-2022, https://doi.org/10.5194/hess-26-6163-2022, 2022
Short summary
Short summary
We identified and analysed the major atmospheric components of rain-intense thunderstorms that can eventually lead to flash floods: high atmospheric moisture, sufficient latent instability, and weak thunderstorm cell motion. Between 1981 and 2020, atmospheric conditions became likelier to support strong thunderstorms. However, the occurrence of extreme rainfall events as well as their rainfall intensity remained mostly unchanged.
Ralf Loritz, Maoya Bassiouni, Anke Hildebrandt, Sibylle K. Hassler, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 4757–4771, https://doi.org/10.5194/hess-26-4757-2022, https://doi.org/10.5194/hess-26-4757-2022, 2022
Short summary
Short summary
In this study, we combine a deep-learning approach that predicts sap flow with a hydrological model to improve soil moisture and transpiration estimates at the catchment scale. Our results highlight that hybrid-model approaches, combining machine learning with physically based models, are a promising way to improve our ability to make hydrological predictions.
Sarosh Alam Ghausi, Subimal Ghosh, and Axel Kleidon
Hydrol. Earth Syst. Sci., 26, 4431–4446, https://doi.org/10.5194/hess-26-4431-2022, https://doi.org/10.5194/hess-26-4431-2022, 2022
Short summary
Short summary
The observed response of extreme precipitation to global warming remains unclear with significant regional variations. We show that a large part of this uncertainty can be removed when the imprint of clouds in surface temperatures is removed. We used a thermodynamic systems approach to remove the cloud radiative effect from temperatures. We then found that precipitation extremes intensified with global warming at positive rates which is consistent with physical arguments and model simulations.
Alexander Sternagel, Ralf Loritz, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 26, 1615–1629, https://doi.org/10.5194/hess-26-1615-2022, https://doi.org/10.5194/hess-26-1615-2022, 2022
Short summary
Short summary
We present a (physically based) Lagrangian approach to simulate diffusive mixing processes on the pore scale beyond perfectly mixed conditions. Results show the feasibility of the approach for reproducing measured mixing times and concentrations of isotopes over pore sizes and that typical shapes of breakthrough curves (normally associated with non-uniform transport in heterogeneous soils) may also occur as a result of imperfect subscale mixing in a macroscopically homogeneous soil matrix.
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021, https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary
Short summary
This study uses the concepts of entropy and work to quantify and explain the emergence of preferential flow and transport in heterogeneous saturated porous media. We found that the downstream concentration of solutes in preferential pathways implies a downstream declining entropy in the transverse distribution of solute transport pathways. Preferential flow patterns with lower entropies emerged within media of higher heterogeneity – a stronger self-organization despite a higher randomness.
Jan Bondy, Jan Wienhöfer, Laurent Pfister, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-174, https://doi.org/10.5194/hess-2021-174, 2021
Manuscript not accepted for further review
Short summary
Short summary
The Budyko curve is a widely-used and simple framework to predict the mean water balance of river catchments. While many catchments are in close accordance with the Budyko curve, others show more or less significant deviations. Our study aims at better understanding the role of soil storage characteristics in the mean water balance and offsets from the Budyko curve. Soil storage proved to be a very sensitive property and potentially explains significant deviations from the curve.
Alexander Sternagel, Ralf Loritz, Julian Klaus, Brian Berkowitz, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 1483–1508, https://doi.org/10.5194/hess-25-1483-2021, https://doi.org/10.5194/hess-25-1483-2021, 2021
Short summary
Short summary
The key innovation of the study is a method to simulate reactive solute transport in the vadose zone within a Lagrangian framework. We extend the LAST-Model with a method to account for non-linear sorption and first-order degradation processes during unsaturated transport of reactive substances in the matrix and macropores. Model evaluations using bromide and pesticide data from irrigation experiments under different flow conditions on various timescales show the feasibility of the method.
