Articles | Volume 25, issue 11
https://doi.org/10.5194/hess-25-5683-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-5683-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatiotemporal and cross-scale interactions in hydroclimate variability: a case-study in France
Manuel Fossa
CORRESPONDING AUTHOR
Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, 76000 Rouen, France
Bastien Dieppois
Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Coventry, UK
Nicolas Massei
Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, 76000 Rouen, France
Matthieu Fournier
Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, 76000 Rouen, France
Benoit Laignel
Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, 76000 Rouen, France
Jean-Philippe Vidal
INRAE, UR Riverly, 5 Rue de la Doua, CS 20244, 69625 Villeurbanne CEDEX, France
Related authors
Nicolas Massei, Daniel G. Kingston, David M. Hannah, Jean-Philippe Vidal, Bastien Dieppois, Manuel Fossa, Andreas Hartmann, David A. Lavers, and Benoit Laignel
Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020, https://doi.org/10.5194/piahs-383-141-2020, 2020
Short summary
Short summary
This paper presents recent thoughts by members of EURO-FRIEND Water project 3 “Large-scale-variations in hydrological characteristics” about research needed to characterize and understand large-scale hydrology under global changes. Emphasis is put on the necessary efforts to better understand 1 – the impact of low-frequency climate variability on hydrological trends and extremes, 2 – the role of basin properties on modulating the climate signal producing hydrological responses on the basin scale.
Manuel Fossa, Marie Nicolle, Nicolas Massei, Matthieu Fournier, and Benoit Laignel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-395, https://doi.org/10.5194/hess-2016-395, 2016
Manuscript not accepted for further review
Short summary
Short summary
Links between river's discharge and large scale atmospheric and ocean physical processes has long been established by numerous studies. It is critical to identify those links for each river and map the rivers that share the same links. This study introduces a new method that allows classification of France rivers discharge variability according to 4 atmospheric processes that influence them and at 3 different time scales.
Louise Mimeau, Annika Künne, Alexandre Devers, Flora Branger, Sven Kralisch, Claire Lauvernet, Jean-Philippe Vidal, Núria Bonada, Zoltán Csabai, Heikki Mykrä, Petr Pařil, Luka Polović, and Thibault Datry
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-272, https://doi.org/10.5194/hess-2024-272, 2024
Preprint under review for HESS
Short summary
Short summary
Our study projects how climate change will affect drying of river segments and stream networks in Europe, using advanced modeling techniques to assess changes in six river networks across diverse ecoregions. We found that drying events will become more frequent, intense and start earlier or last longer, potentially turning some river sections from perennial to intermittent. The results are valuable for river ecologists in evaluating the ecological health of river ecosystem.
Riccardo Biella, Ansastasiya Shyrokaya, Monica Ionita, Raffaele Vignola, Samuel Sutanto, Andrijana Todorovic, Claudia Teutschbein, Daniela Cid, Maria Carmen Llasat, Pedro Alencar, Alessia Matanó, Elena Ridolfi, Benedetta Moccia, Ilias Pechlivanidis, Anne van Loon, Doris Wendt, Elin Stenfors, Fabio Russo, Jean-Philippe Vidal, Lucy Barker, Mariana Madruga de Brito, Marleen Lam, Monika Bláhová, Patricia Trambauer, Raed Hamed, Scott J. McGrane, Serena Ceola, Sigrid Jørgensen Bakke, Svitlana Krakovska, Viorica Nagavciuc, Faranak Tootoonchi, Giuliano Di Baldassarre, Sandra Hauswirth, Shreedhar Maskey, Svitlana Zubkovych, Marthe Wens, and Lena Merete Tallaksen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2069, https://doi.org/10.5194/egusphere-2024-2069, 2024
Short summary
Short summary
This research by the Drought in the Anthropocene (DitA) network highlights gaps in European drought management exposed by the 2022 drought and proposes a new direction. Using a Europe-wide survey of water managers, we examine four areas: increasing drought risk, impacts, drought management strategies, and their evolution. Despite growing risks, management remains fragmented and short-term. However, signs of improvement suggest readiness for change. We advocate for a European Drought Directive.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024, https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
Short summary
Daily streamflow series for 661 near-natural French catchments are reconstructed over 1871–2012 using two ensemble datasets: HydRE and HydREM. They include uncertainties coming from climate forcings, streamflow measurement, and hydrological model error (for HydrREM). Comparisons with other hydrological reconstructions and independent/dependent observations show the added value of the two reconstructions in terms of quality, uncertainty estimation, and representation of extremes.
Raoul Alexander Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Michael Fienen, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim Peterson, Janis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, Bryan Tolson, and Rojin Meysami
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-111, https://doi.org/10.5194/hess-2024-111, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
We present the results of the 2022 groundwater modeling challenge, where 15 teams applied data-driven models to simulate hydraulic heads. 3 groups of models were identified: lumped models, machine learning models, and deep learning models. For all wells, reasonable performance was obtained by at least 1 team from group. There was not 1 team that performed best for all wells. In conclusion, the challenge was a successful initiative to compare different models and learn from each other.
Sivarama Krishna Reddy Chidepudi, Nicolas Massei, Abderrahim Jardani, Bastien Dieppois, Abel Henriot, and Matthieu Fournier
EGUsphere, https://doi.org/10.5194/egusphere-2024-794, https://doi.org/10.5194/egusphere-2024-794, 2024
Short summary
Short summary
This study explores how deep learning can improve our understanding of groundwater levels, using an approach that combines climate data and physical characteristics of aquifers. By focusing on different types of groundwater levels and employing techniques like clustering and wavelet transform, the study highlights the importance of targeting relevant information. This research not only advances groundwater simulation but also emphasizes the benefits of different modelling approaches.
Marc Auriol Amalaman, Gil Mahé, Béh Ibrahim Diomande, Armand Zamblé Tra Bi, Nathalie Rouché, Zeineddine Nouaceur, and Benoit Laignel
Proc. IAHS, 385, 365–370, https://doi.org/10.5194/piahs-385-365-2024, https://doi.org/10.5194/piahs-385-365-2024, 2024
Short summary
Short summary
L’objectif de ce travail est d’analyser les liens entre les indices climatiques et la variabilité des séries de précipitations et de débits. La méthode a consisté à rechercher les changements survenus dans ces données à travers la variabilité du signal. Ainsi, au niveau de l’analyse interannuelle et saisonnière, le signal indique une forte oscillation marquée par une prédominance de la couleur rouge. L’utilisation de l’indice ENSO montre que le phénomène El-Niño impacte le débit et la pluie.
Louise Mimeau, Annika Künne, Flora Branger, Sven Kralisch, Alexandre Devers, and Jean-Philippe Vidal
Hydrol. Earth Syst. Sci., 28, 851–871, https://doi.org/10.5194/hess-28-851-2024, https://doi.org/10.5194/hess-28-851-2024, 2024
Short summary
Short summary
Modelling flow intermittence is essential for predicting the future evolution of drying in river networks and better understanding the ecological and socio-economic impacts. However, modelling flow intermittence is challenging, and observed data on temporary rivers are scarce. This study presents a new modelling approach for predicting flow intermittence in river networks and shows that combining different sources of observed data reduces the model uncertainty.
Laurent Strohmenger, Eric Sauquet, Claire Bernard, Jérémie Bonneau, Flora Branger, Amélie Bresson, Pierre Brigode, Rémy Buzier, Olivier Delaigue, Alexandre Devers, Guillaume Evin, Maïté Fournier, Shu-Chen Hsu, Sandra Lanini, Alban de Lavenne, Thibault Lemaitre-Basset, Claire Magand, Guilherme Mendoza Guimarães, Max Mentha, Simon Munier, Charles Perrin, Tristan Podechard, Léo Rouchy, Malak Sadki, Myriam Soutif-Bellenger, François Tilmant, Yves Tramblay, Anne-Lise Véron, Jean-Philippe Vidal, and Guillaume Thirel
Hydrol. Earth Syst. Sci., 27, 3375–3391, https://doi.org/10.5194/hess-27-3375-2023, https://doi.org/10.5194/hess-27-3375-2023, 2023
Short summary
Short summary
We present the results of a large visual inspection campaign of 674 streamflow time series in France. The objective was to detect non-natural records resulting from instrument failure or anthropogenic influences, such as hydroelectric power generation or reservoir management. We conclude that the identification of flaws in flow time series is highly dependent on the objectives and skills of individual evaluators, and we raise the need for better practices for data cleaning.
Hanieh Seyedhashemi, Florentina Moatar, Jean-Philippe Vidal, and Dominique Thiéry
Earth Syst. Sci. Data, 15, 2827–2839, https://doi.org/10.5194/essd-15-2827-2023, https://doi.org/10.5194/essd-15-2827-2023, 2023
Short summary
Short summary
This paper presents a past and future dataset of daily time series of discharge and stream temperature for 52 278 reaches over the Loire River basin (100 000 km2) in France, using thermal and hydrological models. Past data are provided over 1963–2019. Future data are available over the 1976–2100 period under different future climate change models (warm and wet, intermediate, and hot and dry) and scenarios (optimistic, intermediate, and pessimistic).
Carolina Gallo, Jonathan M. Eden, Bastien Dieppois, Igor Drobyshev, Peter Z. Fulé, Jesús San-Miguel-Ayanz, and Matthew Blackett
Geosci. Model Dev., 16, 3103–3122, https://doi.org/10.5194/gmd-16-3103-2023, https://doi.org/10.5194/gmd-16-3103-2023, 2023
Short summary
Short summary
This study conducts the first global evaluation of the latest generation of global climate models to simulate a set of fire weather indicators from the Canadian Fire Weather Index System. Models are shown to perform relatively strongly at the global scale, but they show substantial regional and seasonal differences. The results demonstrate the value of model evaluation and selection in producing reliable fire danger projections, ultimately to support decision-making and forest management.
