Articles | Volume 24, issue 9
https://doi.org/10.5194/hess-24-4463-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-4463-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A systematic assessment of uncertainties in large-scale soil loss estimation from different representations of USLE input factors – a case study for Kenya and Uganda
Christoph Schürz
CORRESPONDING AUTHOR
Institute for Hydrology and Water Management, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
Bano Mehdi
Institute for Hydrology and Water Management, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
Institute of Agronomy, University of Natural
Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
Jens Kiesel
Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
Institute of Natural Resource Conservation, Department of Hydrology and Water Resources Management, Christian Albrechts University of Kiel, Kiel, Germany
Karsten Schulz
Institute for Hydrology and Water Management, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
Mathew Herrnegger
CORRESPONDING AUTHOR
Institute for Hydrology and Water Management, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
Related authors
No articles found.
Hatice Türk, Christine Stumpp, Markus Hrachowitz, Karsten Schulz, Peter Strauss, Günter Blöschl, and Michael Stockinger
Hydrol. Earth Syst. Sci., 29, 3935–3956, https://doi.org/10.5194/hess-29-3935-2025, https://doi.org/10.5194/hess-29-3935-2025, 2025
Short summary
Short summary
Using advances in transit time estimation and tracer data, we tested if fast-flow transit times are controlled solely by soil moisture or if they are also controlled by precipitation intensity. We used soil-moisture-dependent and precipitation-intensity-conditional transfer functions. We showed that a significant portion of event water bypasses the soil matrix through fast flow paths (overland flow, tile drains, preferential-flow paths) in dry soil conditions for both low- and high-intensity precipitation.
Hendrik Rathjens, Jens Kiesel, Jeffrey Arnold, Gerald Reinken, and Robin Sur
EGUsphere, https://doi.org/10.5194/egusphere-2025-877, https://doi.org/10.5194/egusphere-2025-877, 2025
Short summary
Short summary
We improved the widely used SWAT model to better predict how pesticides move through the environment. We added a new process that considers how plants take-up chemicals from the soil. Testing this updated model in two catchments showed very good prediction capabilities and a reduction of chemicals in river water by up to 17 % due to the plant uptake. The enhanced model offers a valuable tool for assessing the environmental impacts of agricultural management.
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Hendrik Rathjens, Jens Kiesel, Michael Winchell, Jeffrey Arnold, and Robin Sur
Hydrol. Earth Syst. Sci., 27, 159–167, https://doi.org/10.5194/hess-27-159-2023, https://doi.org/10.5194/hess-27-159-2023, 2023
Short summary
Short summary
The SWAT model can simulate the transport of water-soluble chemicals through the landscape but neglects the transport through groundwater or agricultural tile drains. These transport pathways are, however, important to assess the amount of chemicals in streams. We added this capability to the model, which significantly improved the simulation. The representation of all transport pathways in the model enables watershed managers to develop robust strategies for reducing chemicals in streams.
Giuseppe Amatulli, Jaime Garcia Marquez, Tushar Sethi, Jens Kiesel, Afroditi Grigoropoulou, Maria M. Üblacker, Longzhu Q. Shen, and Sami Domisch
Earth Syst. Sci. Data, 14, 4525–4550, https://doi.org/10.5194/essd-14-4525-2022, https://doi.org/10.5194/essd-14-4525-2022, 2022
Short summary
Short summary
Streams and rivers drive several processes in hydrology, geomorphology, geography, and ecology. A hydrographic network that accurately delineates streams and rivers, along with their topographic and topological properties, is needed for environmental applications. Using the MERIT Hydro Digital Elevation Model at 90 m resolution, we derived a globally seamless, standardised hydrographic network: Hydrography90m. The validation demonstrates improved accuracy compared to other datasets.
Nariman Mahmoodi, Jens Kiesel, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 25, 5065–5081, https://doi.org/10.5194/hess-25-5065-2021, https://doi.org/10.5194/hess-25-5065-2021, 2021
Short summary
Short summary
In this study, we assessed the sustainability of water resources in a wadi region with the help of a hydrologic model. Our assessment showed that the increases in groundwater demand and consumption exacerbate the negative impact of climate change on groundwater sustainability and hydrologic regime alteration. These alterations have severe consequences for a downstream wetland and its ecosystem. The approach may be applicable in other wadi regions with different climate and water use systems.