Samuel Schroers, Olivier Eiff, Axel Kleidon, Jan Wienhöfer, and Erwin Zehe
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-79, https://doi.org/10.5194/hess-2021-79, 2021
Manuscript not accepted for further review
Short summary
Short summary
In this study we ask the basic question why surface runoff forms drainage networks and confluences at all and how structural macro form and micro topography is a result of thermodynamic laws. We find that on a macro level hillslopes should tend from negative exponential towards exponential forms and that on a micro level the formation of rills goes hand in hand with drainage network formation of river basins. We hypothesize that we can learn more about erosion processes if we extend this theory.
Nicolas Björn Rodriguez, Laurent Pfister, Erwin Zehe, and Julian Klaus
Hydrol. Earth Syst. Sci., 25, 401–428, https://doi.org/10.5194/hess-25-401-2021, https://doi.org/10.5194/hess-25-401-2021, 2021
Short summary
Short summary
Different parts of water have often been used as tracers to determine the age of water in streams. The stable tracers, such as deuterium, are thought to be unable to reveal old water compared to the radioactive tracer called tritium. We used both tracers, measured in precipitation and in a stream in Luxembourg, to show that this is not necessarily true. It is, in fact, advantageous to use the two tracers together, and we recommend systematically using tritium in future studies.
Ralf Loritz, Markus Hrachowitz, Malte Neuper, and Erwin Zehe
Hydrol. Earth Syst. Sci., 25, 147–167, https://doi.org/10.5194/hess-25-147-2021, https://doi.org/10.5194/hess-25-147-2021, 2021
Short summary
Short summary
This study investigates the role and value of distributed rainfall in the runoff generation of a mesoscale catchment. We compare the performance of different hydrological models at different periods and show that a distributed model driven by distributed rainfall yields improved performances only during certain periods. We then step beyond this finding and develop a spatially adaptive model that is capable of dynamically adjusting its spatial model structure in time.
Conrad Jackisch, Samuel Knoblauch, Theresa Blume, Erwin Zehe, and Sibylle K. Hassler
Biogeosciences, 17, 5787–5808, https://doi.org/10.5194/bg-17-5787-2020, https://doi.org/10.5194/bg-17-5787-2020, 2020
Short summary
Short summary
We developed software to calculate the root water uptake (RWU) of beech tree roots from soil moisture dynamics. We present our approach and compare RWU to measured sap flow in the tree stem. The study relates to two sites that are similar in topography and weather but with contrasting soils. While sap flow is very similar between the two sites, the RWU is different. This suggests that soil characteristics have substantial influence. Our easy-to-implement RWU estimate may help further studies.
Axel Kleidon and Lee M. Miller
Geosci. Model Dev., 13, 4993–5005, https://doi.org/10.5194/gmd-13-4993-2020, https://doi.org/10.5194/gmd-13-4993-2020, 2020
Short summary
Short summary
When winds are used as renewable energy by more and more wind turbines, one needs to account for the effect of wind turbines on the atmospheric flow. The Kinetic Energy Budget of the Atmosphere (KEBA) model provides a simple, physics-based approach to account for this effect very well when compared to much more detailed numerical simulations with an atmospheric model. KEBA should be useful to derive lower, more realistic wind energy resource potentials of different regions.
Annu Panwar, Maik Renner, and Axel Kleidon
Hydrol. Earth Syst. Sci., 24, 4923–4942, https://doi.org/10.5194/hess-24-4923-2020, https://doi.org/10.5194/hess-24-4923-2020, 2020
Short summary
Short summary
Here we examine the effect of evaporative cooling across different vegetation types. Evaporation cools surface temperature significantly in short vegetation. In the forest, the high aerodynamic conductance explains 56 % of the reduced surface temperature. Therefore, the main cooling agent in the forest is the high aerodynamic conductance and not evaporation. Additionally, we propose the diurnal variation in surface temperature as being a potential indicator of evaporation in short vegetation.