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-78, https://doi.org/10.5194/hess-2023-78, 2023
Publication in HESS not foreseen
Short summary
Short summary
The recent development of the a new meteorological dataset providing precipitation and temperature over France – FYRE Climate – has been transformed to streamflow time series over 1871–2012 through the used of a hydrological model. This led to the creation of the daily hydrological reconstructions called HyDRE and HyDRE. These two reconstructions are evaluated allow to better understand the variability of past hydrology over France.
Vianney Sivelle, Guillaume Cinkus, Naomi Mazzilli, David Labat, Bruno Arfib, Nicolas Massei, Yohann Cousquer, Dominique Bertin, and Hervé Jourde
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-17, https://doi.org/10.5194/hess-2023-17, 2023
Revised manuscript under review for HESS
Short summary
Short summary
KarstMod consists in a useful tool for the assessment of karst groundwater variability and sensitivity to anthropogenic pressures (e.g. groundwater abstraction). This tools is devoted to promote good practices in hydrological modeling for learning and occasional users. KarstMod requires no programming skills and offers a user friendly interface allowing any user to easily handle hydrological modeling.
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022, https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Short summary
Hydrological models projecting the impact of changing climate carry a lot of uncertainty. Thus, these models usually have a multitude of simulations using different future climate data. This study used the subjective opinion of experts to assess which climate and hydrological models are the most likely to correctly predict climate impacts, thereby easing the computational burden. The experts could select more likely hydrological models, while the climate models were deemed equally probable.
Veit Blauhut, Michael Stoelzle, Lauri Ahopelto, Manuela I. Brunner, Claudia Teutschbein, Doris E. Wendt, Vytautas Akstinas, Sigrid J. Bakke, Lucy J. Barker, Lenka Bartošová, Agrita Briede, Carmelo Cammalleri, Ksenija Cindrić Kalin, Lucia De Stefano, Miriam Fendeková, David C. Finger, Marijke Huysmans, Mirjana Ivanov, Jaak Jaagus, Jiří Jakubínský, Svitlana Krakovska, Gregor Laaha, Monika Lakatos, Kiril Manevski, Mathias Neumann Andersen, Nina Nikolova, Marzena Osuch, Pieter van Oel, Kalina Radeva, Renata J. Romanowicz, Elena Toth, Mirek Trnka, Marko Urošev, Julia Urquijo Reguera, Eric Sauquet, Aleksandra Stevkov, Lena M. Tallaksen, Iryna Trofimova, Anne F. Van Loon, Michelle T. H. van Vliet, Jean-Philippe Vidal, Niko Wanders, Micha Werner, Patrick Willems, and Nenad Živković
Nat. Hazards Earth Syst. Sci., 22, 2201–2217, https://doi.org/10.5194/nhess-22-2201-2022, https://doi.org/10.5194/nhess-22-2201-2022, 2022
Short summary
Short summary
Recent drought events caused enormous damage in Europe. We therefore questioned the existence and effect of current drought management strategies on the actual impacts and how drought is perceived by relevant stakeholders. Over 700 participants from 28 European countries provided insights into drought hazard and impact perception and current management strategies. The study concludes with an urgent need to collectively combat drought risk via a European macro-level drought governance approach.
Lisa Baulon, Nicolas Massei, Delphine Allier, Matthieu Fournier, and Hélène Bessiere
Hydrol. Earth Syst. Sci., 26, 2829–2854, https://doi.org/10.5194/hess-26-2829-2022, https://doi.org/10.5194/hess-26-2829-2022, 2022
Short summary
Short summary
Aquifers often act as low-pass filters, dampening high-frequency (intra-annual) and amplifying low-frequency (LFV, multi-annual to multidecadal) variabilities originating from climate variability. By processing groundwater level signals, we show the key role of LFV in the occurrence of groundwater extremes (GWEs). Results highlight how changes in LFV may impact future GWEs as well as the importance of correct representation of LFV in general circulation model outputs for GWE projection.
Hanieh Seyedhashemi, Jean-Philippe Vidal, Jacob S. Diamond, Dominique Thiéry, Céline Monteil, Frédéric Hendrickx, Anthony Maire, and Florentina Moatar
Hydrol. Earth Syst. Sci., 26, 2583–2603, https://doi.org/10.5194/hess-26-2583-2022, https://doi.org/10.5194/hess-26-2583-2022, 2022
Short summary
Short summary
Stream temperature appears to be increasing globally, but its rate remains poorly constrained due to a paucity of long-term data. Using a thermal model, this study provides a large-scale understanding of the evolution of stream temperature over a long period (1963–2019). This research highlights that air temperature and streamflow can exert joint influence on stream temperature trends, and riparian shading in small mountainous streams may mitigate warming in stream temperatures.
Edouard Patault, Valentin Landemaine, Jérôme Ledun, Arnaud Soulignac, Matthieu Fournier, Jean-François Ouvry, Olivier Cerdan, and Benoit Laignel
Hydrol. Earth Syst. Sci., 25, 6223–6238, https://doi.org/10.5194/hess-25-6223-2021, https://doi.org/10.5194/hess-25-6223-2021, 2021
Short summary
Short summary
The goal of this study was to assess the sediment discharge variability at a water treatment plant (Normandy, France) according to multiple realistic land use scenarios. We developed a new cascade modelling approach and simulations suggested that coupling eco-engineering and best farming practices can significantly reduce the sediment discharge (up to 80 %).
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, and Olivier Vannier
Clim. Past, 17, 1857–1879, https://doi.org/10.5194/cp-17-1857-2021, https://doi.org/10.5194/cp-17-1857-2021, 2021
Short summary
Short summary
This article presents FYRE Climate, a dataset providing daily precipitation and temperature spanning the 1871–2012 period at 8 km resolution over France. FYRE Climate has been obtained through the combination of daily and yearly observations and a gridded reconstruction already available through a statistical technique called data assimilation. Results highlight the quality of FYRE Climate in terms of both long-term variations and reproduction of extreme events.
Imen Turki, Lisa Baulon, Nicolas Massei, Benoit Laignel, Stéphane Costa, Matthieu Fournier, and Olivier Maquaire
Nat. Hazards Earth Syst. Sci., 20, 3225–3243, https://doi.org/10.5194/nhess-20-3225-2020, https://doi.org/10.5194/nhess-20-3225-2020, 2020
Short summary
Short summary
We examine the variability of storm surges along the English Channel coasts and their connection with the global atmospheric circulation at the interannual and interdecadal timescales using hybrid approaches combining wavelet techniques and probabilistic
generalized extreme value models. Our hypothesis is that the physical mechanisms of the atmospheric circulation change according to the timescales and their connection with the local variability improve the prediction of the extreme surges.
Nicolas Massei, Daniel G. Kingston, David M. Hannah, Jean-Philippe Vidal, Bastien Dieppois, Manuel Fossa, Andreas Hartmann, David A. Lavers, and Benoit Laignel
Proc. IAHS, 383, 141–149, https://doi.org/10.5194/piahs-383-141-2020, https://doi.org/10.5194/piahs-383-141-2020, 2020
Short summary
Short summary
This paper presents recent thoughts by members of EURO-FRIEND Water project 3 “Large-scale-variations in hydrological characteristics” about research needed to characterize and understand large-scale hydrology under global changes. Emphasis is put on the necessary efforts to better understand 1 – the impact of low-frequency climate variability on hydrological trends and extremes, 2 – the role of basin properties on modulating the climate signal producing hydrological responses on the basin scale.
Kerstin Stahl, Jean-Philippe Vidal, Jamie Hannaford, Erik Tijdeman, Gregor Laaha, Tobias Gauster, and Lena M. Tallaksen
Proc. IAHS, 383, 291–295, https://doi.org/10.5194/piahs-383-291-2020, https://doi.org/10.5194/piahs-383-291-2020, 2020
Short summary
Short summary
Numerous indices exist for the description of hydrological drought, some are based on absolute thresholds of overall streamflows or water levels and some are based on relative anomalies with respect to the season. This article discusses paradigms and experiences with such index uses in drought monitoring and drought analysis to raise awareness of the different interpretations of drought severity.
Laurie Caillouet, Jean-Philippe Vidal, Eric Sauquet, Benjamin Graff, and Jean-Michel Soubeyroux
Earth Syst. Sci. Data, 11, 241–260, https://doi.org/10.5194/essd-11-241-2019, https://doi.org/10.5194/essd-11-241-2019, 2019
Short summary
Short summary
SCOPE Climate is a 25-member ensemble of 142-year daily high-resolution reconstructions of precipitation, temperature, and Penman–Monteith reference evapotranspiration over France. It is the first century-long gridded high-resolution homogeneous dataset available over France. It thus paves the way for studying local historical meteorological events and for assessing the local climate variability from the end of the 19th century.
Hans W. Linderholm, Marie Nicolle, Pierre Francus, Konrad Gajewski, Samuli Helama, Atte Korhola, Olga Solomina, Zicheng Yu, Peng Zhang, William J. D'Andrea, Maxime Debret, Dmitry V. Divine, Björn E. Gunnarson, Neil J. Loader, Nicolas Massei, Kristina Seftigen, Elizabeth K. Thomas, Johannes Werner, Sofia Andersson, Annika Berntsson, Tomi P. Luoto, Liisa Nevalainen, Saija Saarni, and Minna Väliranta
Clim. Past, 14, 473–514, https://doi.org/10.5194/cp-14-473-2018, https://doi.org/10.5194/cp-14-473-2018, 2018
Short summary
Short summary
This paper reviews the current knowledge of Arctic hydroclimate variability during the past 2000 years. We discuss the current state, look into the future, and describe various archives and proxies used to infer past hydroclimate variability. We also provide regional overviews and discuss the potential of furthering our understanding of Arctic hydroclimate in the past. This paper summarises the hydroclimate-related activities of the Arctic 2k group.
