Articles | Volume 24, issue 10
https://doi.org/10.5194/hess-24-4887-2020
https://doi.org/10.5194/hess-24-4887-2020
Research article
 | 
14 Oct 2020
Research article |  | 14 Oct 2020

Application of machine learning techniques for regional bias correction of snow water equivalent estimates in Ontario, Canada

Fraser King, Andre R. Erler, Steven K. Frey, and Christopher G. Fletcher

Related authors

DeepPrecip: a deep neural network for precipitation retrievals
Fraser King, George Duffy, Lisa Milani, Christopher G. Fletcher, Claire Pettersen, and Kerstin Ebell
Atmos. Meas. Tech., 15, 6035–6050, https://doi.org/10.5194/amt-15-6035-2022,https://doi.org/10.5194/amt-15-6035-2022, 2022
Short summary

Related subject area

Subject: Snow and Ice | Techniques and Approaches: Modelling approaches
Inferring sediment-discharge event types in an Alpine catchment from sub-daily time series
Amalie Skålevåg, Oliver Korup, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 4771–4796, https://doi.org/10.5194/hess-28-4771-2024,https://doi.org/10.5194/hess-28-4771-2024, 2024
Short summary
Debris cover effects on energy and mass balance of Batura Glacier in the Karakoram over the past 20 years
Yu Zhu, Shiyin Liu, Ben W. Brock, Lide Tian, Ying Yi, Fuming Xie, Donghui Shangguan, and Yiyuan Shen
Hydrol. Earth Syst. Sci., 28, 2023–2045, https://doi.org/10.5194/hess-28-2023-2024,https://doi.org/10.5194/hess-28-2023-2024, 2024
Short summary
The application and modification of WRF-Hydro/Glacier to a cold-based Antarctic glacier
Tamara Pletzer, Jonathan P. Conway, Nicolas J. Cullen, Trude Eidhammer, and Marwan Katurji
Hydrol. Earth Syst. Sci., 28, 459–478, https://doi.org/10.5194/hess-28-459-2024,https://doi.org/10.5194/hess-28-459-2024, 2024
Short summary
Spatio-temporal information propagation using sparse observations in hyper-resolution ensemble-based snow data assimilation
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023,https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Simulated hydrological effects of grooming and snowmaking in a ski resort on the local water balance
Samuel Morin, Hugues François, Marion Réveillet, Eric Sauquet, Louise Crochemore, Flora Branger, Étienne Leblois, and Marie Dumont
Hydrol. Earth Syst. Sci., 27, 4257–4277, https://doi.org/10.5194/hess-27-4257-2023,https://doi.org/10.5194/hess-27-4257-2023, 2023
Short summary

Cited articles

Anderson, E.: A point energy and mass balance model of a snow cover, Technical Report 19, NOAA, available at: https://repository.library.noaa.gov/view/noaa/6392 (last access: 28 October 2019), 1976. a
Authorities, C.: Snow Surveying Manual, Standards and Procedures, Conservation Authorities and Water Management Branch, OMNRF – Ontario Ministry of Natural Resources and Forestry, 1985. a, b, c, d
Azar, A. E., Ghedira, H., Romanov, P., Mahani, S., Tedesco, M., and Khanbilvardi, R.: Application of Satellite Microwave Images in Estimating Snow Water Equivalent1, J. Am. Water Resour. Assoc., 44, 1347–1362, https://doi.org/10.1111/j.1752-1688.2008.00227.x, 2008. a, b
Barnett, T. P., Dümenil, L., Schlese, U., Roeckner, E., and Latif, M.: The Effect of Eurasian Snow Cover on Regional and Global Climate Variations, J. Atmos. Sci., 46, 661–686, https://doi.org/10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2, 1988. a
Barrett, P. A.: National Operational Hydrologic Remote Sensing Center SNOw Data Assimilation System (SNODAS) Products at NSIDC, available at: https://nsidc.org/sites/nsidc.org/files/files/nsidc_special_report_11.pdf (last access: 1 July 2019), 2003. a, b, c, d
Download
Short summary
Snow is a critical contributor to our water and energy budget, with impacts on flooding and water resource management. Measuring the amount of snow on the ground each year is an expensive and time-consuming task. Snow models and gridded products help to fill these gaps, yet there exist considerable uncertainties associated with their estimates. We demonstrate that machine learning techniques are able to reduce biases in these products to provide more realistic snow estimates across Ontario.