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Abstract. Snow is a critical contributor to Ontario’s water-
energy budget, with impacts on water resource management
and flood forecasting. Snow water equivalent (SWE) de-
scribes the amount of water stored in a snowpack and is
important in deriving estimates of snowmelt. However, only
a limited number of sparsely distributed snow survey sites
(n= 383) exist throughout Ontario. The SNOw Data Assimi-
lation System (SNODAS) is a daily, 1 km gridded SWE prod-
uct that provides uniform spatial coverage across this region;
however, we show here that SWE estimates from SNODAS
display a strong positive mean bias of 50 % (16 mm SWE)
when compared to in situ observations from 2011 to 2018.
This study evaluates multiple statistical techniques of vary-
ing complexity, including simple subtraction, linear regres-
sion and machine learning methods to bias-correct SNODAS
SWE estimates using absolute mean bias and RMSE as eval-
uation criteria. Results show that the random forest (RF)
algorithm is most effective at reducing bias in SNODAS
SWE, with an absolute mean bias of 0.2 mm and RMSE of
3.64 mm when compared with in situ observations. Other
methods, such as mean bias subtraction and linear regres-
sion, are somewhat effective at bias reduction; however, only
the RF method captures the nonlinearity in the bias and its
interannual variability. Applying the RF model to the full
spatio-temporal domain shows that the SWE bias is largest
before 2015, during the spring melt period, north of 44.5◦ N
and east (downwind) of the Great Lakes. As an independent
validation, we also compare estimated snowmelt volumes
with observed hydrographs and demonstrate that uncorrected
SNODAS SWE is associated with unrealistically large vol-
umes at the time of the spring freshet, while bias-corrected

SWE values are highly consistent with observed discharge
volumes.

1 Introduction

Snowmelt is an important factor for determining flood risk
in many regions within both northern latitudes and higher el-
evation across Europe and North America (Berghuijs et al.,
2016, 2019; Buttle et al., 2016). Accordingly, predicting the
impact of snowmelt on flooding is contingent on having rea-
sonable spatially distributed estimates of the snowpack snow
water equivalent (SWE). SWE is the amount of liquid wa-
ter that is produced from completely and instantly melting
a snowpack and is defined in terms of snowpack depth and
bulk density (or, equivalently, mass per unit area). Tradition-
ally, ground-based observations have been used to assess and
quantify SWE; however, such an approach does not always
capture the full spatial variability.

In Canada, large-scale snowmelt is often a key driver
of flooding across much of the southern, and more pop-
ulated, parts of the country (Buttle et al., 2016), and one
can posit that an improved ability to characterize snow-
pack SWE would allow better characterization of flood risk,
propagation, and duration. Particularly within the Cana-
dian provinces of Ontario and Quebec, snowmelt and rain-
on-snow events are the most frequent initiators of flood-
ing (Buttle et al., 2016; Irvine and Drake, 1987). Regional
flood danger was realized in a 2017 flood across south-
ern Quebec which damaged over 4000 homes and led to
approximately CAD 200 million worth of insured damages
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(Davies, 2017). Additional serious snowmelt and rain-on-
snow-induced flooding has occurred in southern Quebec and
Ontario as recently as spring 2019 (Floodlist, 2019). These
recent events indicate that even though future SWE is pro-
jected to decline in southern–central Canada on account of
warmer winters, snowmelt will be a major flood factor in this
region for the foreseeable future, with a strong likelihood of
an increase in the frequency of rain-on-snow events (Byun
et al., 2019).

Simulation and operational forecasting of flood risk neces-
sitates insight into the contribution of snowmelt to the active
component of the terrestrial hydrologic cycle. This is partic-
ularly important if snowmelt is anticipated to influence flood
behavior (Li and Simonovic, 2002; Bokhorst et al., 2016),
and the modeling tools employed for such applications in-
clude the capability to simulate snowpack dynamics (Ander-
son, 1976; Jordan, 1991). However, due to the high spatial
and temporal variability of the snowpack, combined with the
sparse distribution of in situ observations, it is difficult to
properly initialize and validate forecast models. For this rea-
son, data assimilation products such as SNODAS, which op-
erates at 1 km spatial resolution (Carroll et al., 2001) with a
daily update cycle, offer an attractive option for character-
izing SWE. For example, Shen and Anagnostou (2017) em-
ployed SNODAS data aggregated to 8 km× 8 km grid cells
as a validation dataset for their hydrologic model of the
20 000 km2 Connecticut River basin, wherein SWE was sim-
ulated using an energy balance approach. In CONUS-scale
work, Vuyovich et al. (2014) utilized SNODAS SWE as a
comparative benchmark in their evaluation of SWE derived
from passive microwave satellite sensors, wherein the data
were aggregated at the scale of watersheds with an average
size of 3700 km2.

An inherent challenge with using SNODAS as either a val-
idation target or as direct forcing data for hydrologic model-
ing is that SNODAS itself may contain biases or errors that
will in turn propagate through to the model outputs. In this
context, the motivation for this work derives from an initial
comparison between SNODAS and an independent set of in
situ SWE surveys throughout Ontario (Sect. 3.1), which sug-
gested a positive bias of approximately 50 % in the SNODAS
estimates. Wrzesien et al. (2017) performed a comparison
between SNODAS and in situ SWE over alpine regions in
North America and found SNODAS performed best in ar-
eas with a high density of in situ measurements; however,
SNODAS still exhibited a general overestimation of SWE.
Additional recent studies by Leach et al. (2018), Lv et al.
(2019) and Zahmatkesh et al. (2019) also suggest similar
positive biases in SNODAS SWE estimates throughout other
North American regions. This work builds on the compari-
son methods outlined in previous bias-correction studies by
Li et al. (2010), Themeßl et al. (2011) and Teutschbein and
Seibert (2012) to examine an ensemble of bias-correction
techniques, quantify the skill of each model, and apply the
model over a larger spatio-temporal domain to produce a

gridded bias-corrected SWE product. Biases in initial SWE
estimates constitute a major source of uncertainty in hydro-
logic modeling (Islam and Déry, 2017); however, at present
this important influence of SNODAS biases on simulated hy-
drologic behavior and flood magnitude is not well under-
stood. Accordingly, the primary objectives of this work are
to evaluate

1. biases in SNODAS across flood-prone regions of On-
tario, Canada;

2. the effectiveness of SNODAS bias correction from sim-
ple subtraction methods to more sophisticated machine
learning techniques; and

3. the relationship between the regional water balance
and snowmelt estimates from SNODAS SWE and bias-
corrected SWE.

