Research article 19 Apr 2021
Research article | 19 Apr 2021
Minimizing the impact of vacating instream storage of a multi-reservoir system: a trade-off study of water supply and empty flushing
Chia-Wen Wu et al.
Related authors
Frederick N.-F. Chou and Chia-Wen Wu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-61, https://doi.org/10.5194/hess-2016-61, 2016
Manuscript not accepted for further review
Short summary
Short summary
Empty flushing is effective for removing deposited sediments from reservoirs, but draining the storage counteracts the water supply function. In a multi-reservoir system, this limitation can be alleviated through proper joint operation to create favorable conditions to implement empty flushing in one pf the reservoirs. The strategy is optimized to maximize the desilting volume without inducing intolerable water shortage, thus allowing the system to advance toward the goal of sustainability.
F. N.-F. Chou and C.-W. Wu
Hydrol. Earth Syst. Sci., 18, 1857–1872, https://doi.org/10.5194/hess-18-1857-2014, https://doi.org/10.5194/hess-18-1857-2014, 2014
Frederick N.-F. Chou and Chia-Wen Wu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-61, https://doi.org/10.5194/hess-2016-61, 2016
Manuscript not accepted for further review
Short summary
Short summary
Empty flushing is effective for removing deposited sediments from reservoirs, but draining the storage counteracts the water supply function. In a multi-reservoir system, this limitation can be alleviated through proper joint operation to create favorable conditions to implement empty flushing in one pf the reservoirs. The strategy is optimized to maximize the desilting volume without inducing intolerable water shortage, thus allowing the system to advance toward the goal of sustainability.
F. N.-F. Chou and C.-W. Wu
Hydrol. Earth Syst. Sci., 18, 1857–1872, https://doi.org/10.5194/hess-18-1857-2014, https://doi.org/10.5194/hess-18-1857-2014, 2014
Related subject area
Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Global cotton production under climate change – Implications for yield and water consumption
Signatures of human intervention – or not? Downstream intensification of hydrological drought along a large Central Asian river: the individual roles of climate variability and land use change
Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields
Socio-hydrologic modeling of the dynamics of cooperation in the transboundary Lancang–Mekong River
Multi-level storylines for participatory modeling – involving marginalized communities in Tz'olöj Ya', Mayan Guatemala
Benchmarking an operational hydrological model for providing seasonal forecasts in Sweden
Impact of the quality of hydrological forecasts on the management and revenue of hydroelectric reservoirs – a conceptual approach
A novel causal structure-based framework for comparing a basin-wide water–energy–food–ecology nexus applied to the data-limited Amu Darya and Syr Darya river basins
Projection of irrigation water demand based on the simulation of synthetic crop coefficients and climate change
Comparative analysis of kernel-based versus ANN and deep learning methods in monthly reference evapotranspiration estimation
Assessing the value of seasonal hydrological forecasts for improving water resource management: insights from a pilot application in the UK
From skill to value: isolating the influence of end user behavior on seasonal forecast assessment
The value of citizen science for flood risk reduction: cost–benefit analysis of a citizen observatory in the Brenta-Bacchiglione catchment
Risk assessment in water resources planning under climate change at the Júcar River basin
Interplay of changing irrigation technologies and water reuse: example from the upper Snake River basin, Idaho, USA
The benefit of using an ensemble of seasonal streamflow forecasts in water allocation decisions
Evapotranspiration partition using the multiple energy balance version of the ISBA-A-gs land surface model over two irrigated crops in a semi-arid Mediterranean region (Marrakech, Morocco)
Irrigation return flow causing a nitrate hotspot and denitrification imprints in groundwater at Tinwald, New Zealand
Multi-objective calibration by combination of stochastic and gradient-like parameter generation rules – the caRamel algorithm
A novel data-driven analytical framework on hierarchical water allocation integrated with blue and virtual water transfers
A novel regional irrigation water productivity model coupling irrigation- and drainage-driven soil hydrology and salinity dynamics and shallow groundwater movement in arid regions in China
An evapotranspiration model self-calibrated from remotely sensed surface soil moisture, land surface temperature and vegetation cover fraction: application to disaggregated SMOS and MODIS data
On the assimilation of environmental tracer observations for model-based decision support
Inferred inflow forecast horizons guiding reservoir release decisions across the United States
Assessment of potential implications of agricultural irrigation policy on surface water scarcity in Brazil
Ability of a soil–vegetation–atmosphere transfer model and a two-source energy balance model to predict evapotranspiration for several crops and climate conditions
Assessing water security in the São Paulo metropolitan region under projected climate change
WHAT-IF: an open-source decision support tool for water infrastructure investment planning within the water–energy–food–climate nexus
Representation and improved parameterization of reservoir operation in hydrological and land-surface models
Water restrictions under climate change: a Rhône–Mediterranean perspective combining bottom-up and top-down approaches
Quantifying thermal refugia connectivity by combining temperature modeling, distributed temperature sensing, and thermal infrared imaging
Reconstructed natural runoff helps to quantify the relationship between upstream water use and downstream water scarcity in China's river basins
Can global precipitation datasets benefit the estimation of the area to be cropped in irrigated agriculture?
Seasonal drought prediction for semiarid northeast Brazil: what is the added value of a process-based hydrological model?
Characterizing the potential for drought action from combined hydrological and societal perspectives
Incorporating the logistic regression into a decision-centric assessment of climate change impacts on a complex river system
Assessment of food trade impacts on water, food, and land security in the MENA region
Assessing the effect of flood restoration on surface–subsurface interactions in Rohrschollen Island (Upper Rhine river – France) using integrated hydrological modeling and thermal infrared imaging
Implications of water management representations for watershed hydrologic modeling in the Yakima River basin
Climate change vs. socio-economic development: understanding the future South Asian water gap
Do users benefit from additional information in support of operational drought management decisions in the Ebro basin?