Christian Voigt, Karsten Schulz, Franziska Koch, Karl-Friedrich Wetzel, Ludger Timmen, Till Rehm, Hartmut Pflug, Nico Stolarczuk, Christoph Förste, and Frank Flechtner
Hydrol. Earth Syst. Sci., 25, 5047–5064, https://doi.org/10.5194/hess-25-5047-2021, https://doi.org/10.5194/hess-25-5047-2021, 2021
Short summary
Short summary
A continuously operating superconducting gravimeter at the Zugspitze summit is introduced to support hydrological studies of the Partnach spring catchment known as the Zugspitze research catchment. The observed gravity residuals reflect total water storage variations at the observation site. Hydro-gravimetric analysis show a high correlation between gravity and the snow water equivalent, with a gravimetric footprint of up to 4 km radius enabling integral insights into this high alpine catchment.
Christoph Klingler, Karsten Schulz, and Mathew Herrnegger
Earth Syst. Sci. Data, 13, 4529–4565, https://doi.org/10.5194/essd-13-4529-2021, https://doi.org/10.5194/essd-13-4529-2021, 2021
Short summary
Short summary
LamaH-CE is a large-sample catchment hydrology dataset for Central Europe. The dataset contains hydrometeorological time series (daily and hourly resolution) and various attributes for 859 gauged basins. Sticking closely to the CAMELS datasets, LamaH includes additional basin delineations and attributes for describing a large interconnected river network. LamaH further contains outputs of a conceptual hydrological baseline model for plausibility checking of the inputs and for benchmarking.
Josef Fürst, Hans Peter Nachtnebel, Josef Gasch, Reinhard Nolz, Michael Paul Stockinger, Christine Stumpp, and Karsten Schulz
Earth Syst. Sci. Data, 13, 4019–4034, https://doi.org/10.5194/essd-13-4019-2021, https://doi.org/10.5194/essd-13-4019-2021, 2021
Short summary
Short summary
Rosalia is a 222 ha forested research watershed in eastern Austria to study water, energy and solute transport processes. The paper describes the site, monitoring network, instrumentation and the datasets: high-resolution (10 min interval) time series starting in 2015 of four discharge gauging stations, seven rain gauges, and observations of air and water temperature, relative humidity, and conductivity, as well as soil water content and temperature, at different depths at four profiles.
Moritz Feigl, Katharina Lebiedzinski, Mathew Herrnegger, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2951–2977, https://doi.org/10.5194/hess-25-2951-2021, https://doi.org/10.5194/hess-25-2951-2021, 2021
Short summary
Short summary
In this study we developed machine learning approaches for daily river water temperature prediction, using different data preprocessing methods, six model types, a range of different data inputs and 10 study catchments. By comparing to current state-of-the-art models, we could show a significant improvement of prediction performance of the tested approaches. Furthermore, we could gain insight into the relationships between model types, input data and predicted stream water temperature.
Michael Weber, Franziska Koch, Matthias Bernhardt, and Karsten Schulz
Hydrol. Earth Syst. Sci., 25, 2869–2894, https://doi.org/10.5194/hess-25-2869-2021, https://doi.org/10.5194/hess-25-2869-2021, 2021
Short summary
Short summary
We compared a suite of globally available meteorological and DEM data with in situ data for physically based snow hydrological modelling in a small high-alpine catchment. Although global meteorological data were less suited to describe the snowpack properly, transferred station data from a similar location in the vicinity and substituting single variables with global products performed well. In addition, using 30 m global DEM products as model input was useful in such complex terrain.