Section 3.1 quantifies current biases between SNODAS
and in situ SWE estimates throughout Ontario. Section 3.2
and 3.3 present evaluations of several statistical methods
for bias correction to determine whether machine learn-
ing techniques offer improved performance compared to
more traditional linear methods. In Sect. 4, the best-
performing bias-correction model is then applied across
the full spatio-temporal domain to create a daily, bias-
corrected SWE dataset which can be compared with the un-
corrected SNODAS record. Differences between these two
products can provide insights into where and when the bias
is strongest. Finally, in Sect. 4.1 the impact of these differ-
ences on snowmelt volume and the influence on the regional
water balance is evaluated in three representative catchment
areas.

2 Data and methods

2.1 In situ data

In situ snow survey data are retrieved from a dataset created
by the Climate Research Division of Environment and Cli-
mate Change Canada (ECCC), which has been updated to
include observations up to the end of 2017 (ECCC, 2000).
This dataset includes snow survey measurements from ap-
proximately 33 Conservation Authorities (CAs) at 383 lo-
cations throughout Ontario between 41 and 49.5◦ N and
−87.875 and−73.375◦ E. The locations of these survey sites
are marked in Fig. 1a along with an outline of our On-
tario study region. Survey site locations are selected based
on recommendations set forth by the Conservation Authori-
ties and Water Management Branch which suggest that mea-
surement sites should be selected based on their representa-
tiveness of the surrounding region, in easily accessible loca-
tions free from the effects of excess wind drifting (Author-
ities, 1985). The snow surveys provide an estimate of SWE
calculated as an average of 10 individual snow core SWE
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samples taken over 10 m at each survey site (Authorities,
1985). These observations are recorded bi-weekly around the
1st and 15th of each month from November to May and have
been recorded since 1933, but for this study only data from
January 2011 until December 2017 have been considered.
Snow survey density is higher in the southernmost portion of
Ontario (below 44.5◦ N), with 189 survey locations closely
grouped near the United States (US) border between Lake
Huron and Lake Ontario. A similar survey count (n= 194)
exists above 44.5◦ N but with sparser spatial coverage due to
the region’s larger size and lower population density.

The measurement tools used for retrieving in situ observa-
tions vary between locations over the time span of our study
(Authorities, 1985; Sturm et al., 2010). Common strategies
for collecting SWE measurements by hand include the use of
snow corers, which are portable, handheld tubes that are in-
serted into the snowpack down to the soil layer and weighed
to retrieve a SWE estimate at that point within the snowpack
(López-Moreno et al., 2013). An Ontario snow inventory
summary completed by Metcalfe (2018) provided a question-
naire to 265 of the snow survey sites (with a 67 % response
rate) and found that the Federal Snow Sampler (also known
as the Mount Rose sampler) was used at 94 % of sites and
that the ESC-30 was used at the remaining 6 % of locations.
Methods of SWE measurement also varied, with 62 % using
a calibrated spring balance in the field, 30 % using a digital
balance in the field, 6 % grouping snow samples into a con-
tainer and weighing in the field, and 2 % bagging the samples
and weighing them later (Metcalfe, 2018). Although an im-
portant observational metric, in situ measurements of SWE
take, on average, 20 times longer than snow depth measure-
ments, and due to the additional time investment this often
results in poor spatial and temporal data coverage of SWE
measurements across large regions (Sturm et al., 2010).

2.2 Gridded SWE products

2.2.1 The Snow Data Assimilation System (SNODAS)

SNODAS is a gridded modeling and data assimilation dataset
produced by the National Oceanic and Atmospheric Admin-
istration (NOAA) National Weather Service’s Operational
Hydrologic Remote Sensing Center (NOHRSC) (Barrett,
2003). SNODAS provides a physically consistent framework
for assimilating snow data from nearly all available North
American airborne, satellite and ground station sources with
a numerical weather prediction (NWP) snow model (Daw-
son et al., 2016). Produced at 1 km resolution, SNODAS cov-
ers the continental US from approximately 25.95 to 52.87◦ N
and overlaps with portions of Canada, including our study re-
gion (Azar et al., 2008). Daily estimates are provided from
September 2003 to January 2018; however, Ontario was
only included within the assimilation domain starting in Jan-
uary 2011, providing 7 years of overlapping data with the in

situ SWE measurements. Additional SNODAS product de-
tails are described in Table 1.

SNODAS is composed of three primary components: the
data ingestion pipeline which handles data quality control
and downscaling from the NWP model forecasts, the snow
mass and energy-balance model which calculates hourly
snowpack property estimates, and the data assimilation
scheme which updates the model state with observational
snow data (Carroll et al., 2001). In order to prescribe forcing
data for the snow model, SNODAS makes use of the Rapid
Refresh (RAP) and High-resolution Rapid Refresh (HRRR)
NWP systems, deployed by the National Centers for En-
vironmental Prediction (NCEP) to produce high-accuracy,
hourly numerical weather forecasts (Benjamin et al., 2016).
RAP/HRRR produces analyses and short-term forecasts of
precipitation, pressure, temperature, wind and relative hu-
midity which are corrected using station and radar data,
downscaled, assessed for quality and then used to force the
SNODAS snow model (Barrett, 2003). SNODAS uses a spa-
tially distributed multi-layer mass and energy-balance snow
model with three snow layers and two soil layers (Carroll
et al., 2001). The snow model calculates snowpack SWE,
temperature, thickness and liquid water fraction within each
snow layer and produces an estimate of total SWE, runoff
melt (from the base of the snowpack), as well as estimates
of exchange fluxes with the atmosphere. Thermal properties
of the snowpack are simulated using similar techniques to
SNTHERM89 as described in Jordan (1991). After applying
the surface and atmospheric forecasts from RAP/HRRR, the
snow model is run at an hourly time step, with mass and en-
ergy balance calculated at each grid cell (Barrett, 2003).