Marie Nicolle, Maxime Debret, Nicolas Massei, Christophe Colin, Anne deVernal, Dmitry Divine, Johannes P. Werner, Anne Hormes, Atte Korhola, and Hans W. Linderholm
Clim. Past, 14, 101–116, https://doi.org/10.5194/cp-14-101-2018, https://doi.org/10.5194/cp-14-101-2018, 2018
Short summary
Short summary
Arctic climate variability for the last 2 millennia has been investigated using statistical and signal analyses from North Atlantic, Siberia and Alaska regionally averaged records. A focus on the last 2 centuries shows a climate variability linked to anthropogenic forcing but also a multidecadal variability likely due to regional natural processes acting on the internal climate system. It is an important issue to understand multidecadal variabilities occurring in the instrumental data.
Gregor Laaha, Tobias Gauster, Lena M. Tallaksen, Jean-Philippe Vidal, Kerstin Stahl, Christel Prudhomme, Benedikt Heudorfer, Radek Vlnas, Monica Ionita, Henny A. J. Van Lanen, Mary-Jeanne Adler, Laurie Caillouet, Claire Delus, Miriam Fendekova, Sebastien Gailliez, Jamie Hannaford, Daniel Kingston, Anne F. Van Loon, Luis Mediero, Marzena Osuch, Renata Romanowicz, Eric Sauquet, James H. Stagge, and Wai K. Wong
Hydrol. Earth Syst. Sci., 21, 3001–3024, https://doi.org/10.5194/hess-21-3001-2017, https://doi.org/10.5194/hess-21-3001-2017, 2017
Short summary
Short summary
In 2015 large parts of Europe were affected by a drought. In terms of low flow magnitude, a region around the Czech Republic was most affected, with return periods > 100 yr. In terms of deficit volumes, the drought was particularly severe around S. Germany where the event lasted notably long. Meteorological and hydrological events developed differently in space and time. For an assessment of drought impacts on water resources, hydrological data are required in addition to meteorological indices.
Laurie Caillouet, Jean-Philippe Vidal, Eric Sauquet, Alexandre Devers, and Benjamin Graff
Hydrol. Earth Syst. Sci., 21, 2923–2951, https://doi.org/10.5194/hess-21-2923-2017, https://doi.org/10.5194/hess-21-2923-2017, 2017
Short summary
Short summary
The historical depth of streamflow observations in France is extended through daily hydrometeorogical reconstructions from 1871 onwards over a large set of near-natural catchments. Innovative approaches are proposed to identify and intercompare extreme low-flow events from these reconstructions, both in time and across France in a homogeneous way over more than 140 years. Analyses bring forward recent well-known events like 1976 and 1989–1990 but also much older ones like 1878 and 1893.
Jean-Philippe Vidal, Benoît Hingray, Claire Magand, Eric Sauquet, and Agnès Ducharne
Hydrol. Earth Syst. Sci., 20, 3651–3672, https://doi.org/10.5194/hess-20-3651-2016, https://doi.org/10.5194/hess-20-3651-2016, 2016
Short summary
Short summary
Possible transient futures of winter and summer low flows for two snow-influenced catchments in the southern French Alps show a strong decrease signal. It is however largely masked by the year-to-year variability, which should be the main target for defining adaptation strategies. Responses of different hydrological models strongly diverge in the future, suggesting to carefully check the robustness of evapotranspiration and snowpack components under a changing climate.
Manuel Fossa, Marie Nicolle, Nicolas Massei, Matthieu Fournier, and Benoit Laignel
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-395, https://doi.org/10.5194/hess-2016-395, 2016
Manuscript not accepted for further review
Short summary
Short summary
Links between river's discharge and large scale atmospheric and ocean physical processes has long been established by numerous studies. It is critical to identify those links for each river and map the rivers that share the same links. This study introduces a new method that allows classification of France rivers discharge variability according to 4 atmospheric processes that influence them and at 3 different time scales.
Laurie Caillouet, Jean-Philippe Vidal, Eric Sauquet, and Benjamin Graff
Clim. Past, 12, 635–662, https://doi.org/10.5194/cp-12-635-2016, https://doi.org/10.5194/cp-12-635-2016, 2016
Short summary
Short summary
This paper describes a daily high-resolution reconstruction of precipitation and temperature fields in France from 1871 onwards. A statistical method linking atmospheric circulation to local precipitation is refined for taking advantage of recently published global long-term atmospheric and oceanic reconstructions. The resulting data set allows filling in the spatial and temporal data gaps in historical surface observations, and improving our knowledge on the local-scale climate variability.
I. Giuntoli, J.-P. Vidal, C. Prudhomme, and D. M. Hannah
Earth Syst. Dynam., 6, 267–285, https://doi.org/10.5194/esd-6-267-2015, https://doi.org/10.5194/esd-6-267-2015, 2015
Short summary
Short summary
We assessed future changes in high and low flows globally using runoff projections from global hydrological models (GHMs) driven by global climate models (GCMs) under the RCP8.5 scenario. Further, we quantified the relative size of uncertainty from GHMs and from GCMs using ANOVA. We show that GCMs are the major contributors to uncertainty overall, but GHMs increase their contribution for low flows and can equal or outweigh GCM uncertainty in snow-dominated areas for both high and low flows.
S. Radanovics, J.-P. Vidal, E. Sauquet, A. Ben Daoud, and G. Bontron
Hydrol. Earth Syst. Sci., 17, 4189–4208, https://doi.org/10.5194/hess-17-4189-2013, https://doi.org/10.5194/hess-17-4189-2013, 2013
Related subject area
Subject: Hydrometeorology | Techniques and Approaches: Theory development
Variation and attribution of probable maximum precipitation of China using a high-resolution dataset in a changing climate
Drought cascades across multiple systems in Central Asia identified based on the dynamic space–time motion approach
What is the Priestley–Taylor wet-surface evaporation parameter? Testing four hypotheses
Understanding the diurnal cycle of land–atmosphere interactions from flux site observations
Breakdown in precipitation–temperature scaling over India predominantly explained by cloud-driven cooling
Historical droughts manifest an abrupt shift to a wetter Tibetan Plateau
Citizen rain gauges improve hourly radar rainfall bias correction using a two-step Kalman filter
Dynamical forcings in heavy precipitation events over Italy: lessons from the HyMeX SOP1 campaign
Water vapor isotopes indicating rapid shift among multiple moisture sources for the 2018–2019 winter extreme precipitation events in southeastern China
Relative humidity gradients as a key constraint on terrestrial water and energy fluxes
A climatological benchmark for operational radar rainfall bias reduction
The precipitation variability of the wet and dry season at the interannual and interdecadal scales over eastern China (1901–2016): the impacts of the Pacific Ocean
Flash drought onset over the contiguous United States: sensitivity of inventories and trends to quantitative definitions
A skewed perspective of the Indian rainfall–El Niño–Southern Oscillation (ENSO) relationship
Imprints of evaporative conditions and vegetation type in diurnal temperature variations
A universal Standardized Precipitation Index candidate distribution function for observations and simulations
A review of the complementary principle of evaporation: from the original linear relationship to generalized nonlinear functions
Model representation of the coupling between evapotranspiration and soil water content at different depths
Combined impacts of ENSO and MJO on the 2015 growing season drought on the Canadian Prairies
Exploring the relationships between warm-season precipitation, potential evaporation, and “apparent” potential evaporation at site scale
Future extreme precipitation intensities based on a historic event
Interannual-to-multidecadal hydroclimate variability and its sectoral impacts in northeastern Argentina
Impact of ENSO regimes on developing- and decaying-phase precipitation during rainy season in China
Variations in the correlation between teleconnections and Taiwan's streamflow
A gain–loss framework based on ensemble flow forecasts to switch the urban drainage–wastewater system management towards energy optimization during dry periods
The residence time of water in the atmosphere revisited
A systematic assessment of drought termination in the United Kingdom
From meteorological to hydrological drought using standardised indicators
Impact of two different types of El Niño events on runoff over the conterminous United States
Flood sensitivity of the Bavarian Alpine Foreland since the late Middle Ages in the context of internal and external climate forcing factors
Novel indices for the comparison of precipitation extremes and floods: an example from the Czech territory
Multi-annual droughts in the English Lowlands: a review of their characteristics and climate drivers in the winter half-year
Fractional snow-covered area parameterization over complex topography
Comment on "Technical Note: On the Matt–Shuttleworth approach to estimate crop water requirements" by Lhomme et al. (2014)
A review of droughts on the African continent: a geospatial and long-term perspective
Synchronicity of historical dry spells in the Southern Hemisphere
Continental moisture recycling as a Poisson process
Linking ENSO and heavy rainfall events over coastal British Columbia through a weather pattern classification
Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest
A new perspective on the spatio-temporal variability of soil moisture: temporal dynamics versus time-invariant contributions
Understanding hydroclimate processes in the Murray-Darling Basin for natural resources management
An analytical model for soil-atmosphere feedback
Spatial horizontal correlation characteristics in the land data assimilation of soil moisture
On the factors influencing surface-layer energy closure and their seasonal variability over the semi-arid Loess Plateau of Northwest China
Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response
Scaling and trends of hourly precipitation extremes in two different climate zones – Hong Kong and the Netherlands
The response of Iberian rivers to the North Atlantic Oscillation
Copula-based downscaling of spatial rainfall: a proof of concept
Towards understanding hydroclimatic change in Victoria, Australia – preliminary insights into the "Big Dry"
Extracting statistical parameters of extreme precipitation from a NWP model
Jinghua Xiong, Shenglian Guo, Abhishek, Jiabo Yin, Chongyu Xu, Jun Wang, and Jing Guo
Hydrol. Earth Syst. Sci., 28, 1873–1895, https://doi.org/10.5194/hess-28-1873-2024, https://doi.org/10.5194/hess-28-1873-2024, 2024
Short summary
Short summary
Temporal variability and spatial heterogeneity of climate systems challenge accurate estimation of probable maximum precipitation (PMP) in China. We use high-resolution precipitation data and climate models to explore the variability, trends, and shifts of PMP under climate change. Validated with multi-source estimations, our observations and simulations show significant spatiotemporal divergence of PMP over the country, which is projected to amplify in future due to land–atmosphere coupling.