Cited articles
Abrahams, A. D., Parsons, A. J., and Shiu-Hung, L.: Field experiments on the
resistance to overland flow on desert hillslopes, in: Erosion, Transport and Deposition Processes, Proceedings of the Jerusalem Workshop, March–April 1987, Jerusalem, IAHS Publ. 189, 1990.
Abrahams, A. D., Parsons, J. D., and Wainwright, J.: Resistance to overland flow on semiarid grassland and shrubland hillslopes, Walnut Gulch, southern
Arizona, J. Hydrol., 156, 431–446, 1994.
Achten, W. M. J., Dondeyne, S., Mugogo, S., Kafiriti, E., Poesen, J.,
Deckers, J., and Muys, B.: Gully erosion in South Eastern Tanzania: spatial
distribution and topographic thresholds, Z. Geomorphol., 52, 225–235,
https://doi.org/10.1127/0372-8854/2008/0052-0225, 2008.
Ali, M., Sterk, G., Seeger, M., Boersema, M., and Peters, P.: Effect of
hydraulic parameters on sediment transport capacity in overland flow over
erodible beds, Hydrol. Earth Syst. Sci., 16, 591–601, https://doi.org/10.5194/hess-16-591-2012, 2012.
Bagnold, R. A.: An approach to the sediment transport problem from general
physics, US Geol. Surv. Prof. Paper 422-I, US Geological Survey, https://pubs.usgs.gov/pp/0422i/report.pdf (last access: 15 June 2022), 1966.
Bejan, A. and Lorente, S.: The constructal law of design and evolution in
nature, Philos. T. Roy. Soc. Lond. B, 365, 1335–1347, https://doi.org/10.1098/rstb.2009.0302, 2010.
Berger, C., Schulze, M., Rieke-Zapp, D. H., and Schlunegger, F.: Rill
development and soil erosion: a laboratory study of slope and rainfall
intensity, Earth Surf. Proc. Land., 35, 1456–1467, 2010.
Berkowitz, B. and Zehe, E.: Surface water and groundwater: unifying
conceptualization and quantification of the two “water worlds”, Hydrol.
Earth Syst. Sci., 24, 1831–1858, https://doi.org/10.5194/hess-24-1831-2020, 2020.
Beven, K. J.: Equifinality and uncertainty in geomorphological modelling, in: The Scientific Nature of Geomorphology, edited by: Rhoads, B. L. and Thorn, C. E., Wiley, Chichester, 289–313, ISBN 0-471-96811-0, 1996.
Beven, K. J.: Robert E. Horton's perceptual model of infiltration processes,
Hydrol. Process., 18, 3447–3460, https://doi.org/10.1002/hyp.5740, 2004.
Dunne, T. and Black, R. D.: An experimental investigation of runoff production in permeable soils, Water Resour. Res., 6, 478–490, https://doi.org/10.1029/WR006i002p00478, 1970.
Dunne, T. and Dietrich, W. E.: Experimental investigation of Horton overland
flow on tropical hillslopes. Part II: Hydraulic characteristics and
hillslope hydrographs, Z. Geomorphol., 35, 60–80, 1980.
Emmett, W. W.: The Hydraulics of Overland Flow on Hillslopes, US Geol. Surv. Prof. Paper 662, US Geological Survey, https://pubs.usgs.gov/pp/0662a/report.pdf (last access: 15 June 2022), 1970.
Engman, T. E.: Roughness coefficients for routing surface runoff, J. Irrig. Drain. Eng., 112, 39–53, 1986.
Evans, R. and Taylor, J.: Some methods of directly assessing water erosion of
cultivated land – a comparison of measurements made on plots and in fields,
Prog. Phys. Geogr., 19, 115–129, 1995.
Faulkner, H.: Connectivity as a crucial determinant of badland morphology and evolution, Geomorphology, 100, 91–103, https://doi.org/10.1016/j.geomorph.2007.04.039, 2008.
Gerlinger, K.: Erosionsprozesse auf Lössböden: Experimente und
Modellierung, Dissertation, Nr. 194, Mitteilungen des Institutes für Wasserbau und Kulturtechnik der Universität Karlsruhe (TH), Karlsruhe, 1997.