A simple nudging method (Newtonian relaxation proce-
dure) is then used to update model SWE estimates with as-
similated ground-based, airborne and satellite snow observa-
tions (Boniface et al., 2015). This technique examines differ-
ences between numerical model SWE estimates and assim-
ilated observations to identify regions with significant dif-
ferences (Clow and Nanus, 2011). Although many existing
snow cover and SWE datasets are assimilated by SNODAS,
we note that the in situ snow survey dataset employed in this
study is not assimilated by SNODAS. Differences between
the model estimates and observations are then interpolated to
produce nudging fields (an increment used to nudge model
estimates closer to observations) and the model is re-run for
the previous 6 h. Each hourly increment during this period
is nudged using the previously computed nudging fields to
produce the final SWE estimate for each grid cell, updated
using assimilated observational datasets (Barrett, 2003). Pre-
vious studies by Frankenstein et al. (2008) and Rutter et al.
(2008) have suggested that SNODAS strongly benefits from
this data assimilation step, with densely observed locations
displaying high-quality SWE estimates in SNODAS when
compared with in situ measurements.
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Figure 1. (a) Relative mean bias between SNODAS and in situ SWE aggregated for each snow survey site (colored points). Thicker black
contours show the boundaries of the three drainage basins in the water balance analysis (Sect. 4.1). (b) Daily mean SWE on ground estimates
from all in situ survey sites and SNODAS, taken biweekly from November to May [2011–2017] at 383 locations across Ontario.

Table 1. Descriptions of the primary datasets used in our bias-correction methods, including relevant regression variables, their resolution,
observational record coverage and data references.

Dataset Variable(s) Horizontal Data period Reference
resolution

Snow surveys Snow water equivalent 383 points Jan 1933–May 2018 ECCC (2000)
SNODAS Snow water equivalent, total precip. 1 km Jan 2010–Dec 2018 Carroll et al. (2001)
NRCan 2 m temperature, total precip. 10 km Jan 1979–Jan 2010 McKenney et al. (2011)
Provincial DEM Elevation 30 m May 1978–Mar 2018 MNRF (2019)

2.2.2 NRCan ANUSPLIN data

During the development of the bias-correction methods,
a gridded, monthly climatology (spanning 1981–2010) of
2 m air temperature and total precipitation was employed.
This dataset was developed by the Canadian Forestry Ser-
vice (CFS), which is a division of Natural Resources
Canada (NRCan); it will be henceforth referred to as the NR-
Can dataset. The NRCan dataset is generated through the use
of thin-plate (Laplacian) smoothing splines which interpo-
late point observations over a grid as implemented in the

ANUSPLIN (Australian National University SPLINe) cli-
mate modeling package (Hutchinson et al., 1991; McKenney
et al., 2011). The NRCan product provides additional grid-
ded estimates of snowpack height, 2 m air temperature and
total precipitation throughout Ontario (Table 1). This product
has a spatial resolution of approximately 10 km and provides
monthly normal estimates of surface parameters from Jan-
uary 1981 to December 2010. This observational time frame
overlaps with in situ survey measurements; however, NRCan
data end (December 2010) just before SNODAS becomes
available in this region (January 2011), which is an addi-
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tional source of uncertainty (see Sect. 4.2). The datasets used
in the generation of this product are independent of both the
SNODAS and snow survey datasets.

2.3 Statistical methods for bias correction

A set of statistical methods that have previously been ap-
plied to bias correction in different contexts is analysed in
this study to identify the method which displays the highest
performance in reducing the bias between SNODAS SWE
and in situ observations over our study period. The meth-
ods examined include mean bias subtraction (MBS), sim-
ple linear regression (SLR), decision trees (DT) and ran-
dom forest (RF). All models (excluding MBS) are imple-
mented using the scikit-learn Python package which includes
built-in linear regression and machine learning modules (Pe-
dregosa et al., 2011). For MBS, the average difference in
SWE between SNODAS and in situ is calculated and then
subtracted from each SNODAS estimate to produce a bias-
corrected dataset. More formally, mean bias (MB) is defined

as MB= 1
n

n∑
i=1

(xi − zi), where xi and zi are the respective

daily SNODAS and in situ SWE measurements, and n is the
number of measurements over the study period. The linear
regression techniques used in this study conform to the least
squares general regression model which relates a response
variable y to a linear combination of n explanatory x-variable
predictors ŷ = b0+b1x1+b2x2+ . . .+bnxn, where b0 is the
model intercept and b1 to bn are predictor coefficients. Both
SLR using a single explanatory variable and multiple linear
regression (MLR) with numerous explanatory variables are
considered in this study. A single SLR model is applied to all
stations in our study region using daily SWE from SNODAS
as the sole predictor and in situ snow survey SWE estimates
as the response variable. MLR, DT and RF methods all use
the full list of predictors outlined in Table 2 to predict in
situ SWE.