Cited articles
Alewell, C., Borrelli, P., Meusburger, K., and Panagos, P.: Using the USLE:
Chances, challenges and limitations of soil erosion modelling, International
Soil and Water Conservation Research, 7, 203–225,
https://doi.org/10.1016/j.iswcr.2019.05.004, 2019. a, b, c, d
Angima, S. D., Stott, D. E., O'Neill, M. K., Ong, C. K., and Weesies, G. A.:
Soil erosion prediction using RUSLE for central Kenyan highland conditions,
Agriculture, Ecosystems and Environment, 97, 295–308,
https://doi.org/10.1016/S0167-8809(03)00011-2, 2003. a, b
Arnoldus, H. M. J.: An approximation of the rainfall factor in the USLE, in:
Assessment of Erosion, edited by: DeBoodt, M. and Gabriels, D., 127–132,
John Wiley & Sons, Chichester, 1980. a
Bai, Z. G., Dent, D. L., Olsson, L., and Schaepman, M. E.: Proxy global
assessment of land degradation, Soil Use Manage., 24, 223–234,
https://doi.org/10.1111/j.1475-2743.2008.00169.x, 2008. a
Bamutaze, Y.: Revisiting socio-ecological resilience and sustainability in the
coupled mountain landscapes in Eastern Africa, Curr. Opin.
Env. Sust., 14, 257–265,
https://doi.org/10.1016/j.cosust.2015.06.010, 2015. a
Benavidez, R., Jackson, B., Maxwell, D., and Norton, K.: A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates, Hydrol. Earth Syst. Sci., 22, 6059–6086, https://doi.org/10.5194/hess-22-6059-2018, 2018. a, b
Beven, K. and Young, P.: A guide to good practice in modeling semantics for
authors and referees, Water Resour. Res., 49, 5092–5098,
https://doi.org/10.1002/wrcr.20393, 2013. a, b
Bivand, R., Keitt, T., and Rowlingson, B.: rgdal: Bindings for the “Geospatial” Data Abstraction Library, r package version 1.4-3,
available at: https://CRAN.R-project.org/package=rgdal, last access: 11 March 2019. a
Boardman, J.: Soil erosion by water: problems and prospects for research, in:
Advances in Hillslope Processes, edited by: Anderson, M. G. and Brooks, S. M.,
Wiley, Chichester, UK, 489–505, 1996. a
Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C.,
Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V.,
Bagarello, V., Oost, K. V., Montanarella, L., and Panagos, P.: An assessment
of the global impact of 21st century land use change on soil erosion, Nat.
Commun., 8, 2013, https://doi.org/10.1038/s41467-017-02142-7, 2017. a, b, c, d, e, f, g, h, i, j
Bosco, C., Rigo, D. D., and Dewitte, O.: Visual Validation of the e-RUSLE Model
Applied at the Pan-European Scale, Scientific Topics Focus 1,
MRI-11a13. Notes on Transdisciplinary
Modelling for Environment, Maieutike Research Initiative, Figshare, https://doi.org/10.6084/m9.figshare.844627.v5, 2014. a, b
Browning, G. M., Parish, C. L., and Glass, J. A.: A method for determining the
use of limitations of rotation and conservation practices in the control of
soil erosion in Iowa, J. Am. Soc. Agron., 39,
65–73, 1947. a
Channan, S., Collins, K., and Emanuel, W. R.: Global mosaics of the standard
MODIS land cover type data, University of Maryland and the Pacific Northwest National Laboratory, College Park, Maryland, USA, available at: http://glcf.umd.edu/data/lc/ (last access: 25 June 2018), 2014. a
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015. a, b
Didan, K.: MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN
grid V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD13Q1.006,
2015. a, b
Dissmeyer, G. and Foster, G.: A guide for predicting sheet and rill erosion on
forest land, Technical Publication SA-TP-11, USDA Forest Service-State and
Private Forestry Southeastern Area, 1980. a
ESA: ESA Land Cover Climate Change Initiative (ESA LC CCI) data:
ESACCI-LC-L4-LCCS-Map-300m-P1Y-1992_2015‐v2.0.7.tif via Centre for
Environmental Data Analysis, available at: http://maps.elie.ucl.ac.be/CCI (last access: 25 June 2018), 2017. a
Estrada-Carmona, N., Harper, E. B., DeClerck, F., and Fremier, A. K.:
Quantifying model uncertainty to improve watershed-level ecosystem service
quantification: a global sensitivity analysis of the RUSLE, Int. Ecosyst. Serv. Manage., 13, 40–50, https://doi.org/10.1080/21513732.2016.1237383, 2017. a, b
Evans, R.: Some methods of directly assessing water erosion of cultivated land
– a comparison of measurements made on plots and in fields, Prog.