Gómez, J. A., Darboux, F., and Nearing, M. A.: Development and evolution of rill networks under simulated rainfall, Water Resour. Res., 39, 1148, https://doi.org/10.1029/2002WR001437, 2003.
Govers, G.: Relationship between discharge, velocity and flow area for rills
eroding loose, non-layered materials, Earth. Surf. Proc. Land., 17, 515–528, 1992.
Govers, G., Takken, I., and Helming, K.: Soil roughness and overland flow,
Agronomie, 20, 131–146, https://doi.org/10.1016/0304-1131(75)90001-6, 2000.
Graeff, T., Zehe, E., Reusser, D., Lück, E., Schröder, B., Wenk, G., John, H., and Bronstert, A.: Process identification through rejection of model structures in a mid-mountainous rural catchment: observations of rainfall-runoff response, geophysical conditions and model inter-comparison, Hydrol. Process., 23, 702–718, https://doi.org/10.1002/hyp.7171, 2009.
Hooshyar, M., Bonetti, S., Singh, A.; Foufoula-Georgiou, E., and Porporato, A.: From turbulence to landscapes: Logarithmic mean profiles in bounded complex systems, Phys. Rev. E, 102, 33107, https://doi.org/10.1103/PhysRevE.102.033107, 2020.
Horton, R. E.: Erosional development of streams and their drainage basins;
Hydrophysical approach to quantitive morphology, Bull. Geol. Soc. Am., 56, 275–370, 1945.
Howard, A. D.: Theoretical Model of Optimal Drainage Networks, Water Resour. Res., 9, 2107–2117, 1990.
Ijjasz Vasquez, E. J., Bras, R. L., Rodriguez-Iturbe, I., Rigon, R., and
Rinaldo, A.: Are river basins optimal channel networks?, Adv. Water Resour., 16, 69–79, 1993.
Kirkby, M. J.: Hillslope process-response models based in the continuity
equation, Spec. Publ. Inst. Brit. Geogr., 3, 15–30, 1971.
Kleidon, A.: Thermodynamic foundations of the Earth system, Cambridge University Press, New York, NY, ISBN 9781107029941, 2016.
Kleidon, A., Zehe, E., Ehret, U., and Scherer, U.: Thermodynamics, maximum
power, and the dynamics of preferential river flow structures at the
continental scale, Hydrol. Earth Syst. Sci., 17, 225–251, https://doi.org/10.5194/hess-17-225-2013, 2013.
Kleidon, A., Renner, M., and Porada, P.: Estimates of the climatological land
surface energy and water balance derived from maximum convective power,
Hydrol. Earth Syst. Sci., 18, 2201–2218, https://doi.org/10.5194/hess-18-2201-2014, 2014.
Lawrence, D. S. L.: Macroscale surface roughness and frictional resistance
in overland flow, Earth. Surf. Proc. Land., 22, 365–382, 1997.
Leopold, L. B., Langbein, W. B., and Walter, B.: The concept of entropy in landscape evolution, US. Geol. Surv. Prof. Paper 500-A, US Geological Survey, https://doi.org/10.3133/pp500A, 1962.
Loritz, R., Hassler, S. K., Jackisch, C., Allroggen, N., van Schaik, L.,
Wienhöfer, J., and Zehe, E.: Picturing and modeling catchments by
representative hillslopes, Hydrol. Earth Syst. Sci., 21, 1225–1249.
https://doi.org/10.5194/hess-21-1225-2017, 2017.
Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 513–522, https://doi.org/10.1029/WR012i003p00513, 1976.
Nearing, M. A., Kimoto, A., Nichols, M. H., and Ritchie, J. C.: Spatial patterns of soil erosion and deposition in two small, semiarid watersheds, J.
Geophys. Res., 110, F04020, https://doi.org/10.1029/2005JF000290, 2005.