A decision tree is a flowchart-like data structure, wherein
the decision making process begins at the root node (the top
of the tree) followed by a series of cascading decisions based
on the included model predictors until the terminal leaves
are reached at the bottom of the tree, which represent the re-
gression estimate of the response variable. As implied by its
name, the random forest regression model is an ensemble of
decision trees that are generated during model training (Azar
et al., 2008). Each tree included in the RF model ensemble is
generated from a randomized subset of the available training
data, coupled with a randomized subset of the predictor vari-
ables (Breiman, 2001; Grömping, 2009). This inherent ran-
domness improves the learning process of this technique but
also contributes to uncertainty in the accuracy of an individ-
ual tree (Barnett et al., 1988). The ensemble approach used
in RF accounts for and minimizes the uncertainty present in
an individual decision tree by calculating the mean predic-
tion from all trees in the ensemble. Our RF model is run

with a forest size of 100 trees in its ensemble, both RF and
DT methods use a maximum tree depth of 15 (the maximum
number of decisions before determining an estimate for the
response variable) and each tree was allowed to grow to its
full extent, with no set number of maximal terminal nodes
(no set maximum number of leaf nodes). These model pa-
rameters were obtained through a brute-force grid search hy-
perparamaterization of the RF model, which nudged each pa-
rameter value and examined changes in model accuracy and
impacts on computational efficiency to select optimal val-
ues for running the model. A variety of regression predic-
tors were considered for use in this study, including land use
parameters, elevation, and indicators of general climate. The
final set of predictors for all methods (shown in Table 2) was
selected based on the (non-zero) model importance score for
each variable in the RF model summary output.

To mitigate against model overfitting, the data for the
RF and DT models are randomly split into a training set com-
posed of 75 % of the values and a testing set which comprises
the remaining 25 %. Additionally, a separate 10-fold cross-
validation (CV) resampling procedure was applied to further
evaluate model performance on unseen data. The CV K-fold
splits the full dataset in time into 10 consecutive groups of
samples which are held constant for the full CV procedure.
We then train the model on each combination of k− 1 folds
and their performance is calculated as the average of all train-
ing and testing scores for each K-fold split. The fold value
of k = 10 was selected as a compromise between the size of
the training sample and the computational overhead and is a
typical choice for similar applications (James et al., 2013).

A range of metrics has been considered in order to de-
termine whether additional performance can be gained from
using more sophisticated statistical methods over traditional
approaches. To assess model skill, we have selected absolute
mean bias (accuracy) and RMSE (precision) as our model
performance criteria, as these properties have demonstrated
effectiveness in previous studies for assessing the capabili-
ties of competing bias-correction methods in the geosciences
(Cannon et al., 2015; Grossi et al., 2017; Li et al., 2010).

In addition to applying each model to the full set of in situ
survey sites for the full time span, we also run spatially and
temporally partitioned models to assess changes in perfor-
mance over specific regions and periods. Partitioning is ap-
plied spatially by separating the set of in situ measurement
locations into northern and southern regions at 44.5◦ N to
help account for snow survey density differences between the
two regions of Ontario as described in Sect. 2.1. Model per-
formance is also analysed temporally with training restricted
to different portions of the snow season: December to Febru-
ary (DJF), March to May (MAM) and the combined period:
December to May (DJFMAM). All models and partitioned
datasets were trained on 75 % of the data and tested on the
remaining 25 % (excluding MBS, which does not include a
model training step).
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Table 2. Predictor names and details used in the decision tree, multiple linear regression and random forest bias-correction models. Also
included are their respective variable units, measurement timescales, data sources and variable importance scores produced by the random
forest model.

Predictor Description Units Time- Data source(s) RF
scale importance

SWE SWE on ground Millimeters Daily SNODAS 0.68
T2 2 m air temperature Celsius Monthly NRCan 0.08
TP difference NRCan – SNODAS total precipitation Millimeters Monthly NRCan, SNODAS 0.08
Year Id Year of observation 1-of-c indicator – – 0.07
Elevation Height relative to sea level Meters – Ontario Government 0.06
Month Id Month of observation 1-of-c indicator – – 0.01

3 Bias-correction results

3.1 Quantifying biases in SNODAS SWE

Initial comparisons between current SNODAS SWE esti-
mates and in situ observations throughout Ontario describe,
on average, a positive absolute mean bias of 50 % in the
SNODAS estimates from 2011 to 2017. Additionally, the
snow survey sites in Fig. 1a display a pattern of strong rela-
tive mean bias present in the SNODAS estimates at the ma-
jority of survey locations. Relative mean bias (RMB) is de-

fined as RMB= 1
n

n∑
i=1

xi−zi

zi
· 100, where xi and zi are the re-

spective daily SNODAS and in situ SWE measurements and
n is the observation count. This relative bias is positive at
212 of the 383 measurement sites and rises above +100 %
relative bias at 67 locations. These sites with a strong relative
bias also generally exhibit a strongly positive absolute mean
bias, with SNODAS overestimating SWE by over 100 mm
SWE at many of these locations. The sites with the strongest
relative and absolute mean biases are typically grouped to-
gether in the northern portion of the study region above
44.5◦ N as well as in areas east of both Lake Huron and Lake
Superior.

There also exists a strong temporal bias in the bi-weekly
SWE estimates from SNODAS when compared with in situ
ones (Fig. 1b). This bias is strongest during the first half of
our study period until the beginning of 2015 where, although
SNODAS estimates are generally still higher on average (by
approximately 5 mm SWE), the overall absolute mean bias is
reduced. If we consider the full temporal domain, the abso-
lute mean bias in the SNODAS estimates is approximately
16 mm SWE, which corresponds to a 50 % increase com-
pared to that of the in situ SWE observations. The change
in bias between the first and second halves of our study pe-
riod implies a change in the data assimilation system used
by SNODAS, wherein new datasets are assimilated into the
system to further reduce model error.

Figure 2. Performance results of regional bias-correction methods
– mean bias subtraction (MBS), simple linear regression (SLR), de-
cision tree regression (DT) and random forest regression (RF) – for
northern and southern geographic regions across DJF, MAM and
the combined annual snow season (DJFMAM).

3.2 Simple subtraction and regression techniques

In the following section, the performance of four bias-
correction techniques will be discussed. The progression of
mean bias and RMSE over the two study regions and three
time periods is summarized in Fig. 2, time-series summary
metrics for the full region are shown in Fig. 3, and the spatial
pattern of (remaining) absolute mean biases at snow survey
sites is shown in Fig. 4; the time series of corrected and un-
corrected, domain-averaged SWE (along with the 95 % con-
fidence intervals based on each sample) is shown in Fig. 5 for
our full study period.