Global phosphorus recovery from wastewater for agricultural reuse
Evaporation suppression and energy balance of water reservoirs covered with self-assembling floating elements
Developing a decision support tool for assessing land use change and BMPs in ungauged watersheds based on decision rules provided by SWAT simulation
Modeling the glacial lake outburst flood process chain in the Nepal Himalaya: reassessing Imja Tsho's hazard
Seasonal streamflow forecasting in the upper Indus Basin of Pakistan: an assessment of methods
Grey water footprint reduction in irrigated crop production: effect of nitrogen application rate, nitrogen form, tillage practice and irrigation strategy
Framework for developing hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems
A spatially detailed blue water footprint of the United States economy
The development and evaluation of a hydrological seasonal forecast system prototype for predicting spring flood volumes in Swedish rivers
Yvonne Jans, Werner von Bloh, Sibyll Schaphoff, and Christoph Müller
Hydrol. Earth Syst. Sci., 25, 2027–2044, https://doi.org/10.5194/hess-25-2027-2021, https://doi.org/10.5194/hess-25-2027-2021, 2021
Short summary
Short summary
Growth of and irrigation water demand on cotton may be challenged by future climate change. To analyze the global cotton production and irrigation water consumption under spatially varying present and future climatic conditions, we use the global terrestrial biosphere model LPJmL. Our simulation results suggest that the beneficial effects of elevated [CO2] on cotton yields overcompensate yield losses from direct climate change impacts, i.e., without the beneficial effect of [CO2] fertilization.
Artemis Roodari, Markus Hrachowitz, Farzad Hassanpour, and Mostafa Yaghoobzadeh
Hydrol. Earth Syst. Sci., 25, 1943–1967, https://doi.org/10.5194/hess-25-1943-2021, https://doi.org/10.5194/hess-25-1943-2021, 2021
Short summary
Short summary
In a combined data analysis and modeling study in the transboundary Helmand River basin, we analyzed spatial patterns of drought and changes therein based on the drought indices as well as on absolute water deficits. Overall the results illustrate that flow deficits and the associated droughts clearly reflect the dynamic interplay between temporally varying regional differences in hydro-meteorological variables together with subtle and temporally varying effects linked to human intervention.
Noemi Vergopolan, Sitian Xiong, Lyndon Estes, Niko Wanders, Nathaniel W. Chaney, Eric F. Wood, Megan Konar, Kelly Caylor, Hylke E. Beck, Nicolas Gatti, Tom Evans, and Justin Sheffield
Hydrol. Earth Syst. Sci., 25, 1827–1847, https://doi.org/10.5194/hess-25-1827-2021, https://doi.org/10.5194/hess-25-1827-2021, 2021
Short summary
Short summary
Drought monitoring and yield prediction often rely on coarse-scale hydroclimate data or (infrequent) vegetation indexes that do not always indicate the conditions farmers face in the field. Consequently, decision-making based on these indices can often be disconnected from the farmer reality. Our study focuses on smallholder farming systems in data-sparse developing countries, and it shows how field-scale soil moisture can leverage and improve crop yield prediction and drought impact assessment.
You Lu, Fuqiang Tian, Liying Guo, Iolanda Borzì, Rupesh Patil, Jing Wei, Dengfeng Liu, Yongping Wei, David J. Yu, and Murugesu Sivapalan
Hydrol. Earth Syst. Sci., 25, 1883–1903, https://doi.org/10.5194/hess-25-1883-2021, https://doi.org/10.5194/hess-25-1883-2021, 2021
Short summary
Short summary
The upstream countries in the transboundary Lancang–Mekong basin build dams for hydropower, while downstream ones gain irrigation and fishery benefits. Dam operation changes the seasonality of runoff downstream, resulting in their concerns. Upstream countries may cooperate and change their regulations of dams to gain indirect political benefits. The socio-hydrological model couples hydrology, reservoir, economy, and cooperation and reproduces the phenomena, providing a useful model framework.
Jessica A. Bou Nassar, Julien J. Malard, Jan F. Adamowski, Marco Ramírez Ramírez, Wietske Medema, and Héctor Tuy
Hydrol. Earth Syst. Sci., 25, 1283–1306, https://doi.org/10.5194/hess-25-1283-2021, https://doi.org/10.5194/hess-25-1283-2021, 2021
Short summary
Short summary
Our research suggests a method that facilitates the inclusion of marginalized stakeholders in model-building activities to address problems in water resources. Our case study showed that knowledge produced by typically excluded stakeholders had significant and unique contributions to the outcome of the process. Moreover, our method facilitated the identification of relationships between societal, economic, and hydrological factors, and it fostered collaborations across different communities.
Marc Girons Lopez, Louise Crochemore, and Ilias G. Pechlivanidis
Hydrol. Earth Syst. Sci., 25, 1189–1209, https://doi.org/10.5194/hess-25-1189-2021, https://doi.org/10.5194/hess-25-1189-2021, 2021
Short summary
Short summary
The Swedish hydrological warning service is extending its use of seasonal forecasts, which requires an analysis of the available methods. We evaluate the simple ESP method and find out how and why forecasts vary in time and space. We find that forecasts are useful up to 3 months into the future, especially during winter and in northern Sweden. They tend to be good in slow-reacting catchments and bad in flashy and highly regulated ones. We finally link them with areas of similar behaviour.
Manon Cassagnole, Maria-Helena Ramos, Ioanna Zalachori, Guillaume Thirel, Rémy Garçon, Joël Gailhard, and Thomas Ouillon
Hydrol. Earth Syst. Sci., 25, 1033–1052, https://doi.org/10.5194/hess-25-1033-2021, https://doi.org/10.5194/hess-25-1033-2021, 2021
Haiyang Shi, Geping Luo, Hongwei Zheng, Chunbo Chen, Olaf Hellwich, Jie Bai, Tie Liu, Shuang Liu, Jie Xue, Peng Cai, Huili He, Friday Uchenna Ochege, Tim Van de Voorde, and Philippe de Maeyer
Hydrol. Earth Syst. Sci., 25, 901–925, https://doi.org/10.5194/hess-25-901-2021, https://doi.org/10.5194/hess-25-901-2021, 2021
Short summary
Short summary
Some river basins are considered to be very similar because they have a similar background such as a transboundary, facing threats of human activities. But we still lack understanding of differences under their general similarities. Therefore, we proposed a framework based on a Bayesian network to group watersheds based on similarity levels and compare the causal and systematic differences within the group. We applied it to the Amu and Syr Darya River basin and discussed its universality.