Lu Tian, Markus Disse, and Jingshui Huang
Hydrol. Earth Syst. Sci., 27, 4115–4133, https://doi.org/10.5194/hess-27-4115-2023, https://doi.org/10.5194/hess-27-4115-2023, 2023
Short summary
Short summary
Anthropogenic global warming accelerates the drought evolution in the water cycle, increasing the unpredictability of drought. The evolution of drought is stealthy and challenging to track. This study proposes a new framework to capture the high-precision spatiotemporal progression of drought events in their evolutionary processes and characterize their feature further. It is crucial for addressing the systemic risks within the hydrological cycle associated with drought mitigation.
Richard D. Crago, Jozsef Szilagyi, and Russell J. Qualls
Hydrol. Earth Syst. Sci., 27, 3205–3220, https://doi.org/10.5194/hess-27-3205-2023, https://doi.org/10.5194/hess-27-3205-2023, 2023
Short summary
Short summary
The Priestley–Taylor equation is widely used in hydrologic, climate, and meteorological models to estimate evaporation. α represents the impact of dry air that is carried into the region; this occurs even in extensive saturated regions. Four hypotheses regarding the nature of α are evaluated. Data from 171 FLUXNET stations were used to test the hypotheses. The best-supported hypothesis sees α as a constant fraction of the distance between theoretical minimum and maximum values.
Eunkyo Seo and Paul A. Dirmeyer
Hydrol. Earth Syst. Sci., 26, 5411–5429, https://doi.org/10.5194/hess-26-5411-2022, https://doi.org/10.5194/hess-26-5411-2022, 2022
Short summary
Short summary
This study presents the climatology of the observed land–atmosphere interactions on a subdaily timescale during the warm season from flux site observations. Multivariate metrics are employed to examine the land, atmosphere, and combined couplings, and a mixing diagram is adopted to understand the coevolution of the moist and thermal energy budget within the atmospheric mixed layer. The diurnal cycles of both mixing diagrams and hourly land–atmosphere couplings exhibit hysteresis.
Sarosh Alam Ghausi, Subimal Ghosh, and Axel Kleidon
Hydrol. Earth Syst. Sci., 26, 4431–4446, https://doi.org/10.5194/hess-26-4431-2022, https://doi.org/10.5194/hess-26-4431-2022, 2022
Short summary
Short summary
The observed response of extreme precipitation to global warming remains unclear with significant regional variations. We show that a large part of this uncertainty can be removed when the imprint of clouds in surface temperatures is removed. We used a thermodynamic systems approach to remove the cloud radiative effect from temperatures. We then found that precipitation extremes intensified with global warming at positive rates which is consistent with physical arguments and model simulations.
Yongwei Liu, Yuanbo Liu, Wen Wang, Han Zhou, and Lide Tian
Hydrol. Earth Syst. Sci., 26, 3825–3845, https://doi.org/10.5194/hess-26-3825-2022, https://doi.org/10.5194/hess-26-3825-2022, 2022
Short summary
Short summary
This study investigated the wetting and drying of the Tibetan Plateau (TP) from variations in soil moisture (SM) droughts. We found the TP experienced an abrupt and significant wetting shift in the middle to late 1990s, not merely the steady trends given in literature. This shift is dominated by precipitation and attributed to the North Atlantic Oscillation. The wetting shift indicates a climate regime change. Our innovative work provides implications for further knowledge of the TP climate.
Punpim Puttaraksa Mapiam, Monton Methaprayun, Thom Bogaard, Gerrit Schoups, and Marie-Claire Ten Veldhuis
Hydrol. Earth Syst. Sci., 26, 775–794, https://doi.org/10.5194/hess-26-775-2022, https://doi.org/10.5194/hess-26-775-2022, 2022
Short summary
Short summary
The density of rain gauge networks plays an important role in radar rainfall bias correction. In this work, we aimed to assess the extent to which daily rainfall observations from a dense network of citizen scientists improve the accuracy of hourly radar rainfall estimates in the Tubma Basin, Thailand. Results show that citizen rain gauges significantly enhance the performance of radar rainfall bias adjustment up to a range of about 40 km from the center of the citizen rain gauge network.
Mario Marcello Miglietta and Silvio Davolio
Hydrol. Earth Syst. Sci., 26, 627–646, https://doi.org/10.5194/hess-26-627-2022, https://doi.org/10.5194/hess-26-627-2022, 2022
Short summary
Short summary
The main results emerging from the HyMeX SOP1 campaign and in the subsequent research activity in three Italian target areas are highlighted through conceptual models and through the identification of the relevant mesoscale environmental characteristics conducive to heavy rain events.
Tao Xu, Hongxi Pang, Zhaojun Zhan, Wangbin Zhang, Huiwen Guo, Shuangye Wu, and Shugui Hou
Hydrol. Earth Syst. Sci., 26, 117–127, https://doi.org/10.5194/hess-26-117-2022, https://doi.org/10.5194/hess-26-117-2022, 2022
Short summary
Short summary
In this study, we presented stable isotopes in atmospheric water vapor and precipitation for five extreme winter precipitation events in Nanjing, southeastern China, from December 2018 to February 2019. Our results imply that multiple moisture sources and the rapid shift among them are important conditions for sustaining extreme precipitation events, especially in the relatively cold and dry winter.
Yeonuk Kim, Monica Garcia, Laura Morillas, Ulrich Weber, T. Andrew Black, and Mark S. Johnson
Hydrol. Earth Syst. Sci., 25, 5175–5191, https://doi.org/10.5194/hess-25-5175-2021, https://doi.org/10.5194/hess-25-5175-2021, 2021
Short summary
Short summary
Here, we present a novel physically based evaporation model to demonstrate that vertical relative humidity (RH) gradients from the land surface to the atmosphere tend to evolve towards zero due to land–atmosphere equilibration processes. Collapsing RH gradients on daily to yearly timescales indicate an emergent land–atmosphere equilibrium, making it possible to determine evapotranspiration using only meteorological information, independent of land surface conditions and vegetation controls.
Ruben Imhoff, Claudia Brauer, Klaas-Jan van Heeringen, Hidde Leijnse, Aart Overeem, Albrecht Weerts, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 25, 4061–4080, https://doi.org/10.5194/hess-25-4061-2021, https://doi.org/10.5194/hess-25-4061-2021, 2021
Short summary
Short summary
Significant biases in real-time radar rainfall products limit the use for hydrometeorological forecasting. We introduce CARROTS (Climatology-based Adjustments for Radar Rainfall in an OperaTional Setting), a set of fixed bias reduction factors to correct radar rainfall products and to benchmark other correction algorithms. When tested for 12 Dutch basins, estimated rainfall and simulated discharges with CARROTS generally outperform those using the operational mean field bias adjustments.
Tao Gao, Fuqiang Cao, Li Dan, Ming Li, Xiang Gong, and Junjie Zhan
Hydrol. Earth Syst. Sci., 25, 1467–1481, https://doi.org/10.5194/hess-25-1467-2021, https://doi.org/10.5194/hess-25-1467-2021, 2021
Short summary
Short summary
The rainfall in eastern China is principally concentrated from April–September. Changes are roughly coincident with phase shifts of the El Niño–Southern Oscillation (ENSO) in both the dry (October–March) and wet (April–September) seasons, and the Pacific Decadal Oscillation (PDO) triggers a stronger effect on precipitation in the wet season. The interannual and interdecadal rainfall variability over eastern China is substantially modulated by drivers originating from the Pacific Ocean.
Mahmoud Osman, Benjamin F. Zaitchik, Hamada S. Badr, Jordan I. Christian, Tsegaye Tadesse, Jason A. Otkin, and Martha C. Anderson
Hydrol. Earth Syst. Sci., 25, 565–581, https://doi.org/10.5194/hess-25-565-2021, https://doi.org/10.5194/hess-25-565-2021, 2021
Short summary
Short summary
Our study of flash droughts' definitions over the United States shows that published definitions yield markedly different inventories of flash drought geography and frequency. Results suggest there are several pathways that can lead to events that are characterized as flash droughts. Lack of consensus across definitions helps to explain apparent contradictions in the literature on trends and indicates the selection of a definition is important for accurate monitoring of different mechanisms.
Justin Schulte, Frederick Policielli, and Benjamin Zaitchik
Hydrol. Earth Syst. Sci., 24, 5473–5489, https://doi.org/10.5194/hess-24-5473-2020, https://doi.org/10.5194/hess-24-5473-2020, 2020
Short summary
Short summary
Wavelet coherence is now a commonly used method for detecting scale-dependent relationships between time series. In this study, the concept of wavelet coherence is generalized to higher-order wavelet coherence methods that quantify the relationship between higher-order statistical moments associated with two time series. The methods are applied to the El Niño–Southern Oscillation (ENSO) and the Indian monsoon to show that the ENSO–Indian monsoon relationship is impacted by ENSO nonlinearity.
Annu Panwar, Maik Renner, and Axel Kleidon
Hydrol. Earth Syst. Sci., 24, 4923–4942, https://doi.org/10.5194/hess-24-4923-2020, https://doi.org/10.5194/hess-24-4923-2020, 2020
Short summary
Short summary
Here we examine the effect of evaporative cooling across different vegetation types. Evaporation cools surface temperature significantly in short vegetation. In the forest, the high aerodynamic conductance explains 56 % of the reduced surface temperature. Therefore, the main cooling agent in the forest is the high aerodynamic conductance and not evaporation. Additionally, we propose the diurnal variation in surface temperature as being a potential indicator of evaporation in short vegetation.
Patrick Pieper, André Düsterhus, and Johanna Baehr
Hydrol. Earth Syst. Sci., 24, 4541–4565, https://doi.org/10.5194/hess-24-4541-2020, https://doi.org/10.5194/hess-24-4541-2020, 2020
Short summary
Short summary
The Standardized Precipitation Index (SPI) is a widely accepted drought index. SPI normalizes the precipitation distribution via a probability density function (PDF). However, which PDF properly normalizes SPI is still disputed. We suggest using a previously mostly overlooked PDF, namely the exponentiated Weibull distribution. The proposed PDF ensures the normality of the index. We demonstrate this – for the first time – for all common accumulation periods in both observations and simulations.