3.2.1 Mean bias subtraction

We begin by quantifying how well SNODAS SWE biases
can be reduced through a simple subtraction of its mean bias.
Since this method is constructed through the removal of the
mean bias in the SNODAS data record, MBS reduces the
absolute mean bias between SNODAS and in situ to zero
when averaged over all regions across all seasons as shown
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Figure 3. Bias-correction model performance results for each tech-
nique across the full spatio-temporal domain.

in Fig. 2. Although zero absolute mean bias gives the ap-
pearance of strong performance, residual biases still remain
at individual days and months of the MBS-corrected dataset.

The RMSE of the resulting bias-corrected dataset is only
slightly reduced compared to the default RMSE between
SNODAS and in situ SWE. The largest decreases in RMSE
of approximately 15 mm SWE (30 %) occur in the northern
region, with a more muted reduction throughout the southern
region (approximately 2 mm SWE (10 %) on average). Simi-
lar reductions in RMSE follow when this technique is applied
over all years for both regions as shown in Fig. 3. RMSE
is reduced from the default SNODAS value of 27.45 to
21.9 mm SWE, which is an improvement of approximately
20 %.

As was previously noted, this technique is able to reduce
absolute mean bias across the full region to zero; however,
this is achieved at the cost of introducing strong negative bi-
ases which cancel the remaining positive biases, as shown in
the change in spatial bias from Fig. 4a to b. Since MBS uni-
formly subtracts bias from all sites across the region, areas
of low positive bias in SNODAS (e.g., along the US border)
have their SWE estimates reduced too aggressively and now
exhibit a strong negative bias. This subtraction process can
lead to unphysical, negative estimates of SWE which should
be discarded if this bias-correction technique is to be used
in practice. Additionally, areas with the strongest positive
bias in SNODAS throughout the northern region have their
SWE estimates reduced by too little and continue to display
a strong positive bias.

MBS results in the creation of a SWE product that has
been overcorrected in some areas and undercorrected in oth-
ers and leads to high RMSE in the final corrected dataset.
Similar issues are also apparent temporally in the MBS-
corrected time series of Fig. 5, with an undercorrection of
SWE in the years before 2015 and an overcorrection dur-

ing 2015 and the years that follow. This residual error sug-
gests that MBS is unable to fully capture spatio-temporal dif-
ferences in the SNODAS bias and that more sophisticated
techniques should be investigated.

3.2.2 Linear regression

A limitation of MBS is that it is unable to benefit from
predictor relationships between the snow bias and climate
variables. Using daily SNODAS SWE as a predictor, SLR
displays skill in significantly reducing absolute mean bias.
However, this technique seems to overcompensate in the cor-
rection of the strong bias in the northern region of the study
area, especially during MAM, where the absolute bias drops
below zero to −3.2 mm SWE (Fig. 2). RMSE is reduced
from the uncorrected SNODAS values to 15–20 mm SWE on
average. Similarly to MBS, the SLR-corrected dataset also
exhibits a RMSE difference between the northern and south-
ern regions. We note the largest decreases in RMSE in the
northern portion of the study area across all time periods with
improvements of approximately 50 % over the uncorrected
SNODAS values. However, only slight reductions in RMSE
are observed throughout the southern region.

SLR performance across the full spatio-temporal study
range exhibits similar results to that of its partitioned com-
parison, with absolute mean bias reduced to approximately
−1.25 mm SWE and overall RMSE lowered by 45 % (to
14.9 mm SWE) compared to that of the default SNODAS
bias (Fig. 3). In order to determine whether the inclusion of
additional predictors improves the performance of linear re-
gression, MLR was also examined. When run with the pre-
dictor set described in Table 2, MLR exhibits similar perfor-
mance to SLR, with approximately the same reductions in
absolute bias and only slightly lower RMSE (RMSEMLR =

13.66 mm SWE vs. RMSESLR = 14.9 mm SWE).
SLR continues to improve upon the results of MBS by

further reducing absolute mean bias and RMSE at individ-
ual locations as shown in Fig. 4c. The results of this tech-
nique show significant reductions in the spatial bias present
in SNODAS. However, this technique also suffers from bias
overcorrection. Since the SNODAS bias is not homoge-
neous across all snow survey sites, areas of negative bias in
SNODAS are corrected by the SLR model to be even more
negative (as is seen at a set of survey sites in Fig. 4c along the
coasts of Lake Huron, Lake Ontario and Lake Superior). SLR
improves the overall positive bias across the majority of the
northern region sites; however, a strong positive bias persists
at many locations after SLR is applied, suggesting undercor-
rection at some locations. Similarly to MBS, we note both an
overcorrection and undercorrection of SWE in the time series
of Fig. 5 (with a transition occurring again in 2014), con-
firming our assumptions that the linear regression methods
are unable to account for heterogeneity and nonstationarity
in the bias between years.
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Figure 4. Absolute mean bias comparisons between in situ SWE and (a) SNODAS, (b) MBS, (c) SLR, and (d) RF, averaged at each snow
survey site over the full study period.

Figure 5. Daily mean SWE on the ground for the MBS, SLR and RF bias-corrected datasets, the default SNODAS SWE dataset and in situ
SWE records. Shaded areas represent 95 % confidence intervals based on the region data sample.