Nearing, M. A., Polyakov, V. O., Nichols, M. H., Hernandez, M., Li, L., Zhao, Y., and Armendariz, G.: Slope–velocity equilibrium and evolution of surface roughness on a stony hillslope, Hydrol. Earth Syst. Sci., 21, 3221–3229, https://doi.org/10.5194/hess-21-3221-2017, 2017.
Paik, K. and Kumar, P.: Optimality approaches to describe characteristic
fluvial patterns on landscapes, Philos. T. Roy. Soc. Lond. B, 365, 1387–1395, https://doi.org/10.1098/rstb.2009.0303, 2010.
Paltridge, G. W.: Climate and thermodynamic systems of maximum dissipation,
Nature, 279, 630–631, https://doi.org/10.1038/279630a0, 1979.
Parsons, A. J., Abrahams, A. D., and Luk, S. H.: Hydraulics of interrill
overland flow on a semi-arid hillslope, Arizona, J. Hydrol., 117, 255–273, 1990.
Phelps, H. O.: Friction coefficients for laminar sheet flow over rough
surfaces, Proc. Inst. Civ. Eng., 59, 21–41, https://doi.org/10.1680/iicep.1975.3840, 1975.
Rieke-Zapp, D. H. and Nearing, M. A.: Slope shape effects on erosion: a
laboratory study, Soil Sci. Soc. Am. J., 69, 1463–1471, 2005.
Rodriguez-Iturbe, I., Rinaldo, A., Rigon, R., Bras, R. L., Marani, A., and
Ijjasz-Vasquez, E.: Energy dissipation, runoff production, and the
threedimensional structure of river basins, Water Resour. Res., 4, 1095–1103, 1992.
Rodriguez-Iturbe, I., Marani, M., Rigon, R., and Rinaldo, A.: Self-organized
river basin landscapes: Fractal and multifractal characteristics, Water Resour. Res., 30, 3531–3539, https://doi.org/10.1029/94WR01493, 1994.
Schäfer, D.: Bodenhydraulische Eigenschaften eines Kleineinzugsgebietes – Vergleich und Bewertung unterschiedlicher Verfahren, Dissertation, Dissertationsreihe am Institut für Hydromechanik, KIT – Karlsruher Institut für Technologie, Karlsruhe, 1999.
Scherer, U.: Prozessbasierte Modellierung der Bodenerosion in einer
Lösslandschaft, Karlsruhe, Schriftenreihe SWW 129, Univ., Diss., https://publikationen.bibliothek.kit.edu/1000009238/433441 (last access: 15 June 2022), 2008.
Scherer, U., Zehe, E., Träbing, K., and Gerlinger, K.: Prediction of soil
detachment in agricultural loess catchments: Model development and
parameterisation, Catena, 90, 63–75, https://doi.org/10.1016/j.catena.2011.11.003, 2012.
Schierholz, I., Schäfer, D., and Kolle, O.: The Weiherbach data set: An
experimental data set for pesticide model testing in the field scale, Agr. Water Manage., 44, 43–61, https://doi.org/10.1016/S0378-3774(99)00083-9, 2000.
Schlichting, H. and Gersten, K.: Boundary-Layer Theory, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-52919-5, 2017.
Schumm, S. A., Harvey, M. D., and Watson, C. C.: Incised Channels: Morphology, Dynamics and Control, Water Resources Publications, ISBN 978-1887201643, 1984.
Seibert, S., Auerswald, K., Fiener, P., Disse, M., Martin, W., Haider, A.
M., and Gerlinger, K.: Surface runoff from arable land – a homogenized data base of 726 rainfall simulation experiments, CRC/TR32 Database (TR32DB), https://doi.org/10.1594/GFZ.TR32.2, 2011.
Shih, H. M. and Yang, C. T.: Estimating overland flow erosion capacity using
unit stream power, Int. J. Sediment Res., 24, 46–62, https://doi.org/10.1016/S1001-6279(09)60015-9, 2009.
Singh, V. P.: On the Theories of Hydraulic Geometry, Int. J. Sediment Res., 18, 196–218, 2003.
