Articles | Volume 26, issue 4
https://doi.org/10.5194/hess-26-1043-2022
https://doi.org/10.5194/hess-26-1043-2022
Research article
 | 
22 Feb 2022
Research article |  | 22 Feb 2022

Spatial distribution of groundwater recharge, based on regionalised soil moisture models in Wadi Natuf karst aquifers, Palestine

Clemens Messerschmid and Amjad Aliewi

Related authors

Field-based estimation and modelling of distributed groundwater recharge in a Mediterranean karst catchment, Wadi Natuf, West Bank
Clemens Messerschmid, Martin Sauter, and Jens Lange
Hydrol. Earth Syst. Sci., 24, 887–917, https://doi.org/10.5194/hess-24-887-2020,https://doi.org/10.5194/hess-24-887-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024,https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary
Bimodal hydrographs in a semi-humid forested watershed: characteristics and occurrence conditions
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci., 28, 3613–3632, https://doi.org/10.5194/hess-28-3613-2024,https://doi.org/10.5194/hess-28-3613-2024, 2024
Short summary
Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 28, 3327–3345, https://doi.org/10.5194/hess-28-3327-2024,https://doi.org/10.5194/hess-28-3327-2024, 2024
Short summary
Power law between the apparent drainage density and the pruning area
Soohyun Yang, Kwanghun Choi, and Kyungrock Paik
Hydrol. Earth Syst. Sci., 28, 3119–3132, https://doi.org/10.5194/hess-28-3119-2024,https://doi.org/10.5194/hess-28-3119-2024, 2024
Short summary
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using Ensemble Rainfall-Runoff Analysis (ERRA): proof of concept
James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-103,https://doi.org/10.5194/hess-2024-103, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Abusaada, M. J.: Flow Dynamics and Management Options in Stressed Carbonate Aquifer System, The Western Aquifer Basin, Palestine, PhD Thesis, University of Göttingen, https://d-nb.info/1042263574/34 (last access: 19 April 2017), 2011. 
Aish, A. M., Batelaan, O., and De Smedt, F.: Distributed recharge estimation for groundwater modeling using WetSpass model, case study – Gaza strip, Palestine, Arab. J. Sci. Eng., 35, 155, https://doi.org/10.1007/s13369-012-0323-1, 2010. 
Ali, G., Tetzlaff, D., Soulsby, C., McDonnell, J. J., and Capell, R.: A comparison of similarity indices for catchment classification using a cross-regional dataset, Adva. Water Resour., 40, 11–22, 2012. 
Aliewi, A. and Messerschmid, C.: Geological Lineament and Fracture Trace Mapping of Greater Ramallah Area, unpublished GTZ report, WWSDP, GTZ, Ramallah, 12 maps by Nabulsi, S. and Wishahi, S., p. 34, 1998. 
Aliewi, A., Bhandary, H., Sabarathinam, C., and Al-Qallaf, H.: A new modified chloride mass balance approach based on aquifer properties and other sources of chloride to assess rainfall recharge in brackish aquifers, Hydrol. Process., e14513, https://doi.org/10.1002/hyp.14513, 2021. 
Short summary
Temporal distribution of groundwater recharge has been widely studied; yet, much less attention has been paid to its spatial distribution. Based on a previous study of field-measured and modelled formation-specific recharge in the Mediterranean, this paper differentiates annual recharge coefficients in a novel approach and basin classification framework for physical features such as lithology, soil and LU/LC characteristics, applicable also in other previously ungauged basins around the world.