3.3 Nonlinear methods

The DT method displays further improvements over MBS
and SLR in terms of model skill, with the second lowest
overall RMSE between 3 and 8 mm SWE on average, cou-
pled with near-zero absolute mean bias when partitioned spa-
tially and temporally (Fig. 2). Differences in RMSE are quite

small between each region and time period, and the resulting
RMSE between DT and the in situ observations is substan-
tially lower, on average, than that of uncorrected SNODAS
(an 80 % improvement). We note similar large improvements
in model performance using the DT method across the full re-
gion for all months, with an overall RMSE of 4.03 mm SWE
and absolute mean bias of 0.6 mm SWE.
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Building on the improvements from DT, we find that
RF displays the best overall skill of all tested models by pro-
ducing SWE estimates with low absolute mean bias and the
lowest overall RMSE when compared with in situ SWE. As
noted in the predictor importance scores of Table 2, RF in-
corporates information from a suite of predictor variables
which allows the model to better understand how SWE biases
change in both time and space. RF was found to consistently
outperform the other models for all time periods for both
northern and southern regions of our study area, as shown in
the partitioned model run summary statistics in Fig. 2, with
absolute bias reduced below 1 mm SWE and RMSE between
3 and 5 mm SWE. Furthermore, RF continues to outperform
other methods of bias correction when the model is trained
and run over the full spatio-temporal domain, resulting in
an RMSE of 3.64 mm SWE and absolute mean bias of only
0.2 mm SWE as shown in Fig. 3. This is an 86 % reduction in
RMSE compared to the uncorrected SNODAS RMSE and a
significant improvement over the 45 % reduction achieved by
SLR and the 20 % reduction in RMSE from MBS. Since the
RF is composed of an ensemble of DT models, it is not sur-
prising that both methods perform similarly when run with
the same predictor set, with RF slightly outperforming a sin-
gle DT, because the ensemble is more robust and reduces
systematic model error caused by overfitting.

As the bias in SNODAS is nonstationary (Fig. 1b), we next
evaluate the bias-correction methods separately for a sub-
period of high bias (2011–2013) and one of low bias (2014–
2017). This test is performed using the same predictor vari-
ables in Table 2, excluding Year Id; i.e., we implicitly assume
stationarity within each sub-period. During the high-bias pe-
riod (with a default bias of 27.9 mm SWE and default RMSE
of 38.5), we find similar results to the full period. MBS, SLR
and RF all reduce the absolute mean bias to less than 1 mm
SWE, and RF reduces RMSE to the lowest value of 2.7 mm
SWE, compared to 5.7 and 26.6 for SLR and MBS, respec-
tively. The low-bias period (with a default bias of 9.28 mm
SWE and default RMSE of 16.5) again exhibits a similar pat-
tern in model performance to the full period, with all models
reducing the absolute mean bias to less than 1 mm SWE and
RF again showing the lowest RMSE of 4.9 mm SWE, com-
pared to 14.0 and 13.6 for SLR and MBS. In summary, the
sub-period analysis shows consistent performance from the
RF model but improved performance of the SLR model dur-
ing the high-bias period, when the bias in SNODAS appears
more uniform from year to year (Fig. 1b).

The RF model displays the best overall performance in
terms of reducing bias and RMSE, and this skill is demon-
strated spatially in Fig. 4d. Compared to the other bias-
correction methods, the RF model is the most effective at
reducing the spatial bias in SNODAS, with only small dif-
ferences between model-corrected SWE values and in situ
SWE across the majority of the region. This accuracy is
also evident in the time series of domain-averaged SWE val-
ues shown in Fig. 5, with the RF-corrected SWE estimates

closely tracking the in situ observations across all years.
Comparisons of interannual correlations further emphasize
the strengths of the nonlinear techniques over traditional
bias-correction methods at capturing changes in bias over
time. Interannual correlations between RF-corrected SWE
and in situ are the highest at approximately 0.99, with cor-
relations of approximately 0.93 for linear regression and of
approximately 0.90 between the default SNODAS and in
situ SWE. The RF model is therefore selected as the best-
performing candidate model to perform bias correction on
the Ontario-wide SNODAS data.

4 Application of the random forest model

In this section, we apply the trained RF model to the full 1 km
SNODAS grid for all of Ontario (approximately 1.5 mil-
lion grid cells, Fig. 1a) and derive a gridded estimate of
corrected SWE throughout the entire region. This operation
takes around 30 s per day of SNODAS observations (approx-
imately 1.5 MB per day in storage space) on a modern, four-
core desktop computer. After running the RF model at 1 km
resolution, we plot the resulting average monthly SWE bias
between SNODAS and the RF-corrected grid in Fig. 6 for
December through May (SNODAS−RF). From these plots
we note a strong positive monthly bias from January through
April with the largest bias in SNODAS SWE estimates in
March and April (averaging 57.7 and 55.8 mm SWE, respec-
tively), when the amount of snow on the ground is gener-
ally at its highest in Ontario. We also note a strong bias
east (downwind) of Lake Superior and Lake Huron where
SNODAS may be producing too much lake-effect snow.
Through the application of the RF bias correction, estimated
mean SWE during December to May in the study region out-
lined in Fig. 1a is reduced by approximately 33 mm (Fig. 6).

4.1 Water balance analysis

The difference in snow water volume between uncorrected
and bias-corrected SNODAS SWE has important implica-
tions for understanding the regional water balance of On-
tario. The reduction in mean SWE resulting from the bias
correction should reduce the regional melt estimates, which
we estimate using hydrographs of area-normalized discharge
from three Ontario river gauges for the period 2011 to 2018:
Pic River (48.77◦ N) near Marathon, the South Branch
Muskoka River (45.14◦ N) at Baysville, and the Thames
River (42.54◦ N) at Thamesville (basins outlined in Fig. 1a).
Monthly melt water amounts are estimated as the (negative)
SWE differences between consecutive monthly means from
the SNODAS and RF SWE datasets (Erler et al., 2019). To
compare the melt volumes with normalized discharge val-
ues, the melt is averaged over the drainage area associated
with each stream gauge. We argue that this provides a reason-
able estimate of the amount of water being released from the
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Figure 6. Monthly mean bias of SWE on ground between SNODAS and the RF bias-corrected SWE dataset over December–May across the
full study region at 1 km resolution.

snowpack during the spring freshet period in each watershed.
Note, however, that this does not include losses of water due
to evapotranspiration or additional water input from rainfall.