Songjun Han and Fuqiang Tian
Hydrol. Earth Syst. Sci., 24, 2269–2285, https://doi.org/10.5194/hess-24-2269-2020, https://doi.org/10.5194/hess-24-2269-2020, 2020
Short summary
Short summary
The complementary principle is an important methodology for estimating actual evaporation by using routinely observed meteorological variables. This review summaries its 56-year development, focusing on how related studies have shifted from adopting a symmetric linear complementary relationship to employing generalized nonlinear functions. We also compare the polynomial and sigmoid types of generalized complementary functions and discuss their future development.
Jianxiu Qiu, Wade T. Crow, Jianzhi Dong, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 24, 581–594, https://doi.org/10.5194/hess-24-581-2020, https://doi.org/10.5194/hess-24-581-2020, 2020
Short summary
Short summary
Accurately estimating coupling of evapotranspiration (ET) and soil water content (θ) at different depths is key to investigating land–atmosphere interaction. Here we examine whether the model can accurately represent surface θ (θs) versus ET coupling and vertically integrated θ (θv) versus ET coupling. We find that all models agree with observations that θs contains slightly more information with fPET than θv. In addition, an ET scheme is crucial for accurately estimating coupling of θ and ET.
Zhenhua Li, Yanping Li, Barrie Bonsal, Alan H. Manson, and Lucia Scaff
Hydrol. Earth Syst. Sci., 22, 5057–5067, https://doi.org/10.5194/hess-22-5057-2018, https://doi.org/10.5194/hess-22-5057-2018, 2018
Short summary
Short summary
The research started by investigating the 2015 growing season drought over the Canadian Prairies and evolved into investigating the connection between growing season rain deficit in the Prairies and MJO (20–90 days tropical oscillation in convective storms). With warm central Pacific sea surface temperature, strong MJOs in the western Pacific cause Rossby wave trains that propagate downstream and favour upper-level ridges and rain deficits over the Canadian Prairies during the growing season.
Xi Chen and Steven G. Buchberger
Hydrol. Earth Syst. Sci., 22, 4535–4545, https://doi.org/10.5194/hess-22-4535-2018, https://doi.org/10.5194/hess-22-4535-2018, 2018
Short summary
Short summary
Based on warm season data from 259 weather stations across the US, we analyze the correlation between precipitation, potential evaporation, and “apparent” potential evaporation (measured by pan evaporation). Over 93 % of the stations show negative correlation between precipitation and
apparentpotential evaporation, but no clear relationship is shown between precipitation and potential evaporation. The collected data points follow the trend of the newly derived Bouchet–Budyko curve.
Iris Manola, Bart van den Hurk, Hans De Moel, and Jeroen C. J. H. Aerts
Hydrol. Earth Syst. Sci., 22, 3777–3788, https://doi.org/10.5194/hess-22-3777-2018, https://doi.org/10.5194/hess-22-3777-2018, 2018
Short summary
Short summary
In a warmer climate, it is expected that precipitation intensities will increase and form a considerable risk of high-impact precipitation extremes. We investigate how observed extreme precipitation events would look like if they took place in a future warmer climate. This study applies three methods to transform a historic extreme precipitation event in the Netherlands to a similar event in a future warmer climate, thus compiling a
future weatherscenario.
Miguel A. Lovino, Omar V. Müller, Gabriela V. Müller, Leandro C. Sgroi, and Walter E. Baethgen
Hydrol. Earth Syst. Sci., 22, 3155–3174, https://doi.org/10.5194/hess-22-3155-2018, https://doi.org/10.5194/hess-22-3155-2018, 2018
Short summary
Short summary
This study examines hydroclimate variability in northeastern Argentina; advances the understanding of its links with global SST forcing; and discusses its impacts on water resources, agriculture and human settlements. Interannual-to-multidecadal variability led to frequent extreme events. Severe floods affected agriculture, livestock productivity, and forced population displacements. Droughts affected water resources, causing water and food scarcity. Increased temperatures reduced crop yields.
Qing Cao, Zhenchun Hao, Feifei Yuan, Zhenkuan Su, Ronny Berndtsson, Jie Hao, and Tsring Nyima
Hydrol. Earth Syst. Sci., 21, 5415–5426, https://doi.org/10.5194/hess-21-5415-2017, https://doi.org/10.5194/hess-21-5415-2017, 2017
Short summary
Short summary
This study analyzed the rainy-season precipitation in China influenced by various ENSO types. The precipitation anomalies were investigated under different ENSO types, which may be attributed to the combined influence of anti-cyclone in the western North Pacific and the Indian monsoon. The results improve the understanding of linkages between the precipitation and global teleconnection patterns. The results suggest a certain predictability of flood and drought related to different ENSO types.
Chia-Jeng Chen and Tsung-Yu Lee
Hydrol. Earth Syst. Sci., 21, 3463–3481, https://doi.org/10.5194/hess-21-3463-2017, https://doi.org/10.5194/hess-21-3463-2017, 2017
Short summary
Short summary
Regional hydro-climatic variables are modulated by large-scale, reoccurring climate oscillations. In this article, the authors provide both statistical and physical evidence of how Taiwan’s summertime streamflow is strongly correlated with specific teleconnection patterns dominating cyclonic activity in the western North Pacific. However, such correlation can be strengthened or weakened by notable climate regime shifts, illustrating the pitfall of empirical seasonal forecasting.
Vianney Courdent, Morten Grum, Thomas Munk-Nielsen, and Peter S. Mikkelsen
Hydrol. Earth Syst. Sci., 21, 2531–2544, https://doi.org/10.5194/hess-21-2531-2017, https://doi.org/10.5194/hess-21-2531-2017, 2017
Short summary
Short summary
Urban drainage and wastewater systems are heavily impacted by precipitation. Hence, weather forecasts are valuable in improving their management. However, forecasts are intrinsically uncertain, especially when fine model resolution is required, which is the case for urban hydrology. Handling uncertainty is challenging for decision makers. This study presents an economic framework to support the decision-making process by providing information on when acting on the forecast is beneficial.
Ruud J. van der Ent and Obbe A. Tuinenburg
Hydrol. Earth Syst. Sci., 21, 779–790, https://doi.org/10.5194/hess-21-779-2017, https://doi.org/10.5194/hess-21-779-2017, 2017
Short summary
Short summary
This research seeks out to answer a fundamental question about the functioning of the water cycle in the atmosphere: how much time does a water particle spend in the atmosphere? Based on state-of-the-art data, we derive a global average residence time of water in the atmosphere of 8–10 days. We further show in this paper how the residence time of water varies in time and space. This serves to illustrate why it is so difficult to make weather predictions on timescales longer than a week.
Simon Parry, Robert L. Wilby, Christel Prudhomme, and Paul J. Wood
Hydrol. Earth Syst. Sci., 20, 4265–4281, https://doi.org/10.5194/hess-20-4265-2016, https://doi.org/10.5194/hess-20-4265-2016, 2016
Short summary
Short summary
This paper identifies periods of recovery from drought in 52 river flow records from the UK between 1883 and 2013. The approach detects 459 events that vary in space and time. This large dataset allows individual events to be compared with others in the historical record. The ability to objectively appraise contemporary events against the historical record has not previously been possible, and may allow water managers to prepare for a range of outcomes at the end of a drought.
Lucy J. Barker, Jamie Hannaford, Andrew Chiverton, and Cecilia Svensson
Hydrol. Earth Syst. Sci., 20, 2483–2505, https://doi.org/10.5194/hess-20-2483-2016, https://doi.org/10.5194/hess-20-2483-2016, 2016
Short summary
Short summary
Standardised meteorological indicators are widely used in drought monitoring, but applications to hydrological drought are less extensive. Here we assess the utility of standardised indicators for characterising drought duration, severity and propagation in a diverse set of 121 UK catchments. Spatial variations in streamflow drought characteristics reflect differences in drought propagation behaviour that are themselves largely driven by heterogeneity in catchment properties around the UK.
T. Tang, W. Li, and G. Sun
Hydrol. Earth Syst. Sci., 20, 27–37, https://doi.org/10.5194/hess-20-27-2016, https://doi.org/10.5194/hess-20-27-2016, 2016
O. Böhm, J. Jacobeit, R. Glaser, and K.-F. Wetzel
Hydrol. Earth Syst. Sci., 19, 4721–4734, https://doi.org/10.5194/hess-19-4721-2015, https://doi.org/10.5194/hess-19-4721-2015, 2015
M. Müller, M. Kašpar, A. Valeriánová, L. Crhová, E. Holtanová, and B. Gvoždíková
Hydrol. Earth Syst. Sci., 19, 4641–4652, https://doi.org/10.5194/hess-19-4641-2015, https://doi.org/10.5194/hess-19-4641-2015, 2015
Short summary
Short summary
Three proposed indices combine return periods of precipitation totals or discharges with the size of the affected area. Precipitation indices also determine actual duration of either extreme or seasonally abnormal precipitation events. A unified design of the indices enables one to easily compare inter-annual and seasonal distributions of events, which is demonstrated by 50 maximum events in the Czech Republic during the period 1961-2010, including the June 2013 floods.
C. K. Folland, J. Hannaford, J. P. Bloomfield, M. Kendon, C. Svensson, B. P. Marchant, J. Prior, and E. Wallace
Hydrol. Earth Syst. Sci., 19, 2353–2375, https://doi.org/10.5194/hess-19-2353-2015, https://doi.org/10.5194/hess-19-2353-2015, 2015
Short summary
Short summary
The English Lowlands is a heavily populated, water-stressed region, which is vulnerable to long droughts typically associated with dry winters. We conduct a long-term (1910-present) quantitative analysis of precipitation, flow and groundwater droughts for the region, and then review potential climatic drivers. No single driver is dominant, but we demonstrate a physical link between La Nina conditions, winter rainfall and long droughts in the region.