Phys. Geogr., 19, 115–129, https://doi.org/10.1177/030913339501900106, 1995. a, b, c
Evans, R.: An alternative way to assess water erosion of cultivated land
– field-based measurements: and analysis of some results, Appl.
Geogr., 22, 187–207, https://doi.org/10.1016/s0143-6228(02)00004-8, 2002. a
Evans, R.: Assessment and monitoring of accelerated water erosion of cultivated
land – when will reality be acknowledged?, Soil Use Manage., 29,
105–118, https://doi.org/10.1111/sum.12010, 2013. a, b, c
Evans, R. and Boardman, J.: The new assessment of soil loss by water erosion in
Europe. Panagos P. et al., 2015 Environmental Science & Policy 54,
438–447 – A response, Environ. Sci.
Policy, 58, 11–15, https://doi.org/10.1016/j.envsci.2015.12.013, 2016a. a, b
Evans, R. and Boardman, J.: A reply to panagos et al., 2016 (Environmental
science & policy 59 (2016) 53–57, Environ. Sci. Policy, 60,
63–68, https://doi.org/10.1016/j.envsci.2016.03.004, 2016b. a
Falk, M. G., Denham, R. J., and Mengersen, K. L.: Estimating Uncertainty in the
Revised Universal Soil Loss Equation via Bayesian Melding, J.
Agric. Biol. Env. S., 15, 20–37,
https://doi.org/10.1007/s13253-009-0005-y, 2010. a, b, c, d
FAO-PNUMA-UNESCO: Metodología provisional para la evaluación de la
degradación de los suelos, Tech. rep., Organización de las Naciones Unidas
para el Desarrollo de la Agricultura y la Alimentación (FAO), Programa de
las Naciones Unidas para el Medio Ambiente (PNUMA), Organización de las
Naciones para el Medio Ambiente (UNESCO), Roma, Italia, 1980 (in Spanish). a, b, c
Favis-Mortlock, D.: Validation of Field-Scale Soil Erosion Models Using Common
Datasets, in: Modelling Soil Erosion by Water, NATO ASI Series book series,
vol. 55, edited by: Boardman, J. and Favis-Mortlock, D., chap. 9,
Springer Berlin Heidelberg, 89–127, https://doi.org/10.1007/978-3-642-58913-3_9, 1998. a, b, c
Fenta, A. A., Tsunekawa, A., Haregeweyn, N., Poesen, J., Tsubo, M., Borrelli,
P., Panagos, P., Vanmaercke, M., Broeckx, J., Yasuda, H., Kawai, T., and
Kurosaki, Y.: Land susceptibility to water and wind erosion risks in the East
Africa region, Sci. Total Environ., 703, 135016,
https://doi.org/10.1016/j.scitotenv.2019.135016, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z
Ferro, V. and Minacapilli, M.: Sediment delivery processes at basin scale,
Hydrolog. Sci. J., 40, 703–717, https://doi.org/10.1080/02626669509491460,
1995. a
Fick, S. E. and Hijmans, R. J.: WorldClim 2: new 1-km spatial resolution
climate surfaces for global land areas, Int. J.