Figure 7 shows the time series of area-normalized dis-
charge and estimated melt rate over the study period for the
three drainage areas. The timing of observed peak stream-
flow closely aligns with melt rate peaks during the spring
freshet at the northern gauges of the Pic River and the South
Muskoka River. Since the melt water estimates do not include
rainfall, they should be considered a conservative estimate of
potential spring discharge. The melt volumes derived from
the corrected dataset are close to, but mostly below, observed
discharge values in the two northern catchments, while the
estimates based on the uncorrected SNODAS SWE data sig-
nificantly exceed the observed discharge and can thus be con-
sidered unphysical. This serves as an independent validation
of the physical plausibility of the bias-correction method pro-
posed here.

We further note that the differences between the corrected
and uncorrected melt estimates are most apparent during the
period of high bias prior to 2015. In this context it is also in-
teresting to note that the accumulation of SWE in the uncor-
rected SNODAS dataset exceeds the total amount of precipi-
tation (based on the NRCan dataset) for most winter months
prior to 2015 and for isolated winter months after 2015. In
the southern Thames River watershed, on the other hand,
there exists a much lower bias between SNODAS and RF-
corrected melt compared to the two northern watersheds,

which is consistent with the previously discussed spatial pat-
tern of biases in Fig. 1a. In addition, the Thames River wa-
tershed is not snowmelt dominated, so the biases do not af-
fect streamflow in the same way as they do in the two north-
ern watersheds. The changes in the magnitude of snowmelt
shown in Fig. 7 suggest that the RF bias-corrected SWE
constitutes an improvement over the uncorrected SNODAS-
derived melt estimates throughout the study region and that
the RF-corrected dataset could provide a valuable new re-
source for hydrologic modeling and flood risk forecasting.

4.2 Discussion

Linear regression and machine learning techniques have pre-
viously been used effectively across the geosciences for
bias correction of global and regional climate model output
(Teutschbein and Seibert, 2012; Li et al., 2010; Lary et al.,
2009; Reichstein et al., 2019; Shen, 2018). Previous stud-
ies on the estimation of North American SWE using artifi-
cial neural networks and support vector machines also ex-
hibit similar results, with machine learning techniques out-
performing general linear models (Snauffer et al., 2018; Xue
et al., 2018). However, recent work by Dixon et al. (2016)
and Ehret et al. (2012) suggests that bias-correction meth-
ods have their own associated uncertainties which must be
considered when applied to datasets like SNODAS. These
studies suggest that potential inconsistencies can exist be-
tween real-world and model dynamics and their interactions
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Figure 7. Monthly time series of area-normalized discharge from three river gauges in Ontario, along with corresponding melt estimates
calculated from the SNODAS and RF-corrected SWE datasets. Melt estimates are negative monthly SWE differences averaged over the
drainage area of the corresponding gauge (see Sect. 4.1).

with bias-correction techniques. This can lead to unphysical
changes in the relationships between variables and model dy-
namics and even violate basic physical principles. This last
point is relevant to this study, as some models (like MBS)
overcorrect SWE on the ground to negative values, which
are physically meaningless. Our research has found that more
sophisticated nonlinear statistical techniques like DT and RF
produce bias-corrected SWE values that adhere more closely
to these physical principles.

We must also consider uncertainties in the in situ snow
survey data record. Hand-measured SWE observations are
generally considered to be of high accuracy; however, mea-
surement error can still occur. Common issues include snow
sticking to the inside of the measurement device or falling
out of the bottom of the device due to improper soil cap-
ping (López-Moreno et al., 2013; ECCC, 2000). Issues like
these can lead to underestimations in SWE when measure-
ments are being recorded. Furthermore, from the available
documentation by Metcalfe (2018), not all CAs use the same
snow coring device and measurement techniques when re-
trieving SWE samples, and this may result in systematic dif-
ferences in their reported SWE estimates. Errors in the ref-

erence dataset can propagate through into the bias-correction
model during training and negatively impact the reliability of
the model, even away from the snow survey locations. Addi-
tional error also arises in our comparison of point to grid data
since our analysis assumes that the snow survey data are gen-
erally representative of the surrounding area in the contain-
ing 1 km SNODAS grid cell. While snow survey locations
are selected to be representative of their surrounding land-
scapes (Authorities, 1985), snow density varies drastically
over small spatial scales, and this assumption of homogene-
ity contributes to further uncertainty in our analysis (Molotch
and Bales, 2005).

An additional source of uncertainty in the water balance
analysis (Sect. 4.1) arises from the lack of sublimation and
evapotranspiration estimates as components of our melt cal-
culation. Improving our estimates of melt and runoff in these
basins requires additional high-frequency precipitation data
(including phase estimation), temperature data along with
a series of non-obvious judgements to estimate sublimation
(Dingman, 2015). Furthermore, the inclusion of a hydrologic
or land surface model, which would be necessary to prop-
erly account for sublimation and evapotranspiration, would
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also not be helpful for this purpose, as these models compute
snowpack internally and one would be left with a compari-
son against modeled snowpack SWE. We also note that av-
erage liquid precipitation during the spring freshet exceeds
the influence of potential evapotranspiration during this re-
gion at this time (Isabelle et al., 2020), and it can therefore
be argued that snowmelt places a lower bound on the spring
freshet volume (Erler et al., 2019). While the inclusion of
these additional components in the water balance equation
would improve melt estimates, through our comparison of
SNODAS SWE differences with those estimated from NR-
Can climate normals and streamflow, it is clear that the un-
corrected SNODAS values are unphysical, while the bias-
corrected values appear reasonable.