N. Helbig, A. van Herwijnen, J. Magnusson, and T. Jonas
Hydrol. Earth Syst. Sci., 19, 1339–1351, https://doi.org/10.5194/hess-19-1339-2015, https://doi.org/10.5194/hess-19-1339-2015, 2015
W. J. Shuttleworth
Hydrol. Earth Syst. Sci., 18, 4403–4406, https://doi.org/10.5194/hess-18-4403-2014, https://doi.org/10.5194/hess-18-4403-2014, 2014
Short summary
Short summary
This paper explains the Matt-Shuttleworth approach clearly, simply and concisely. It shows how this approach can be implemented using a few simple equations and provides access to ancillary calculation resources that can be used for such implementation. If the crop water requirement community considered it preferable to use the Penman-Monteith equation to estimate crop water requirements directly for all crops, this could now be done using the Matt-Shuttleworth approach.
I. Masih, S. Maskey, F. E. F. Mussá, and P. Trambauer
Hydrol. Earth Syst. Sci., 18, 3635–3649, https://doi.org/10.5194/hess-18-3635-2014, https://doi.org/10.5194/hess-18-3635-2014, 2014
D. C. Verdon-Kidd and A. S. Kiem
Hydrol. Earth Syst. Sci., 18, 2257–2264, https://doi.org/10.5194/hess-18-2257-2014, https://doi.org/10.5194/hess-18-2257-2014, 2014
H. F. Goessling and C. H. Reick
Hydrol. Earth Syst. Sci., 17, 4133–4142, https://doi.org/10.5194/hess-17-4133-2013, https://doi.org/10.5194/hess-17-4133-2013, 2013
P. Brigode, Z. Mićović, P. Bernardara, E. Paquet, F. Garavaglia, J. Gailhard, and P. Ribstein
Hydrol. Earth Syst. Sci., 17, 1455–1473, https://doi.org/10.5194/hess-17-1455-2013, https://doi.org/10.5194/hess-17-1455-2013, 2013
D. Windhorst, T. Waltz, E. Timbe, H.-G. Frede, and L. Breuer
Hydrol. Earth Syst. Sci., 17, 409–419, https://doi.org/10.5194/hess-17-409-2013, https://doi.org/10.5194/hess-17-409-2013, 2013
H. Mittelbach and S. I. Seneviratne
Hydrol. Earth Syst. Sci., 16, 2169–2179, https://doi.org/10.5194/hess-16-2169-2012, https://doi.org/10.5194/hess-16-2169-2012, 2012
A. J. E. Gallant, A. S. Kiem, D. C. Verdon-Kidd, R. C. Stone, and D. J. Karoly
Hydrol. Earth Syst. Sci., 16, 2049–2068, https://doi.org/10.5194/hess-16-2049-2012, https://doi.org/10.5194/hess-16-2049-2012, 2012
B. Schaefli, R. J. van der Ent, R. Woods, and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 16, 1863–1878, https://doi.org/10.5194/hess-16-1863-2012, https://doi.org/10.5194/hess-16-1863-2012, 2012
X. Han, X. Li, H. J. Hendricks Franssen, H. Vereecken, and C. Montzka
Hydrol. Earth Syst. Sci., 16, 1349–1363, https://doi.org/10.5194/hess-16-1349-2012, https://doi.org/10.5194/hess-16-1349-2012, 2012
X. Xiao, H. C. Zuo, Q. D. Yang, S. J. Wang, L. J. Wang, J. W. Chen, B. L. Chen, and B. D. Zhang
Hydrol. Earth Syst. Sci., 16, 893–910, https://doi.org/10.5194/hess-16-893-2012, https://doi.org/10.5194/hess-16-893-2012, 2012
D. Zoccatelli, M. Borga, A. Viglione, G. B. Chirico, and G. Blöschl
Hydrol. Earth Syst. Sci., 15, 3767–3783, https://doi.org/10.5194/hess-15-3767-2011, https://doi.org/10.5194/hess-15-3767-2011, 2011
G. Lenderink, H. Y. Mok, T. C. Lee, and G. J. van Oldenborgh
Hydrol. Earth Syst. Sci., 15, 3033–3041, https://doi.org/10.5194/hess-15-3033-2011, https://doi.org/10.5194/hess-15-3033-2011, 2011
J. Lorenzo-Lacruz, S. M. Vicente-Serrano, J. I. López-Moreno, J. C. González-Hidalgo, and E. Morán-Tejeda
Hydrol. Earth Syst. Sci., 15, 2581–2597, https://doi.org/10.5194/hess-15-2581-2011, https://doi.org/10.5194/hess-15-2581-2011, 2011
M. J. van den Berg, S. Vandenberghe, B. De Baets, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 15, 1445–1457, https://doi.org/10.5194/hess-15-1445-2011, https://doi.org/10.5194/hess-15-1445-2011, 2011
A. S. Kiem and D. C. Verdon-Kidd
Hydrol. Earth Syst. Sci., 14, 433–445, https://doi.org/10.5194/hess-14-433-2010, https://doi.org/10.5194/hess-14-433-2010, 2010
J. Eliasson, O. Rögnvaldsson, and T. Jonsson
Hydrol. Earth Syst. Sci., 13, 2233–2240, https://doi.org/10.5194/hess-13-2233-2009, https://doi.org/10.5194/hess-13-2233-2009, 2009
Cited articles
Anctil, F. and Coulibaly, P.: Wavelet Analysis of the Interannual Variability in Southern Québec Streamflow, J.
Climate, 17, 163–173, 2004. a
Ardilouze, C., Materia, S., Batté, L., Benassi, M., and Prodhomme, C.:
Precipitation response to extreme soil moisture conditions over the
Mediterranean, Clim. Dynam., https://doi.org/10.1007/s00382-020-05519-5, 2020. a, b, c
Berg, A., Lintner, B. R., Findell, K., Seneviratne, S. I., van den Hurk, B.,
Ducharne, A., Chéruy, F., Hagemann, S., Lawrence, D. M., Malyshev, S.,
Meier, A., and Gentine, P.: Interannual Coupling between Summertime Surface
Temperature and Precipitation over Land: Processes and Implications for
Climate Change, J. Climate, 28, 1308–1328, 2015. a
Blöschl, G., Bierkens, M. F. P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., Kirchner, J. W., McDonnell, J. J., Savenije, H. H. G., Sivapalan, M., Stumpp, C., Toth, E., Volpi, E., Carr, G., Lupton, C., Salinas, J., Széles, B., Viglione, A., Aksoy, H., Allen, S. T., Amin, A., Andréassian, V., Arheimer, B., Aryal, S. K., Baker, V., Bardsley, E., Barendrecht, M. H., Bartosova, A., Batelaan, O., Berghuijs, W. R., Beven, K., Blume, T., Bogaard, T., Borges de Amorim, P., Böttcher, M. E., Boulet, G., Breinl, K., Brilly, M., Brocca, L., Buytaert, W., Castellarin, A., Castelletti, A., Chen, X., Chen, Y., Chen, Y., Chifflard, P., Claps, P., Clark, M. P., Collins, A. L., Croke, B., Dathe, A., David, P. C., de Barros, F. P. J., de Rooij, G., Di Baldassarre, G., Driscoll, J. M., Duethmann, D., Dwivedi, R., Eris, E., Farmer, W. H., Feiccabrino, J., Ferguson, G., Ferrari, E., Ferraris, S., Fersch, B., Finger, D., Foglia, L., Fowler, K., Gartsman, B., Gascoin, S., Gaume, E., Gelfan, A., Geris, J., Gharari, S., Gleeson, T., Glendell, M., Gonzalez Bevacqua, A., González-Dugo, M. P., Grimaldi, S., Gupta, A. B., Guse, B., Han, D., Hannah, D., Harpold, A., Haun, S., Heal, K., Helfricht, K., Herrnegger, M., Hipsey, M., HlaváĊiková, H., Hohmann, C., Holko, L., Hopkinson, C., Hrachowitz, M., Illangasekare, T. H., Inam, A., Innocente, C., Istanbulluoglu, E., Jarihani, B., Kalantari, Z., Kalvans, A., Khanal, S., Khatami, S., Kiesel, J., Kirkby, M., Knoben, W., Kochanek, K., Kohnová, S., Kolechkina, A., Krause, S., Kreamer, D., Kreibich, H., Kunstmann, H., Lange, H., Liberato, M. L. R., Lindquist, E., Link, T., Liu, J., Loucks, D. P., Luce, C., Mahé, G., Makarieva, O., Malard, J., Mashtayeva, S., Maskey, S., Mas-Pla, J., Mavrova-Guirguinova, M., Mazzoleni, M., Mernild, S., Misstear, B. D., Montanari, A., Müller-Thomy, H., Nabizadeh, A., Nardi, F., Neale, C., Nesterova, N., Nurtaev, B., Odongo, V. O., Panda, S., Pande, S., Pang, Z., Papacharalampous, G., Perrin, C., Pfister, L., Pimentel, R., Polo, M. J., Post, D., Prieto Sierra, C., Ramos, M.-H., Renner, M., Reynolds, J. E., Ridolfi, E., Rigon, R., Riva, M., Robertson, D. E., Rosso, R., Roy, T., Sá, J. H. M., Salvadori, G., Sandells, M., Schaefli, B., Schumann, A., Scolobig, A., Seibert, J., Servat, E., Shafiei, M., Sharma, A., Sidibe, M., Sidle, R. C., Skaugen, T., Smith, H., Spiessl, S. M., Stein, L., Steinsland, I., Strasser, U., Su, B., Szolgay, J., Tarboton, D., Tauro, F., Thirel, G., Tian, F., Tong, R., Tussupova, K., Tyralis, H., Uijlenhoet, R., van Beek, R., van der Ent, R. J., van der Ploeg, M., Van Loon, A. F., van Meerveld, I., van Nooijen, R., van Oel, P. R., Vidal, J.-P., von Freyberg, J., Vorogushyn, S., Wachniew, P., Wade, A. J., Ward, P., Westerberg, I. K., White, C., Wood, E. F., Woods, R., Xu, Z., Yilmaz, K. K. and Zhang, Y.: Twenty-three Unsolved
Problems in Hydrology (UPH) – a community perspective, Hydrol. Sci. J., 0, 1–33,
https://doi.org/10.1080/02626667.2019.1620507, 2019. a, b, c
Bower, D. and Hannah, D. M.: Spatial and temporal variability of UK river flow regimes, IAHS-AISH Publication, pp.
