Articles | Volume 24, issue 10
https://doi.org/10.5194/hess-24-4887-2020
https://doi.org/10.5194/hess-24-4887-2020
Research article
 | 
14 Oct 2020
Research article |  | 14 Oct 2020

Application of machine learning techniques for regional bias correction of snow water equivalent estimates in Ontario, Canada

Fraser King, Andre R. Erler, Steven K. Frey, and Christopher G. Fletcher

Related authors

DeepPrecip: a deep neural network for precipitation retrievals
Fraser King, George Duffy, Lisa Milani, Christopher G. Fletcher, Claire Pettersen, and Kerstin Ebell
Atmos. Meas. Tech., 15, 6035–6050, https://doi.org/10.5194/amt-15-6035-2022,https://doi.org/10.5194/amt-15-6035-2022, 2022
Short summary

Cited articles

Anderson, E.: A point energy and mass balance model of a snow cover, Technical Report 19, NOAA, available at: https://repository.library.noaa.gov/view/noaa/6392 (last access: 28 October 2019), 1976. a
Authorities, C.: Snow Surveying Manual, Standards and Procedures, Conservation Authorities and Water Management Branch, OMNRF – Ontario Ministry of Natural Resources and Forestry, 1985. a, b, c, d
Azar, A. E., Ghedira, H., Romanov, P., Mahani, S., Tedesco, M., and Khanbilvardi, R.: Application of Satellite Microwave Images in Estimating Snow Water Equivalent1, J. Am. Water Resour. Assoc., 44, 1347–1362, https://doi.org/10.1111/j.1752-1688.2008.00227.x, 2008. a, b
Barnett, T. P., Dümenil, L., Schlese, U., Roeckner, E., and Latif, M.: The Effect of Eurasian Snow Cover on Regional and Global Climate Variations, J. Atmos. Sci., 46, 661–686, https://doi.org/10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2, 1988. a
Barrett, P. A.: National Operational Hydrologic Remote Sensing Center SNOw Data Assimilation System (SNODAS) Products at NSIDC, available at: https://nsidc.org/sites/nsidc.org/files/files/nsidc_special_report_11.pdf (last access: 1 July 2019), 2003. a, b, c, d
Download
Short summary
Snow is a critical contributor to our water and energy budget, with impacts on flooding and water resource management. Measuring the amount of snow on the ground each year is an expensive and time-consuming task. Snow models and gridded products help to fill these gaps, yet there exist considerable uncertainties associated with their estimates. We demonstrate that machine learning techniques are able to reduce biases in these products to provide more realistic snow estimates across Ontario.
Share