Michel Le Page, Younes Fakir, Lionel Jarlan, Aaron Boone, Brahim Berjamy, Saïd Khabba, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 25, 637–651, https://doi.org/10.5194/hess-25-637-2021, https://doi.org/10.5194/hess-25-637-2021, 2021
Short summary
Short summary
In the context of major changes, the southern Mediterranean area faces serious challenges with low and continuously decreasing water resources mainly attributed to agricultural use. A method for projecting irrigation water demand under both anthropogenic and climatic changes is proposed. Time series of satellite imagery are used to determine a set of semiempirical equations that can be easily adapted to different future scenarios.
Mohammad Taghi Sattari, Halit Apaydin, Shahab S. Band, Amir Mosavi, and Ramendra Prasad
Hydrol. Earth Syst. Sci., 25, 603–618, https://doi.org/10.5194/hess-25-603-2021, https://doi.org/10.5194/hess-25-603-2021, 2021
Short summary
Short summary
The aim of study is to estimate the reference evapotranspiration (ET0) amount with artificial intelligence using minimum meteorological parameters in the Corum region, which is an agricultural center of Turkey. Kernel-based GPR and SVR and BFGS-ANN and LSTM models were used to estimate ET0 amounts in 10 different combinations. The results show that all four methods used predicted ET0 amounts at acceptable accuracy and error levels. The BFGS-ANN model showed higher success than the others.
Andres Peñuela, Christopher Hutton, and Francesca Pianosi
Hydrol. Earth Syst. Sci., 24, 6059–6073, https://doi.org/10.5194/hess-24-6059-2020, https://doi.org/10.5194/hess-24-6059-2020, 2020
Short summary
Short summary
In this paper we evaluate the potential use of seasonal weather forecasts to improve reservoir operation in a UK water supply system. We found that the use of seasonal forecasts can improve the efficiency of reservoir operation but only if the forecast uncertainty is explicitly considered. We also found the degree of efficiency improvement is strongly affected by the decision maker priorities and the hydrological conditions.
Matteo Giuliani, Louise Crochemore, Ilias Pechlivanidis, and Andrea Castelletti
Hydrol. Earth Syst. Sci., 24, 5891–5902, https://doi.org/10.5194/hess-24-5891-2020, https://doi.org/10.5194/hess-24-5891-2020, 2020
Short summary
Short summary
This paper aims at quantifying the value of hydroclimatic forecasts in terms of potential economic benefit to end users in the Lake Como basin (Italy), which allows the inference of a relation between gains in forecast skill and gains in end user profit. We also explore the sensitivity of this benefit to both the forecast system setup and end user behavioral factors, showing that the estimated forecast value is potentially undermined by different levels of end user risk aversion.
Michele Ferri, Uta Wehn, Linda See, Martina Monego, and Steffen Fritz
Hydrol. Earth Syst. Sci., 24, 5781–5798, https://doi.org/10.5194/hess-24-5781-2020, https://doi.org/10.5194/hess-24-5781-2020, 2020
Short summary
Short summary
As part of the flood risk management strategy of the
Brenta-Bacchiglione catchment (Italy), a citizen observatory for flood risk management is currently being implemented. A cost–benefit analysis of the citizen observatory was undertaken to demonstrate the value of this approach in monetary terms. Results show a reduction in avoided damage of 45 % compared to a scenario without implementation of the citizen observatory. The idea is to promote this methodology for future flood risk management.
Sara Suárez-Almiñana, Abel Solera, Jaime Madrigal, Joaquín Andreu, and Javier Paredes-Arquiola
Hydrol. Earth Syst. Sci., 24, 5297–5315, https://doi.org/10.5194/hess-24-5297-2020, https://doi.org/10.5194/hess-24-5297-2020, 2020
Short summary
Short summary
This work responds to the need for an effective methodology that integrates climate change projections into water planning and management to guide complex basin decision-making. This general approach is based on a model chain for management and drought risk assessments and applied to the Júcar River basin (Spain), showing a worrying deterioration of the basin's future water resources availability and drought indicators, despite a considerable uncertainty of results from the mid-century onwards.
Shan Zuidema, Danielle Grogan, Alexander Prusevich, Richard Lammers, Sarah Gilmore, and Paula Williams
Hydrol. Earth Syst. Sci., 24, 5231–5249, https://doi.org/10.5194/hess-24-5231-2020, https://doi.org/10.5194/hess-24-5231-2020, 2020
Short summary
Short summary
In our case study we find that increasing the efficiency of irrigation technology will have unintended consequences like reducing water available for aquifer replenishment or for other irrigators. The amount of water needed to stabilize regional aquifers exceeds the amount that could be saved by improving irrigation efficiency. Since users depend upon local groundwater storage, which is more sensitive to management decisions than river flow, comanagement of surface and groundwater is critical.
Alexander Kaune, Faysal Chowdhury, Micha Werner, and James Bennett
Hydrol. Earth Syst. Sci., 24, 3851–3870, https://doi.org/10.5194/hess-24-3851-2020, https://doi.org/10.5194/hess-24-3851-2020, 2020
Short summary
Short summary
This paper was developed from PhD research focused on assessing the value of using hydrological datasets in water resource management. Previous studies have assessed how well data can help in predicting river flows, but there is a lack of knowledge of how well data can help in water allocation decisions. In our research, it was found that using seasonal streamflow forecasts improves the available water estimates, resulting in better water allocation decisions in a highly regulated basin.
Ghizlane Aouade, Lionel Jarlan, Jamal Ezzahar, Salah Er-Raki, Adrien Napoly, Abdelfattah Benkaddour, Said Khabba, Gilles Boulet, Sébastien Garrigues, Abdelghani Chehbouni, and Aaron Boone
Hydrol. Earth Syst. Sci., 24, 3789–3814, https://doi.org/10.5194/hess-24-3789-2020, https://doi.org/10.5194/hess-24-3789-2020, 2020
Short summary
Short summary
Our objective is to question the representation of the energy budget in surface–vegetation–atmosphere transfer models for the prediction of the convective fluxes in crops with complex structures (row) and under transient hydric regimes due to irrigation. The main result is that a coupled multiple energy balance approach is necessary to properly predict surface exchanges for these complex crops. It also points out the need for other similar studies on various crops with different sparsity levels.