457–466, 2002. a
Brigode, P., Génot, B., Lobligeois, F., and Delalgue, O.: Summary sheets of watershed-scale hydroclimatic observed
data for France, sheets of watershed-scale hydroclimatic observed data for France, available at: https://webgr.inrae.fr/activites/base-de-donnees/ (last access: 2 July 2021), 2020. a
Büntgen, U., Frank, D., Grudd, H., and Esper, J.: Long-term summer
temperature variations in the Pyrenees, Clim. Dynam., 31, 615–631, 2008. a
Caillouet, L., Vidal, J.-P., Sauquet, E., Devers, A., and Graff, B.: Ensemble reconstruction of spatio-temporal extreme low-flow events in France since 1871, Hydrol. Earth Syst. Sci., 21, 2923–2951, https://doi.org/10.5194/hess-21-2923-2017, 2017. a
Christophe Bouton, P. H. (Ed.): Time of Nature and the Nature of Time:
Philosophical Perspectives of Time in Natural Sciences, vol. 326 of
(Boston Studies in the Philosophy and History of Science, Springer, 2017. a
Coulibaly, P. and Burn, D. H.: Wavelet analysis of variability in annual Canadian streamflows, Water Resour. Res., 40, 1–14, https://doi.org/10.1029/2003WR002667, 2004. a, b, c
Devers, A., Vidal, J. P., Lauvernet, C., Graff, B., and Vannier, O.: A framework for high-resolution meteorological
surface reanalysis through offline data assimilation in an ensemble of downscaled reconstructions, Q. J. Roy. Meteor. Soc., 146, 153–173, https://doi.org/10.1002/qj.3663, 2020. a
Devers, A., Vidal, J.-P., Lauvernet, C., and Vannier, O.: FYRE Climate: a high-resolution reanalysis of daily precipitation and temperature in France from 1871 to 2012, Clim. Past, 17, 1857–1879, https://doi.org/10.5194/cp-17-1857-2021, 2021. a
Dieppois, B., Durand, A., Fournier, M., and Massei, N.: Links between multidecadal and interdecadal climatic oscillations
in the North Atlantic and regional climate variability of northern France and England since the 17th century,
J. Geophys. Res.-Atmos., 118, 4359–4372, https://doi.org/10.1002/jgrd.50392, 2013. a, b
Dieppois, B., Lawler, D. M., Slonosky, V., Massei, N., Bigot, S., and Fournier, M.: Multidecadal climate variability over
northern France during the past 500 years and its relation to large-scale atmospheric circulation, Int. J. Climatol., 36, 4679–4696, https://doi.org/10.1002/joc.4660, 2016. a, b, c
Ducharne, A., Arboleda-obando, P., and Cheruy, F.: Effets de l’humectation des sols par les nappes sur la trajectoire du
changement climatique dans le bassin de la Seine et en Europe, Tech. rep., PIREN-Seine, Paris, 2020. a
Dunn, J. C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters
A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, J.
Cybernet., 3, 37–57, 1973. a
Ebisuzaki, W.: A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated,
J. Climate, 10, 2147–2153, 1997. a
Feliks, Y., Ghil, M., and Robertson, A. W.: The atmospheric circulation over the North Atlantic as induced by the SST
field, J. Climate, 24, 522–542, https://doi.org/10.1175/2010JCLI3859.1, 2011. a
Feliks, Y., Robertson, A. W., and Ghil, M.: Interannual variability in north Atlantic weather: Data analysis and a quasi565
geostrophic model, J. Atmos. Sci., 73, 3227–3248, https://doi.org/10.1175/JAS-D-15-0297.1,
2016. a
Flipo, N., Gallois, N., Labarthe, B., Baratelli, F., Viennot, P., Schuite, J., Rivière, A., Bonnet, R., and Boé, J.: Pluri-annual Water Budget
on the Seine Basin: Past, Current and Future Trends, in: Handbook of environmental chemistry, Springer,
https://doi.org/10.1007/698_2019_392, 2020. a
Fossa, M.: ManuelFossa/Hess-2021-81: HESS-2021-81 (CMI), Zenodo [code], https://doi.org/10.5281/zenodo.5638845, 2021. a
Fritier, N., Massei, N., Laignel, B., Durand, A., Dieppois, B., and Deloffre, J.: Links between NAO fluctuations and
inter-annual variability of winter-months precipitation in the Seine River watershed (north-western France), Comptes
Rendus – Geoscience, 344, 396–405, https://doi.org/10.1016/j.crte.2012.07.004, 2012. a
Ge, Z.: Significance tests for the wavelet power and the wavelet power spectrum, Ann. Geophys., 25, 2259–2269, https://doi.org/10.5194/angeo-25-2259-2007, 2007. a, b, c
Gentine, P., Troy, T. J., Lintner, B. R., and Findell, K. L.: Scaling in Surface Hydrology: Progress and Challenges, J. Contemp. Water Res. Educ., 147, 28–40, https://doi.org/10.1111/j.1936-704x.2012.03105.x,
2012. a, b
Giuntoli, I., Renard, B., Vidal, J.-P., and Bard, A.: Low flows in France and
their relationship to large-scale climate indices, J. Hydrol., 482, 105–118, https://doi.org/10.1016/j.jhydrol.2012.12.038,
2013. a, b, c
Gottardi, F., Obled, C., Gailhard, J., and Paquet, E.: Régionalisation des
précipitations sur les massifs montagneux français à l'aide de
régressions locales et par types de temps, Climatologie, 5, 7–25, 2008. a
Granger, C. W. J.: Investigating Causal Relations by Econometric Models and Cross-spectral Methods, Econometrica,
37, 424–438, 1969. a
Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004. a
Gudmundsson, L., Tallaksen, L. M., and Stahl, K.: Spatial cross-correlation patterns of European low, mean and high
flows, Hydrol. Process., 25, 1034–1045, https://doi.org/10.1002/hyp.7807, 2011. a, b, c
Hannachi, A., Straus, D. M., Franzke, C. L. E., Corti, S., and Woollings, T.:
Low-frequency nonlinearity and regime behavior in the Northern Hemisphere
extratropical atmosphere: NONLINEARITY AND REGIME BEHAVIOR, Rev.
Geophys., 55, 199–234, 2017. a
Hannaford, J., Lloyd-Hughes, B., Prudhomme, C., Parry, S., Keef, C., and Rees, G.: The Spatial Coherence of European
Droughts – Final Report protecting and improving the environment in England and Wales, Tech. rep., Environment
Agency's Science Programme, Environment Agency, Rio House, Waterside Drive,
Aztec West, Almondsbury, Bristol, BS32 4UD, 2009. a
Haslinger, K., Hofstätter, M., Kroisleitner, C., Schöner, W., Laaha,
G., Holawe, F., and Blöschl, G.: Disentangling Drivers of Meteorological
Droughts in the European Greater Alpine Region During the Last Two Centuries,
J. Geophys. Res.-Atmos., 124, 12404–12425, 2019. a
Hermida, L., López, L., Merino, A., Berthet, C., García-Ortega, E.,
Sánchez, J. L., and Dessens, J.: Hailfall in southwest France:
Relationship with precipitation, trends and wavelet analysis, Atmos. Res.,
156, 174–188, 2015. a
Hubert, P.: Les multifractals, un outil pour surmonter les problèmes d'échelle en hydrologie, Hydrol. Sci.
J., 46, 897–905, https://doi.org/10.1080/02626660109492884, 2001. a
Hubert, P., Carbonnel, J. P., and Chaouche, A.: Segmentation Des Séries Hydrométéorologiques – Application
à des Séries de Précipitations et de Débits de L'Afrique de l'Ouest, J. Hydrol., 110, 349–367,
https://doi.org/10.1016/0022-1694(89)90197-2, 1989. a
IPCC: Climate Change 2007: The Physical Science Basis, Cambridge university press,
https://doi.org/10.1017/CBO9781107415324.004, 2007. a
IPCC: Climate change 2014. Synthesis report, Cambridge university press,
https://doi.org/10.1017/CBO9781107415324, 2014. a
IPCC: Water Cycle changes, in: IPCC AR6 WGI Full Report, Cambridge University Press, in press, 2021. a
Jajcay, N. and Lavicka, H.: pyCliTS, available at: https://github.com/jajcayn/pyclits (last access: 17 March 2021), GitHub [code], 2018. a
Jajcay, N., Hlinka, J., Kravtsov, S., Tsonis, A. A., and Paluš, M.: Time scales of the European surface
air temperature variability : The role of the 7–8 year cycle, Geophys. Res. Lett., 43, 1–8,
https://doi.org/10.1002/2015gl067325, 2016. a
Jajcay, N., Kravtsov, S., Sugihara, G., Tsonis, A. A., and Paluš, M.: Synchronization and
causality across time scales in El Niño Southern Oscillation, npj Climate and Atmospheric Science, 1, 33,
https://doi.org/10.1038/s41612-018-0043-7, 2018. a, b, c, d
Joly, D., Brossard, T., Cardot, H., Cavailhes, J., Hilal, M., and Wavresky, P.: Les types de climats en France , une
construction spatiale, Cybergeo: European Journal of Geography, Document 501, https://doi.org/10.4000/cybergeo.23155,
2010. a, b
Labat, D.: Non-Linéarité et Non-Stationnarité en Hydrologie Karstique, PhD thesis, INP Toulouse, 2000. a
Lambert, F. H., Webb, M. J., and Joshi, M. M.: The relationship between land-ocean surface temperature contrast and
radiative forcing, J. Climate, 24, 3239–3256, https://doi.org/10.1175/2011JCLI3893.1, 2011. a
Lavers, D., Prudhomme, C., and Hannah, D. M.: Large-scale climate, precipitation and British river
flows: Identifying hydroclimatological connections and dynamics, J. Hydrol., 395, 242–255,
https://doi.org/10.1016/j.jhydrol.2010.10.036, 2010. a
Liu, D. and Graham, J.: Simple Measures of Individual Cluster-Membership Certainty for Hard Partitional Clustering,
American Statistician, 73, 70–79, https://doi.org/10.1080/00031305.2018.1459315, 2018. a, b
Liu, Q., Wen, N., and Liu, Z.: An observational study of the impact of the
North Pacific SST on the atmosphere: NORTH PACIFIC IMPACT ON
ATMOSPHERE, Geophys. Res. Lett., 33, L18611, https://doi.org/10.1029/2006GL026082, 2006. a, b
Massei, N., Durand, A., Deloffre, J., Dupont, J. P., Valdes, D., and Laignel, B.: Investigating possible links between the
North Atlantic Oscillation and rainfall variability in Northwestern France over the past 35 years, J. Geophys.