Climatol., 37, 4302–4315, https://doi.org/10.1002/joc.5086, 2017. a, b
Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N.,
Sibley, A., and Huang, X.: MODIS Collection 5 global land cover: Algorithm
refinements and characterization of new datasets, 2001–2012, Collection 5.1
IGBP Land Cover, available at: http://glcf.umd.edu/data/lc/ (last access: 25 June 2018), 2010. a
García-Ruiz, J. M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J. C.,
Lana-Renault, N., and Sanjuán, Y.: A meta-analysis of soil erosion rates
across the world, Geomorphology, 239, 160–173,
https://doi.org/10.1016/j.geomorph.2015.03.008, 2015. a, b, c
Graham, W. R.: Use of Erosion Equations and Sediment-Delivery Ratios for
Predicting Sediment Yield, in: Present and Prospective Technology for
Predicting Sediment Yields and Sources, U.S. Department of
Agriculture, Agricultural Research Service, ARS-S-40, 33–45, 1975. a
Grolemund, G. and Wickham, H.: Dates and Times Made Easy with lubridate,
J. Stat. Softw., 40, 1–25, https://doi.org/10.18637/jss.v040.i03,
2011. a
Hengl, T., De Jesus, J. M., Heuvelink, G. B., Gonzalez, M. R., Kilibarda, M.,
Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLoS ONE, 12, 1–40, https://doi.org/10.1371/journal.pone.0169748, 2017. a
Henry, L. and Wickham, H.: purrr: Functional Programming Tools, r package version 0.3.2, available at: https://CRAN.R-project.org/package=purrr, last access: 15 March 2019,. a
Hernando, D. and Romana, M. G.: Development of a Soil Erosion Classification
System for Cut and Fill Slopes, Transportation Infrastructure Geotechnology,
2, 155–166, https://doi.org/10.1007/s40515-015-0024-9, 2015. a
Hijmans, R. J.: raster: Geographic Data Analysis and Modeling, r package version 2.9-5, available at: https://CRAN.R-project.org/package=raster, last access: 14 May 2019. a
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu,
G., Hong, Y., Bowman, K. P., and Stocker, E. F.: The TRMM Multisatellite
Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor
Precipitation Estimates at Fine Scales, J. Hydrometeorol., 8,
38–55, https://doi.org/10.1175/jhm560.1, 2007. a
Jagger, P. and Kittner, N.: Deforestation and biomass fuel dynamics in Uganda,
Biomass Bioenerg., 105, 1–9, https://doi.org/10.1016/j.biombioe.2017.06.005, 2017. a
Jetten, V. and Favis-Mortlock, D.: Modelling Soil Erosion in Europe, in: Soil
Erosion in Europe, edited by: Boardman, J. and Poesen, J., chap. 50,
John Wiley & Sons, Ltd, 695–716, https://doi.org/10.1002/0470859202.ch50, 2006. a, b
Jones, A., Breuning-Madsen, H., Brossard, M., Dampha, A., Deckers, J.,
Dewitte, O., Gallali, T., Hallett, S., Jones, R., Kilasara, M., Le Roux,
P., Micheli, E., Spaargaren, O., Thombiano, L., Van Ranst, E., Yemefack, M.,
and Zougmoré, R., (Eds.): Soil Atlas of Africa, European Union Joint
Research Centre, Luxembourg, 176 pp., ISBN 978-92-79-26715-4, 2013. a
Kinnell, P.: Event soil loss, runoff and the Universal Soil Loss Equation
family of models: A review, J. Hydrol., 385, 384–397,
https://doi.org/10.1016/j.jhydrol.2010.01.024, 2010. a, b, c, d
Kithiia, S. M.: Land use changes and their effects on sediment transport and
soil erosion within the Athi drainage basin, Kenya, in: Human Impact on
Erosion and Sedimentation (Proceedings of Rabat Symposium 56, April 1997),
IAHS Publ. no. 245, edited by: Walling, D. E. and Probst, J.-L.,
International Association of Hydrological Sciences, 145–150, 1997. a, b, c, d, e
KNBS: Section agriculture, in: County Statistical Abstracts, Kenya National
Bureau of Statistics, Nairobi, Kenya, 2015. a
LUCAS: Land Use/Cover Area Frame Statistical Survey Database,
available at: http://epp.eurostat.ec.europa.eu/portal/page/portal/lucas/data/LUCAS_primary_data/2012 (last access: 1 April 2019), 2012. a
Lufafa, A., Tenywa, M., Isabirye, M., Majaliwa, M., and Woomer, P.: Prediction
of soil erosion in a Lake Victoria basin catchment using a GIS-based
Universal Soil Loss model, Agr. Syst., 76, 883–894,
https://doi.org/10.1016/s0308-521x(02)00012-4, 2003. a
Maetens, W., Vanmaercke, M., Poesen, J., Jankauskas, B., Jankauskiene, G., and
Ionita, I.: Effects of land use on annual runoff and soil loss in Europe and
the Mediterranean: A meta-analysis of plot data, Prog. Phys.