Michael Kilgour Stewart and Philippa Lauren Aitchison-Earl
Hydrol. Earth Syst. Sci., 24, 3583–3601, https://doi.org/10.5194/hess-24-3583-2020, https://doi.org/10.5194/hess-24-3583-2020, 2020
Short summary
Short summary
This paper is important for water resource management, being concerned with irrigation return flow causing
hotspotsin nitrate concentrations in groundwater and
denitrification imprintswhere nitrate concentrations are reduced by denitrification although the dissolved oxygen concentration is not low. The work is highly significant for modelling of nitrate transport through soil–groundwater systems, for understanding denitrification processes, and for managing fertilizer application to land.
Céline Monteil, Fabrice Zaoui, Nicolas Le Moine, and Frédéric Hendrickx
Hydrol. Earth Syst. Sci., 24, 3189–3209, https://doi.org/10.5194/hess-24-3189-2020, https://doi.org/10.5194/hess-24-3189-2020, 2020
Short summary
Short summary
Environmental modelling is complex, and models often require the calibration of several parameters that are not able to be directly evaluated from a physical quantity or a field measurement. Based on our experience in hydrological modelling, we propose combining two algorithms to obtain a fast and accurate way of calibrating complex models (many parameters and many objectives). We built an R package, caRamel, so that this multi-objective calibration algorithm can be easily implemented.
Liming Yao, Zhongwen Xu, Huijuan Wu, and Xudong Chen
Hydrol. Earth Syst. Sci., 24, 2769–2789, https://doi.org/10.5194/hess-24-2769-2020, https://doi.org/10.5194/hess-24-2769-2020, 2020
Short summary
Short summary
Results show that coalitional strategy of blue and virtual water transfers can substantially save water and improve utilization efficiency without harming sectors' benefits and increasing ecological stresses. Under various polices, we use data-driven analysis to simulate hydrological and economic parameters, such as available water, crop import price, and water market price. Different water allocation and transfer results are obtained by adjusting hydrological and economic parameters.
Jingyuan Xue, Zailin Huo, Shuai Wang, Chaozi Wang, Ian White, Isaya Kisekka, Zhuping Sheng, Guanhua Huang, and Xu Xu
Hydrol. Earth Syst. Sci., 24, 2399–2418, https://doi.org/10.5194/hess-24-2399-2020, https://doi.org/10.5194/hess-24-2399-2020, 2020
Short summary
Short summary
Due to increasing food demand and limited water resources, the quantification of the irrigation water productivity (IWP) is critical. Hydrological processes in irrigated areas differ in different watersheds owing to different irrigation–drainage activities, and this is more complex with shallow groundwater. Considering the complexity of the IWP, we developed a regional IWP model to simulate its spatial distribution; this informs irrigation managers on where they can improve IWP and save water.
Bouchra Ait Hssaine, Olivier Merlin, Jamal Ezzahar, Nitu Ojha, Salah Er-Raki, and Said Khabba
Hydrol. Earth Syst. Sci., 24, 1781–1803, https://doi.org/10.5194/hess-24-1781-2020, https://doi.org/10.5194/hess-24-1781-2020, 2020
Matthew J. Knowling, Jeremy T. White, Catherine R. Moore, Pawel Rakowski, and Kevin Hayley
Hydrol. Earth Syst. Sci., 24, 1677–1689, https://doi.org/10.5194/hess-24-1677-2020, https://doi.org/10.5194/hess-24-1677-2020, 2020
Short summary
Short summary
The incorporation of novel and diverse data sources into predictive models is expected to improve the reliability of model forecasts. This study critically and rigorously explores the extent to which this expectation holds given the imperfect nature of numerical models (and therefore their compromised ability to appropriately assimilate information-rich data). We show that environmental tracer observations may be of variable benefit in reducing forecast uncertainty and may induce forecast bias.
Sean W. D. Turner, Wenwei Xu, and Nathalie Voisin
Hydrol. Earth Syst. Sci., 24, 1275–1291, https://doi.org/10.5194/hess-24-1275-2020, https://doi.org/10.5194/hess-24-1275-2020, 2020
Short summary
Short summary
To understand human vulnerability to flood and drought risk across large regions, researchers increasingly use large-scale hydrological models that convert climate to river flows. These models include the important effects of river regulation by dams but do not currently capture dam operators' use of flow forecasts to mitigate risk. This research addresses this problem by developing an approach to infer the forecast horizons contributing to the operations of a large sample of dams.
Sebastian Multsch, Maarten S. Krol, Markus Pahlow, André L. C. Assunção, Alberto G. O. P. Barretto, Quirijn de Jong van Lier, and Lutz Breuer
Hydrol. Earth Syst. Sci., 24, 307–324, https://doi.org/10.5194/hess-24-307-2020, https://doi.org/10.5194/hess-24-307-2020, 2020
Short summary
Short summary
Expanding irrigation in agriculture is one of Brazil's strategies to increase production. In this study the amount of water required to grow the main crops has been calculated and compared to the water that is available in rivers at least 95 % of the time. Future decisions regarding expanding irrigated cropping areas must, while intensifying production practices, consider the likely regional effects on water scarcity levels, in order to reach sustainable agricultural production.
Guillaume Bigeard, Benoit Coudert, Jonas Chirouze, Salah Er-Raki, Gilles Boulet, Eric Ceschia, and Lionel Jarlan
Hydrol. Earth Syst. Sci., 23, 5033–5058, https://doi.org/10.5194/hess-23-5033-2019, https://doi.org/10.5194/hess-23-5033-2019, 2019
Short summary
Short summary
The purpose of our work is to estimate landscape evapotranspiration (ET) fluxes over agricultural areas by relying on two surface modeling approaches with increasing complexity and input data needs.
Both approaches, compared sequentially and over the entire crop cycle, showed quite similar performance except under developed vegetation and stressed conditions. This study helps lay the groundwork for exploring the complementarities between instantaneous and continuous ET mapping with TIR data.
Gabriela Chiquito Gesualdo, Paulo Tarso Oliveira, Dulce Buchala Bicca Rodrigues, and Hoshin Vijai Gupta
Hydrol. Earth Syst. Sci., 23, 4955–4968, https://doi.org/10.5194/hess-23-4955-2019, https://doi.org/10.5194/hess-23-4955-2019, 2019
Short summary
Short summary
We investigate the influence of anticipated climate change on water security in the Jaguari Basin, which is the main source of freshwater for 9 million people in the São Paulo metropolitan region. Our findings indicate an expansion of the basin critical period, and identify October and November as the most vulnerable months. There is an urgent need to implement efficient mitigation and adaptation policies that recognize the annual pattern of variation between insecure and secure periods.