Smart, J. S.: Channel networks, Adv. Hydrosci., 8, 305–346, 1972.
Tennekes, H. and Lumley, J. L.: A first course in turbulence, MIT Press, Cambridge, Mass., ISBN 978-0-262-20019-6, 1972.
van Genuchten, M. T.: A closed-form equation for predicting the hydraulic
conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Wooding, R. A.: A hydraulic model for the catchment-stream problem, J. Hydrol., 3, 254–267, https://doi.org/10.1002/9781118925935.ch2, 1965.
Yang, C. T.: Potential Energy and Stream Morphology, Water Resour. Res., 7,
311–322, 1971.
Yang, C. T.: Minimum Unit Stream Power and Fluvial Hydraulics, J. Hydraul. Div., 102, 919–934, https://doi.org/10.1061/JYCEAJ.0004589, 1976.
Zehe, E. and Blöschl, G.: Predictability of hydrologic response at the plot and catchment scales: Role of initial conditions, Water Resour. Res., 40, W10202, https://doi.org/10.1029/2003WR002869, 2004.
Zehe, E. and Flühler, H.: Preferential transport of isoproturon at a plot
scale and a field scale tile-drained site, J. Hydrol., 247, 100–115, https://doi.org/10.1016/S0022-1694(01)00370-5, 2001a.
Zehe, E. and Flühler, H.: Slope scale variation of flow patterns in soil
profiles, J. Hydrol., 247, 116–132, https://doi.org/10.1016/S0022-1694(01)00371-7, 2001b.
Zehe, E. and Sivapalan, M.: Threshold behaviour in hydrological systems as (human) geo-ecosystems: manifestations, controls, implications, Hydrol. Earth Syst. Sci., 13, 1273–1297, https://doi.org/10.5194/hess-13-1273-2009, 2009.
Zehe, E., Maurer, T., Ihringer, J., and Plate, E.: Modeling water flow and mass transport in a loess catchment, Phys. Chem. Earth Pt. B, 26, 487–507, https://doi.org/10.1016/S1464-1909(01)00041-7, 2001.
Zehe, E., Becker, R., Bárdossy, A., and Plate, E.: Uncertainty of simulated catchment runoff response in the presence of threshold processes: Role of initial soil moisture and precipitation, J. Hydrol., 315, 183–202, https://doi.org/10.1016/j.jhydrol.2005.03.038, 2005.
Zehe, E., Blume, T., and Blöschl, G.: The principle of `maximum energy
dissipation': a novel thermodynamic perspective on rapid water flow in
connected soil structures, Philos. T.e Royal Soc. Lond. B, 365, 1377–1386, https://doi.org/10.1098/rstb.2009.0308, 2010.
Zehe, E., Ehret, U., Blume, T., Kleidon, A., Scherer, U., and Westhoff, M.: A
thermodynamic approach to link self-organization, preferential flow and
rainfall–runoff behaviour, Hydrol. Earth Syst. Sci., 17, 4297–4322, https://doi.org/10.5194/hess-17-4297-2013, 2013.
Zhang, Z. and Savenije, H. G.: Thermodynamics of saline and fresh water mixing in estuaries, Earth Syst. Dynam., 9, 241–247, https://doi.org/10.5194/esd-9-241-2018, 2018.
Executive editor
The paper presents an original and innovative approach to understand hillslope processes linking hillslope surface flow, drainage structure formation, and erosion processes to thermodynamics. I consider that the topic is very important in understanding why simple parsimonious empirical methods work in nature.
The paper presents an original and innovative approach to understand hillslope processes...
Short summary
In hydrology the formation of landform patterns is of special interest as changing forcings of the natural systems, such as climate or land use, will change these structures. In our study we developed a thermodynamic framework for surface runoff on hillslopes and highlight the differences of energy conversion patterns on two related spatial and temporal scales. The results indicate that surface runoff on hillslopes approaches a maximum power state.
In hydrology the formation of landform patterns is of special interest as changing forcings of...