Any additional uncertainties that exist in SNODAS and the
NRCan gridded precipitation product (which are ingested as
predictors into the bias-correction models) will further con-
tribute to the overall error in the bias-corrected SWE dataset
(Hay et al., 2006). Uncertainties in the SNODAS numeri-
cal forecast model along with measurement error from the
datasets being assimilated by each product add to the total
uncertainty of the system. Furthermore, we note again that
the reference period of the climate normals that have been
used to characterize the climate in the RF model is 1981
to 2010, while the study period is 2011 to 2018. This may in-
troduce additional uncertainty due to decadal variability and
transient shifts in climate; however, since only long-term av-
erages (monthly normals) have been employed for this pur-
pose, the error is likely small. Additionally, a study by Sinha
et al. (2019) suggests that RF is sensitive to the spacial repre-
sentativeness of the bias throughout the region and that spatio
autocorrelation in the training and testing datasets used in the
RF may also negatively influence the accuracy of our model
fit.

While there is no clearly documented reason behind the
SNODAS SWE bias that occurred after 2015, we believe this
may be the result of new datasets being inserted into the data
assimilation scheme used by SNODAS, although one may
argue that since the general magnitude of the SNODAS bias
is reduced post 2014, a bias correction of SNODAS SWE
in this region is unnecessary. We suggest that the bias cor-
rection is still a valuable contribution, since the SNODAS
bias remains non-zero (approximately 5 mm SWE on aver-
age, and even higher throughout the northern region) during
this period when compared with in situ, and the extended
bias-corrected data record allows us to better calibrate cur-
rent hydrologic models. Another area of potential interest for
other groups using SNODAS in Canada exists in the latitu-
dinal gradient of bias we note in Fig. 4a, which suggests that
the mean SNODAS bias increases in magnitude as we move
further away from the US border (SNODAS is a US product
which mainly ingests US data).

Each of the bias-correction methods examined here shows
skill in reducing the absolute bias present between SNODAS
and in situ SWE observations, from the default 16 mm SWE

in SNODAS to less than 1.5 mm SWE across all techniques.
MBS and SLR exhibit an inability to capture year-to-year
variability present in the bias and often overcorrect or un-
dercorrect the amount of SWE on ground, resulting in high
RMSE between their corrected estimates and in situ ob-
servations. The more sophisticated machine learning tech-
niques display further improvements in skill, with RF reduc-
ing RMSE by approximately 86 % compared to that of the
uncorrected SNODAS RMSE, and a reduction in absolute
bias throughout the region to 0.2 mm SWE. The additional
predictors combined with the ability of the model to capture
nonlinear behavior, allows the RF model to closely reproduce
observed SWE values and remain within physically plausible
limits. The RF model also provides insights into the strengths
of the relationships between biases and various model pre-
dictors, suggesting a connection between SNODAS biases
and elevation, total precipitation and air temperature. Fur-
thermore, it is also evident that the bias diminishes over time,
even though this may not be adequately reflected in the pre-
dictor importance ranking of the calendar year variable. Un-
fortunately, due to lack of documentation regarding changes
in the assimilation system of SNODAS, it is not possible to
identify the reasons behind these changes.

In this study we have only employed simple linear regres-
sion and decision tree-based methods of bias correction. Nev-
ertheless, we have demonstrated that nonlinear techniques
can be used very effectively for bias correction and are far su-
perior to linear methods. Neural networks and support vector
machines have also been effectively implemented for the pur-
pose of bias correction in the geosciences (Lary et al., 2009).
A paper by Xue et al. (2018) also found that machine learn-
ing methods can act as effective operators at estimating North
American snow mass. It is possible that these other machine
learning techniques may offer further improvements to the
methods examined here, and should be considered in addi-
tional follow-up work. Furthermore, it has been suggested by
Reichstein et al. (2019) and Shen (2018) that deep learning
methods can provide powerful new perspectives in address-
ing common challenges in information extraction for water
resource research. However, the region that was considered
in this study is relatively small and climatologically homo-
geneous, and the number of in situ observations is likely in-
sufficient to justify the use of more complex techniques that
typically require very large training datasets. If, on the other
hand, bias correction were to be attempted on a larger scale,
for example the entire SNODAS domain, a more complex
technique should be considered: likely a deep neural net-
work, potentially with recurrent properties or convolutional
layers, so as to account for memory effects and spatial struc-
ture. In this scenario, it would also be possible to make use
of significantly more in situ observations across North Amer-
ica (e.g., SNOTEL sites), that could be used to train such a
model.
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5 Conclusion

Improving the quantification of southern Ontario SWE pro-
vides us with a foundation for better understanding regional
flood risk along with more accurate forecasts of local wa-
ter availability. Ontario’s low density of in situ measurement
stations results in large spatio-temporal observational gaps
with unknown amounts of accumulating SWE. These obser-
vational gaps can be filled using snow model estimates or
data assimilation techniques; however, as noted in the case
of SNODAS, there exist uncertainties and biases associated
in these products. In this work, we demonstrate the skill of a
variety of bias-correction techniques and find that more so-
phisticated, nonlinear models offer enhancements in preci-
sion and accuracy to traditional statistical methods of bias
correction. When applied to SNODAS, RF was found to re-
duce absolute mean bias across the region to less than 1 mm
SWE and also displayed the strongest reduction in RMSE
to less than 3 mm SWE (an RMSE improvement of 86 %
over default SNODAS). The result of this technique is an
RF bias-correction model that, when applied to SNODAS,
offers improved daily estimates of SWE which can then be
used as inputs to other forecasting systems and models. Ex-
amining melt estimates derived from area-averaged hydro-
graphs over three basins within our study region revealed
that the bias-corrected SNODAS SWE data improved area
melt estimates dramatically during the spring freshet when
compared to the unphysical melt volumes exhibited by de-
fault SNODAS SWE. This improved skill in reducing bias
from the nonlinear techniques suggests that machine learn-
ing techniques like RF (using similar predictor datasets to
those examined here) may also be applicable to future studies
working to reduce SWE biases across other regions, in other
gridded products. Through comparisons with in situ SWE
measurements, nonlinear bias-correction techniques improve
the accuracy of SNODAS SWE estimates, and the resulting
bias-corrected dataset can therefore be used to further ad-
vance our understanding of the regional water balance and
forecasting of future flood events.
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