Raphaël Payet-Burin, Mikkel Kromann, Silvio Pereira-Cardenal, Kenneth Marc Strzepek, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 23, 4129–4152, https://doi.org/10.5194/hess-23-4129-2019, https://doi.org/10.5194/hess-23-4129-2019, 2019
Short summary
Short summary
We present an open-source tool for water infrastructure investment planning considering interrelations between the water, food, and energy systems. We apply it to the Zambezi River basin to evaluate economic impacts of hydropower and irrigation development plans. We find trade-offs between the development plans and sensitivity to uncertainties (e.g. climate change, carbon taxes, capital costs of solar technologies, environmental policies) demonstrating the necessity for an integrated approach.
Fuad Yassin, Saman Razavi, Mohamed Elshamy, Bruce Davison, Gonzalo Sapriza-Azuri, and Howard Wheater
Hydrol. Earth Syst. Sci., 23, 3735–3764, https://doi.org/10.5194/hess-23-3735-2019, https://doi.org/10.5194/hess-23-3735-2019, 2019
Eric Sauquet, Bastien Richard, Alexandre Devers, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 3683–3710, https://doi.org/10.5194/hess-23-3683-2019, https://doi.org/10.5194/hess-23-3683-2019, 2019
Short summary
Short summary
This study aims to identify catchments and the associated water uses vulnerable to climate change. Vulnerability is considered here to be the likelihood of water restrictions which are unacceptable for agricultural uses. This study provides the first regional analysis of the stated water restrictions, highlighting heterogeneous decision-making processes; data from a national system of compensation to farmers for uninsurable damages were used to characterize past failure events.
Jessica R. Dzara, Bethany T. Neilson, and Sarah E. Null
Hydrol. Earth Syst. Sci., 23, 2965–2982, https://doi.org/10.5194/hess-23-2965-2019, https://doi.org/10.5194/hess-23-2965-2019, 2019
Short summary
Short summary
In Nevada's Walker River, stream temperatures nearly always exceed optimal temperature thresholds for adult trout. We used high-resolution measured data to verify simulated stream temperatures and estimate the spatial distribution of cold-water pockets for fish. Irrigation return canals, beaver dams, and groundwater seeps were river features with cold-water, and the average distance between pockets of cold-water in this river was 2.8 km.
Xinyao Zhou, Yonghui Yang, Zhuping Sheng, and Yongqiang Zhang
Hydrol. Earth Syst. Sci., 23, 2491–2505, https://doi.org/10.5194/hess-23-2491-2019, https://doi.org/10.5194/hess-23-2491-2019, 2019
Short summary
Short summary
Quantifying the impact of upstream water use on downstream water scarcity is critical for water management. Comparing natural and observed runoff in China's 12 basins, this study found surface water use increased 1.6 times for the 1970s-2000s, driving most arid and semi-arid (ASA) basins into water scarcity status. The water stress decreased downstream in ASA basins due to reduced upstream inflow since the 2000s. Upstream water use caused over a 30 % increase in water scarcity in ASA basins.
Alexander Kaune, Micha Werner, Patricia López López, Erasmo Rodríguez, Poolad Karimi, and Charlotte de Fraiture
Hydrol. Earth Syst. Sci., 23, 2351–2368, https://doi.org/10.5194/hess-23-2351-2019, https://doi.org/10.5194/hess-23-2351-2019, 2019
Short summary
Short summary
The value of using longer periods of record of river discharge information from global precipitation datasets is assessed for irrigation area planning. Results show that for all river discharge simulations the benefit of choosing the irrigated area based on the 30 years of simulated data is higher compared to using only 5 years of observed discharge data. Hence, irrigated areas can be better planned using 30 years of river discharge information from global precipitation datasets.
Tobias Pilz, José Miguel Delgado, Sebastian Voss, Klaus Vormoor, Till Francke, Alexandre Cunha Costa, Eduardo Martins, and Axel Bronstert
Hydrol. Earth Syst. Sci., 23, 1951–1971, https://doi.org/10.5194/hess-23-1951-2019, https://doi.org/10.5194/hess-23-1951-2019, 2019
Short summary
Short summary
This work investigates different model types for drought prediction in a dryland region. Consequently, the performances of seasonal reservoir volume forecasts derived by a process-based and a statistical hydrological model were evaluated. The process-based approach obtained lower accuracy while resolution and reliability of drought prediction were comparable. Initialisation of the process-based model is worthwhile for more in-depth analyses, provided adequate rainfall forecasts are available.
Erin Towler, Heather Lazrus, and Debasish PaiMazumder
Hydrol. Earth Syst. Sci., 23, 1469–1482, https://doi.org/10.5194/hess-23-1469-2019, https://doi.org/10.5194/hess-23-1469-2019, 2019
Short summary
Short summary
Drought is a function of both natural and human influences, but fully characterizing the interactions between human and natural influences on drought remains challenging. To better characterize the drought feedback loop, this study combines hydrological and societal perspectives to characterize the potential for drought action. We discuss how the results can be used to reduce potential disagreement among stakeholders and promote sustainable water management.
Daeha Kim, Jong Ahn Chun, and Si Jung Choi
Hydrol. Earth Syst. Sci., 23, 1145–1162, https://doi.org/10.5194/hess-23-1145-2019, https://doi.org/10.5194/hess-23-1145-2019, 2019
Short summary
Short summary
In this study, we proposed an approach for gauging the risks of non-successful water supply and environmental reliabilities varying across a large river basin. The proposed method enables the measurement of system robustness to climate change with consideration of conflicting stakeholder interests. We simply converted the expected system performance under climate stresses into binary outcomes and applied them to the logistic regressions. A case study for a South Korean river basin is provided.
Sang-Hyun Lee, Rabi H. Mohtar, and Seung-Hwan Yoo
Hydrol. Earth Syst. Sci., 23, 557–572, https://doi.org/10.5194/hess-23-557-2019, https://doi.org/10.5194/hess-23-557-2019, 2019
Short summary
Short summary
In this study, we quantified the holistic impacts of food trade on food security and water–land savings and revealed that the MENA region saved significant amounts of national water and land based on the import of barley, maize, rice, and wheat within the period from 2000 to 2012. In addition, the MENA region focused more on increasing the volume of virtual water imported during the period 2006–2012, yet little attention was paid to the expansion of connections with country exporters.