Geogr.- Earth and Environment, 36, 599–653,
https://doi.org/10.1177/0309133312451303, 2012. a, b
Microsoft Corporation and Weston, S.: doSNOW: Foreach Parallel Adaptor for
the “snow” Package, r package version 1.0.16,
available at: https://CRAN.R-project.org/package=doSNOW (last access: 23 October 2018), 2017a. a
Microsoft Corporation and Weston, S.: foreach: Provides Foreach Looping
Construct for R, r package version 1.4.4, available at: https://CRAN.R-project.org/package=foreach (last access: 23 October 2018), 2017b. a
Montgomery, D. R.: Soil erosion and agricultural sustainability, P.
Natl. Acad. Sci. USA, 104, 13268–13272,
https://doi.org/10.1073/pnas.0611508104, 2007. a, b
Morgan, R. P. C.: Soil erosion and conservation, 3rd Edn., Blackwell Publishing, Oxford, UK, ISBN 1405117818, 2009. a
Musgrave, G. W.: The quantitative evaluation of factors in water erosion, a
first approximation, J. Soil Water Conserv., 2, 133–138,
1947. a
Müller, K. and Wickham, H.: tibble: Simple Data Frames, r package version 2.1.3, available at: https://CRAN.R-project.org/package=tibble (last access: 6 June 2018), 2019. a
Müller, K., Wickham, H., James, D. A., and Falcon, S.: RSQLite: “SQLite”
Interface for R, r package version 2.1.1, available at: https://CRAN.R-project.org/package=RSQLite, last access: 24 April 2018. a
NASA/METI/AIST/Japan Spacesystems, and U.S./Japan ASTER Science Team: ASTER
Global Digital Elevation Model, NASA, https://doi.org/10.5067/ASTER/ASTGTM.002, 2009. a
Nearing, M.: Why soil erosion models over-predict small soil losses and
under-predict large soil losses, CATENA, 32, 15–22,
https://doi.org/10.1016/S0341-8162(97)00052-0, 1998. a
Olivares, R. U., Bulos, A. D. M., and Sombrito, E. Z.: Environmental assessment
of soil erosion in Inabanga watershed (Bohol, Philippines), Energy, Ecology
and Environment, 1, 98–108, https://doi.org/10.1007/s40974-016-0012-0, 2016. a
Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., and Alewell, C.: Soil
erodibility in Europe: A high-resolution dataset based on LUCAS, Sci.
Total Environ., 479–480, 189–200,
https://doi.org/10.1016/j.scitotenv.2014.02.010, 2014. a, b, c
Panagos, P., Ballabio, C., Borrelli, P., Meusburger, K., Klik, A., Rousseva,
S., Tadić, M. P., Michaelides, S., Hrabalíková, M., Olsen,
P., Aalto, J., Lakatos, M., Rymszewicz, A., Dumitrescu, A., Beguería,
S., and Alewell, C.: Rainfall erosivity in Europe, Sci. Total
Environ., 511, 801–814, https://doi.org/10.1016/j.scitotenv.2015.01.008,
2015a. a, b, c
Panagos, P., Borrelli, P., and Meusburger, K.: A New European Slope Length and
Steepness Factor (LS-Factor) for Modeling Soil Erosion by Water,
Geosciences, 5, 117–126, https://doi.org/10.3390/geosciences5020117,
2015b. a, b, c
Panagos, P., Borrelli, P., Meusburger, K., van der Zanden, E. H., Poesen, J.,
and Alewell, C.: Modelling the effect of support practices (P-factor) on the
reduction of soil erosion by water at European scale, Environ. Sci. Policy, 51, 23–34, https://doi.org/10.1016/j.envsci.2015.03.012,
2015d. a, b
Panagos, P., Borrelli, P., Poesen, J., Meusburger, K., Ballabio, C., Lugato,
E., Montanarella, L., and Alewell, C.: Reply to “The new
assessment of soil loss by water erosion in Europe. Panagos P. et al., 2015
Environ. Sci. Policy 54, 438–447 – A
response” by Evans and Boardman [Environ. Sci. Policy 58,
11–15], Environ. Sci. Policy, 59, 53–57,
https://doi.org/10.1016/j.envsci.2016.02.010, 2016. a
Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Jae Lim, K.,
Yang, J. E., Ni, J., Miao, C., Chattopadhyay, N., Sadeghi, S. H., Hazbavi,
Z., Zabihi, M., Larionov, G. A., Krasnov, S. F., Gorobets, A. V., Levi, Y.,
Erpul, G., Birkel, C., Hoyos, N., Naipal, V., Oliveira, P. T. S., Bonilla,
C. A., Meddi, M., Nel, W., Al Dashti, H., Boni, M., Diodato, N., Van
Oost, K., Nearing, M., and Ballabio, C.: Global rainfall erosivity
assessment based on high-temporal resolution rainfall records, Sci.