Res.-Atmos., 112, 1–10, https://doi.org/10.1029/2005JD007000, 2007. a, b
Massei, N., Dieppois, B., Hannah, D. M., Lavers, D. A., Fossa, M., Laignel, B., and Debret, M.: Multi-time-scale hydroclimate
dynamics of a regional watershed and links to large-scale atmospheric circulation: Application to the Seine river
catchment, France, J. Hydrol., 546, 262–275, https://doi.org/10.1016/j.jhydrol.2017.01.008, 2017. a, b, c, d
McGregor, G.: Hydroclimatology, modes of climatic variability and stream flow, lake and groundwater level variability:
A progress report, Prog. Phys. Geogr., 41, 496–512, https://doi.org/10.1177/0309133317726537, 2017. a
Ministère de la Transition Energetique: banque hydro, Ministère de la Transition Energetique [data set], available at: http://www.hydro.eaufrance.fr, last access: 15 October 2015. a
Miralles, D. G., van den Berg, M. J., Teuling, A. J., and de Jeu, R. A. M.:
Soil moisture-temperature coupling: A multiscale observational analysis,
Geophys. Res. Lett., 39, L21707, https://doi.org/10.1029/2012gl053703, 2012. a
Monti, S., Tamayo, P., Mesirov, J., and Golub, T.: Consensus clustering: A resampling-based method for
class discovery and visualization of gene expression microarray data, Mach. Learn., 52, 91–118,
https://doi.org/10.1023/A:1023949509487, 2003. a
Moron, V., Robertson, A. W., Ward, M. N., and Camberlin, P.: Spatial coherence of tropical rainfall at the regional scale,
J. Climate, 20, 5244–5263, https://doi.org/10.1175/2007JCLI1623.1, 2007. a
Nandi, B., Swiatek, P., Kocsis, B., and Ding, M.: Inferring the direction of rhythmic neural transmission via inter-regional
phase-amplitude coupling (ir-PAC), Nat. Sci. Rep., 9, 1–13, https://doi.org/10.1038/s41598-019-43272-w,
2019. a
Onslow, A. C. E., Jones, M. W., and Bogacz, R.: A canonical circuit for generating phase-amplitude coupling, PLoS
ONE, 9, e102591, https://doi.org/10.1371/journal.pone.0102591, 2014. a, b
Paluš, M.: Cross-Scale Interactions and Information Transfer, Entropy,
16, 5263–5289, 2014. a
Pella, H., Lejot, J., Lamouroux, N., and Snelder, T.: The theoretical hydrographical network (RHT) for
France and its environmental attributes, Geomorphologie: Relief, Processus, Environnement, 18, 317–336,
https://doi.org/10.4000/geomorphologie.9933, 2012. a
Pepin, N. and Kidd, D.: Spatial temperature variation in the Eastern Pyrenees,
Weather, 61, 300–310, 2006. a
Peters, D. P. C., Pielke, Sr, R. A., Bestelmeyer, B. T., Allen, C. D.,
Munson-McGee, S., and Havstad, K. M.: Cross-scale interactions,
nonlinearities, and forecasting catastrophic events, P. Natl. Acad. Sci.
USA, 101, 15130–15135, 2004. a
Pikovsky, A., Rosenblum, M., and Kurths, J.: Synchronization. A Universal Concept in Nonlinear Sciences, Cambridge
University Press, Cambridge, 2001. a
Rahiz, M. and New, M.: Spatial coherence of meteorological droughts in the UK since 1914, Area, 44, 400–410,
https://doi.org/10.1111/j.1475-4762.2012.01131.x, 2012. a
Sauquet, E., Gottschalk, L., and Krasovskaia, I.: Estimating mean monthly runoff at ungauged locations: an application
680 to France, Hydrol. Res., 39, 403–423, https://doi.org/10.2166/nh.2008.331, 2008. a, b
Scaife, A. A. and Smith, D.: A signal-to-noise paradox in climate science, npj
Climate and Atmospheric Science, 1, 1–8, 2018. a
Schaefli, B., Maraun, D., and Holschneider, M.: What drives high flow events in the Swiss Alps? Recent developments
in wavelet spectral analysis and their application to hydrology, Adv. Water Resour., 30, 2511–2525,
https://doi.org/10.1016/j.advwatres.2007.06.004, 2007. a
Scheffer-Teixeira, R. and Tort, A. B.: On cross-frequency phase-phase coupling
between theta and gamma oscillations in the hippocampus, Elife, 5, e20515, https://doi.org/10.7554/eLife.20515, 2016. a
Schuite, J., Flipo, N., Massei, N., Rivière, A., and Baratelli, F.: Improving the Spectral Analysis of Hydrological
Signals to Efficiently Constrain Watershed Properties, Water Resour. Res., 55, 4043–4065,
https://doi.org/10.1029/2018WR024579, 2019.
a
Sejas, S. A., Albert, O. S., Cai, M., and Deng, Y.: Feedback attribution of the
land-sea warming contrast in a global warming simulation of the NCAR
CCSM4, Environ. Res. Lett., 9, https://doi.org/10.1088/1748-9326/9/12/124005, 2014. a, b
Şenbabaoǧlu, Y., Michailidis, G., and Li, J. Z.: Critical limitations of consensus clustering in class discovery, Sci.
Rep.-UK, 4, 6207, https://doi.org/10.1038/srep06207, 2014. a
Sidibe, M., Dieppois, B., Eden, J., Mahé, G., Paturel, J. E., Amoussou, E., Anifowose, B., and Lawler, D.: Interannual to Multi-decadal streamflow
variability in West and Central Africa: Interactions with catchment properties and large-scale climate variability,
Global Planet. Change, 177, 141–156, https://doi.org/10.1016/j.gloplacha.2019.04.003, 2019. a
Smith, L., Turcotte, D., and Isacks, B.: Stream flow characterization and feature detection using a discrete wavelet
transform, Hydrol. Process., 12, 233–249, https://doi.org/10.1002/(SICI)1099-1085(199802)12:2<233::AIDHYP573>3.0.CO;2-3, 1998. a
Snelder, T. H., Lamouroux, N., Leathwick, J. R., Pella, H., Sauquet, E., and Shankar, U.: Predictive mapping of the natural
flow regimes of France, J. Hydrol., 373, 57–67, https://doi.org/10.1016/j.jhydrol.2009.04.011, 2009. a, b
Sun, Y., Liu, J.-W., and Xie, S.-P.: North Atlantic Oscillation Effect on
Interannual Variability in Winter Precipitation over the Gulf Stream, J.
Climate, 33, 6633–6649, 2020. a
Vidal, J. P., Martin, E., Franchistéguy, L., Baillon, M., and Soubeyroux, J. M.: A 50-year high-resolution atmospheric
reanalysis over France with the Safran system, Int. J. Climatol., 30, 1627–1644,
https://doi.org/10.1002/joc.2003, 2010. a, b
Wang, C., Osiński, M., Even, J., and Grillot, F.: Phase-amplitude coupling characteristics in directly modulated quantum
dot lasers, Appl. Phys. Lett., 105, L221114, https://doi.org/10.1063/1.4903493, 2014. a
Wang, L., Zhang, Y., and Feng, J.: On the Euclidean distance of images, IEEE T. Pat. Anal.
Mach. Int., 27, 1334–1339, https://doi.org/10.1109/TPAMI.2005.165, 2005. a, b, c, d
Woodward, F. I., Lomas, M. R., Betts, R. A., Wagner, A., Mulligan, M., and
Hewitt, C. N.: Vegetation-Climate Feedbacks in a Greenhouse World [and
Discussion], Philos. Trans. R. Soc. Lond. B Biol. Sci., 353, 29–39, 1998. a
Yang, L., Sun, G., Zhi, L., and Zhao, J.: Negative soil moisture-precipitation
feedback in dry and wet regions, Sci. Rep.-UK, 8, 1–9, 2018. a
Zveryaev, I. I.: Seasonal differences in intraseasonal and interannual
variability of Mediterranean Sea surface temperature, J. Geophys. Res.-Oceans, 120, 2813–2825, 2015. a
Short summary
Hydro-climate observations (such as precipitation, temperature, and river discharge time series) reveal very complex behavior inherited from complex interactions among the physical processes that drive hydro-climate viability. This study shows how even small perturbations of a physical process can have large consequences on some others. Those interactions vary spatially, thus showing the importance of both temporal and spatial dimensions in better understanding hydro-climate variability.
Hydro-climate observations (such as precipitation, temperature, and river discharge time series)...