Benjamin Jeannot, Sylvain Weill, David Eschbach, Laurent Schmitt, and Frederick Delay
Hydrol. Earth Syst. Sci., 23, 239–254, https://doi.org/10.5194/hess-23-239-2019, https://doi.org/10.5194/hess-23-239-2019, 2019
Short summary
Short summary
A hydrological model is used in combination with thermal measurements to investigate the effect of restoration actions in an artificial island of the Upper Rhine river. The injection of water in a newly built channel is efficient as it enhances overall hydrologic dynamics of the system with possible benefits for water quality and biodiversity. The combined use of the model and thermal measurements is also proven to be a relevant tool to study the effect of restoration on hydrological systems.
Jiali Qiu, Qichun Yang, Xuesong Zhang, Maoyi Huang, Jennifer C. Adam, and Keyvan Malek
Hydrol. Earth Syst. Sci., 23, 35–49, https://doi.org/10.5194/hess-23-35-2019, https://doi.org/10.5194/hess-23-35-2019, 2019
Short summary
Short summary
Complex water management activities challenge hydrologic modeling. We evaluated how different representations of reservoir operation and agricultural irrigation affect streamflow simulations in the Yakima River basin. Results highlight the importance of the inclusion of reliable reservoir and irrigation information in watershed models for improving watershed hydrology modeling. Models used here are public and hold the promise to benefit water assessment and management in other basins.
René Reijer Wijngaard, Hester Biemans, Arthur Friedrich Lutz, Arun Bhakta Shrestha, Philippus Wester, and Walter Willem Immerzeel
Hydrol. Earth Syst. Sci., 22, 6297–6321, https://doi.org/10.5194/hess-22-6297-2018, https://doi.org/10.5194/hess-22-6297-2018, 2018
Short summary
Short summary
This study assesses the combined impacts of climate change and socio-economic developments on the future water gap for the Indus, Ganges, and Brahmaputra river basins until the end of the 21st century. The results show that despite projected increases in surface water availability, the strong socio-economic development and associated increase in water demand will likely lead to an increase in the water gap, indicating that socio-economic changes will be the key driver in the evolving water gap.
Clara Linés, Ana Iglesias, Luis Garrote, Vicente Sotés, and Micha Werner
Hydrol. Earth Syst. Sci., 22, 5901–5917, https://doi.org/10.5194/hess-22-5901-2018, https://doi.org/10.5194/hess-22-5901-2018, 2018
Short summary
Short summary
In this paper we follow a user-based approach to examine operational drought management decisions and how the role of information on them can be assessed. The approach combines a stakeholder consultation and a decision model representing the interrelated decisions of the irrigation association and farmers. The decision model was extended to include information on snow cover from satellite. This contributed to better decisions in the simulation and ultimately higher benefits for the farmers.
Dirk-Jan D. Kok, Saket Pande, Jules B. van Lier, Angela R. C. Ortigara, Hubert Savenije, and Stefan Uhlenbrook
Hydrol. Earth Syst. Sci., 22, 5781–5799, https://doi.org/10.5194/hess-22-5781-2018, https://doi.org/10.5194/hess-22-5781-2018, 2018
Short summary
Short summary
Phosphorus (P) is important to global food security. Thus it is concerning that natural P reserves are predicted to deplete within the century. Here we explore the potential of P recovery from wastewater (WW) at global scale. We identify high production and demand sites to determine optimal market prices and trade flows. We show that 20 % of the agricultural demand can be met, yet only 4 % can be met economically. Nonetheless, this recovery stimulates circular economic development in WW treatment.
Milad Aminzadeh, Peter Lehmann, and Dani Or
Hydrol. Earth Syst. Sci., 22, 4015–4032, https://doi.org/10.5194/hess-22-4015-2018, https://doi.org/10.5194/hess-22-4015-2018, 2018
Short summary
Short summary
Significant evaporative losses from local water reservoirs in arid regions exacerbate water shortages during dry spells. We propose a systematic approach for modeling energy balance and fluxes from covered water bodies using self-assembling floating elements, considering cover properties and local conditions. The study will provide a scientific and generalized basis for designing and implementing this important water conservation strategy to assist with its adaptation in various arid regions.
Junyu Qi, Sheng Li, Charles P.-A. Bourque, Zisheng Xing, and Fan-Rui Meng
Hydrol. Earth Syst. Sci., 22, 3789–3806, https://doi.org/10.5194/hess-22-3789-2018, https://doi.org/10.5194/hess-22-3789-2018, 2018
Short summary
Short summary
The paper proposed an approach to develop a decision support tool to evaluate impacts of land use change and best management practices (BMPs) on water quantity and quality for large ungauged watersheds. It was developed based on statistical equations derived from Soil and Water Assessment Tool (SWAT) simulations in a small experimental watershed. The decision support tool reproduced annual stream discharge and sediment and nutrient loadings for another watershed fairly well.
Jonathan M. Lala, David R. Rounce, and Daene C. McKinney
Hydrol. Earth Syst. Sci., 22, 3721–3737, https://doi.org/10.5194/hess-22-3721-2018, https://doi.org/10.5194/hess-22-3721-2018, 2018
Short summary
Short summary
Many glacial lakes in the Himalayas are held in place by natural sediment dams, which are prone to collapse, causing a glacial lake outburst flood (GLOF). This study models a GLOF as a process chain, in which an avalanche enters the lake, creates a large wave that erodes the sediment dam, and produces a flood downstream. Results indicate that Imja Tsho presents little hazard for the next 30 years, but the model is replicable and should be used at other lakes that may present greater hazard.
Stephen P. Charles, Quan J. Wang, Mobin-ud-Din Ahmad, Danial Hashmi, Andrew Schepen, Geoff Podger, and David E. Robertson
Hydrol. Earth Syst. Sci., 22, 3533–3549, https://doi.org/10.5194/hess-22-3533-2018, https://doi.org/10.5194/hess-22-3533-2018, 2018
Short summary
Short summary
Predictions of irrigation-season water availability are important for water-limited Pakistan. We assess a Bayesian joint probability approach, using flow and climate indices as predictors, to produce streamflow forecasts for inflow to Pakistan's two largest dams. The approach produces skilful and reliable forecasts. As it is simple and quick to apply, it can be used to provide probabilistic seasonal streamflow forecasts that can inform Pakistan's water management.
Abebe D. Chukalla, Maarten S. Krol, and Arjen Y. Hoekstra
Hydrol. Earth Syst. Sci., 22, 3245–3259, https://doi.org/10.5194/hess-22-3245-2018, https://doi.org/10.5194/hess-22-3245-2018, 2018
Short summary
Short summary
This paper provides the first detailed and comprehensive study regarding the potential for reducing the grey WF of crop production by changing management practice such as the nitrogen application rate, nitrogen form (inorganic N or manure N), tillage practice and irrigation strategy. The paper shows that although water pollution (grey WF) can be reduced dramatically, this comes together with a great yield reduction.
Jason M. Hunter, Holger R. Maier, Matthew S. Gibbs, Eloise R. Foale, Naomi A. Grosvenor, Nathan P. Harders, and Tahali C. Kikuchi-Miller
Hydrol. Earth Syst. Sci., 22, 2987–3006, https://doi.org/10.5194/hess-22-2987-2018, https://doi.org/10.5194/hess-22-2987-2018, 2018
Short summary
Short summary
This research proposes a generalised hybrid model development framework and applies it to a case study of salinity prediction in a reach of the Murray River. The hybrid model combines five sub-models which describe one process of salt entry each and are developed based on the amount of system knowledge and data that are available to support each individual process. The model demonstrates increased performance over two benchmark models and has implications for future model development processes.
Richard R. Rushforth and Benjamin L. Ruddell
Hydrol. Earth Syst. Sci., 22, 3007–3032, https://doi.org/10.5194/hess-22-3007-2018, https://doi.org/10.5194/hess-22-3007-2018, 2018
Short summary
Short summary
The National Water Economy Database is a new data resource to better understand the human economy's water use impact on the hydrosphere. NWED quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing several datasets: US Geological Survey, the US Department of Agriculture, the US Energy Information Administration, the US Department of Transportation, the US Department of Energy, and the US Bureau of Labor Statistics.
Kean Foster, Cintia Bertacchi Uvo, and Jonas Olsson
Hydrol. Earth Syst. Sci., 22, 2953–2970, https://doi.org/10.5194/hess-22-2953-2018, https://doi.org/10.5194/hess-22-2953-2018, 2018
Short summary
Short summary
Hydropower makes up nearly half of Sweden's electrical energy production. Careful reservoir management is required for optimal production throughout the year and accurate seasonal forecasts are essential for this. In this work we develop a seasonal forecast prototype and evaluate its ability to predict spring flood volumes, a critical variable, in northern Sweden. We show that the prototype is better than the operational system on average 65 % of the time and reduces the volume error by ~ 6 %.
Cited articles
Atkinson, E.: The feasibility of flushing sediment from reservoirs, Report OD137, HR Wallingford, Wallingford, UK, 1996.
Basson, G. R. and Rooseboom, A.: Dealing with reservoir sedimentation, Water Research Commission, Report no. TT91/97, Pretoria, South Africa, 1997.
Brandt, S. A. and Swenning, J.: Sedimentological and geomorphological
effects of reservoir flushing: the Cachí Reservoir, Costa Rica, 1996,
Geogr. Ann. A, 81, 391–407,
https://doi.org/10.1111/j.0435-3676.1999.00069.x, 1999.
Bruk, S.: Methods of Computing Sedimentation in Lakes and Reservoirs.
International Hydrological Programme, Project A.2.6.1., UNESCO, Paris, France, 1985.
Cattanéo, F., Guillard, J., Diouf, S., O'Rourke, J., and Grimardias, D.:
Mitigation of ecological impacts on fish of large reservoir sediment
management through controlled flushing – The case of the Verbois dam
(Rhône River, Switzerland), Sci. Total Environ., 756, 144053, https://doi.org/10.1016/j.scitotenv.2020.144053, 2021.
Chang, F. J., Lai, J. S., and Kao, L. S.: Optimization of operation rule curves and flushing schedule in a reservoir, Hydrol. Process., 17, 1623–1640, 2003.
Chaudhry, M. A. and Habib-ur-rehman: Worldwide experience of sediment
flushing through reservoirs, Mehran University Research Journal of Engineering & Technology, 31, 395–408, 2012.
Chen, I. S., Han, C. C., and Fang, L. S.: Sinogastromyzon nantaiensis, a new
balitorid fish from southern Taiwan (Teleostei: Balitoridae), Ichthyol. Explor. Freshwat., 13,
239–242, 2002.
Chen, J. L. and Zhao, K. Y.: Sediment management in Nanqin Reservoir, Int. J. Sediment Res., 7, 71–84, 1992.
Chou, F. N. F. and Wu, C. W.: Reducing the impacts of flood-induced reservoir
turbidity on a regional water supply system, Adv. Water Resour., 33, 146–157, 2010.
Chou, F. N.-F. and Wu, C.-W.: Determination of cost coefficients of a priority-based water allocation linear programming model – a network flow approach, Hydrol. Earth Syst. Sci., 18, 1857–1872, https://doi.org/10.5194/hess-18-1857-2014, 2014.
Chou, F. N. F. and Wu, C. W.: Stage-wise optimizing operating rules for flood control in a multi-purpose reservoir, J. Hydrol., 521, 245–260, 2015.
Chou, F. N. F. and Wu, C. W.: Allocating water storage of multiple reservoirs
to enhance empty flushing, Proceedings of the 2nd International Workshop on Sediment Bypass Tunnels, 9–12 May 2017, Kyoto, Japan, 2017.
Chou, F. N. F., Wu, C. W., and Lin, C. H.: Simulating multi-reservoir operation rules by network flow model, Operating Reservoirs in Changing Conditions, Operations Management Conference, Sacramento, California, USA, 14–16 August 2006, https://doi.org/10.1061/40875(212)33, 2006.
Crosa, G., Castelli, E., Gentili, G., and Espa, P.: Effects of suspended
sediments from reservoir flushing on fish and macroinvertebrates in an
alpine stream, Aquat. Sci., 72, 85–95, https://doi.org/10.1007/s00027-009-0117-z, 2010.
Engelund, F. and Hansen, E.: A Monograph on Sediment Transport in Alluvial Stream, Teknisk Forlag, Copenhagen V, Denmark, 1967.
Espa, P., Batalla, R. J., Brignoli, M. L., Crosa, G., Gentili, G., and Quadroni, S.:
Tackling reservoir siltation by controlled sediment flushing: Impact on
downstream fauna and related management issues, PLoS ONE, 14, e0218822, https://doi.org/10.1371/journal.pone.0218822, 2019.
Fan, J. and Morris, G. L.: Reservoir sedimentation, II: Reservoir
desiltation and long-term storage capacity, J. Hydr. Eng., 118, 370–384, 1992.
International Research and Training Center on Erosion and Sedimentation
(IRTCES): Lecture notes of the training course on reservoir sedimentation, Tsinghua University, Beijing, China, 1985.
Jaggi, A. L. and Kashyap, B. R.: Desilting of Baira Reservoir of Baira Siul
Project, Irrigation and Power, 41, 375–380, 1984.
Jansson, M. B. and Erlingsson, U.: Measurement and quantification of a
sedimentation budget for a reservoir with regular flushing, Regul. Rivers: Res. Mgmt., 16, 279–306, https://doi.org/10.1002/(SICI)1099-1646(200005/06)16:3<279::AID-RRR586>3.0.CO;2-S, 2000.
Jowett, I.: Sedimentation in New Zealand hydroelectric schemes, Water Int., 9,
172–173, 1984.
Khan, N. M. and Tingsanchali, T.: Optimization and simulation of reservoir
operation with sediment evacuation: a case study of the Tarbela Dam,
Pakistan, Hydrol. Process., 23, 730–747, 2009.
Lai, Y. G.: SRH-2D version 2: Theory and user's manual, Sedimentation and River Hydraulics Group, Technical Service Center, Bureau of Reclamation, Denver, USA, available at: https://www.usbr.gov/tsc/techreferences/computer%20software/models/srh2d/index.html (last access: 15 April 2021), 2008.
Lai, Y. G.: Two-dimensional depth-averaged flow modeling with an unstructured
hybrid mesh, J. Hydraul. Eng., 136, 12–23, 2010.
Meile, T., Bretz, N. V., Imboden, B., and Boillat, J. L.: Reservoir
sedimentation management at Gebidem Dam(Switzerland), chap. 28, Reservoir
Sedimentation, Taylor & Francis Group, London, UK, 2014.
Moridi, A. and Yazdi, J.: Sediment flushing of reservoirs under
environmental considerations, Water Resour. Manag., 31, 1899–1914, 2017.
Morris, G. L.: Sediment management and sustainable use of reservoirs, in:
Modern Water Resources Engineering, edited by: Wang, L. K. and Yang, C. T.,
Humana Press, New York, USA, 279–338, https://doi.org/10.1007/978-1-62703-595-8,
2014.
Morris, G. L. and Fan, J.: Reservoir Sedimentation Handbook, McGraw-Hill Book Co., New York, USA, 1998.
Oliveira, R. and Loucks, D. P.: Operating rules for multireservoir system, Water Resour. Res., 33, 839–852, 1997.
Powell, M.: The BOBYQA algorithm for bound constrained optimization without
derivatives. Technical report, DAMTP 2009/NA06. University of Cambridge, Cambridge, United Kingdom,
2009.
Shen, H. W.: Flushing sediment through reservoirs, J. Hydraul. Res., 37, 743–757, 1999.
Southern Regional Water Resources Office: The study of the reservoir operation strategy during the engineering construction for improvement of the intake of Tsengwen Reservoir, Technical report, Water Resources
Agency, Tainan, Taiwan, 2012 (in Chinese).
Southern Regional Water Resources Office: Sediment observation and efficiency evaluation for desiltation of Agongdian Reservoir by using empty flushing in 2013, Technical report, Water Resources Agency, Kaohsiung, Taiwan, 2013 (in Chinese).
Southern Regional Water Resources Office: Review and modification of the operating guidelines of Agongdian Reservoir, Technical report, Water Resources Agency, Kaohsiung, Taiwan, 2015 (in Chinese).
Sumi, T.: Evaluation of efficiency of reservoir sediment flushing in Kurobe
River, Fourth International Conference on Scour and Erosion,
5–7 November 2008, Tokyo, Japan, 2008.
Sumi, T. and Kantoush, S. A.: Integrated management of reservoir sediment
routing by flushing, replenishing, and bypassing sediments in Japanese river
basins, 8th International Symposium on Ecohydraulics, 12–16 September 2010, Seoul, Korea, 2010.
Sumi, T., Nakamura, S., and Hayashi, K.: The effect of sediment flushing and
environmental mitigation measures in the Kurobe River, Twenty-third
international congress on large dams, 25–29 May 2009, Brasilia, Brazil, 2009.
Taklimy, M. H. R. and Tolouie, E.: Sefidrud Dam desiltation operation,
WASER/IAHR/IRTCES Study Tour to the Three Gorges Project (TGP), 8–15 August
2005, Yichang, Hubei Province, China, 2005.
Water Resources Agency: Reservoir sediment releasing countermeasures cope
with climate change, Technical report, Water Resources Agency, Taichung, Taiwan, 2010a (in Chinese).
Water Resources Agency: Feasibility planning of hydraulic desilting
scenarios of Tsengwen Reservoir, Water Resources Agency, Taichung, Taiwan, 2010b (in Chinese).
Water Resources Planning Institute: Assessment framework for sustainable
reservoir, Technical report, Water Resources Agency, Taichung, Taiwan, 2010 (in Chinese).
White, R.: Evacuation of Sediments from Reservoirs, Thomas Telford Publishing, London, UK, 2001.
Short summary
This paper promotes the feasibility of emptying instream storage through joint operation of multiple reservoirs. The trade-off between water supply and emptying reservoir storage and alleviating impacts on downstream environment are thoroughly discussed. Operation of reservoirs is optimized to calibrate the optimal parameters defining the activation and termination of emptying reservoir. The optimized strategy limits the water shortage and maximizes the expected benefits of emptying reservoir.
This paper promotes the feasibility of emptying instream storage through joint operation of...