Rep.-UK, 7, 4175, https://doi.org/10.1038/s41598-017-04282-8, 2017. a, b, c, d, e
Pebesma, E.: Simple Features for R: Standardized Support for Spatial Vector
Data, The R Journal, 10, 439–446, https://doi.org/10.32614/RJ-2018-009, 2018. a
Petursson, J. G., Vedeld, P., and Sassen, M.: An institutional analysis of
deforestation processes in protected areas: The case of the transboundary Mt.
Elgon, Uganda and Kenya, Forest Policy and Econ., 26, 22–33,
https://doi.org/10.1016/j.forpol.2012.09.012, 2013. a
Prasuhn, V., Liniger, H., Gisler, S., Herweg, K., Candinas, A., and
Clément, J.-P.: A high-resolution soil erosion risk map of Switzerland
as strategic policy support system, Land Use Policy, 32, 281–291,
https://doi.org/10.1016/j.landusepol.2012.11.006, 2013. a
Rajbanshi, J. and Bhattacharya, S.: Assessment of soil erosion, sediment yield
and basin specific controlling factors using RUSLE-SDR and PLSR approach in
Konar river basin, India, J. Hydrol., 587, 124935,
https://doi.org/10.1016/j.jhydrol.2020.124935, 2020. a
Renard, K. G. and Freimund, J. R.: Using monthly precipitation data to
estimate the R-factor in the revised USLE, J. Hydrol., 157,
287–306, https://doi.org/10.1016/0022-1694(94)90110-4, 1994. a, b
Risse, L. M., Nearing, M. A., Laflen, J. M., and Nicks, A. D.: Error Assessment in the Universal Soil Loss Equation, Soil Sci. Soc. Am. J., 57, 825–833, https://doi.org/10.2136/sssaj1993.03615995005700030032x, 1993. a, b, c
Ross, N.: fasterize: Fast Polygon to Raster Conversion, r package version 1.0.0, available at: https://CRAN.R-project.org/package=fasterize (last access: 18 May 2019), 2018. a
Shangguan, W., Dai, Y., Duan, Q., Liu, B., and Yuan, H.: A global soil data
set for earth system modeling, J. Adv. Model. Earth
Sy., 6, 249–263, https://doi.org/10.1002/2013MS000293, 2014. a
Shin, G. J.: The analysis of soil erosion analysis in watershed using GIS,
Ph.D. thesis, Doctoral Dissertation, Department of Civil Engineering,
Gang-won National University, 1999. a
Smith, D. D.: Interpretation of soil conservation data for field use,
Agr. Eng., 22, 173–175, 1941. a
Sonneveld, B. and Nearing, M.: A nonparametric/parametric analysis of the
Universal Soil Loss Equation, CATENA, 52, 9–21,
https://doi.org/10.1016/S0341-8162(02)00150-9, 2003. a, b, c
Spaeth, K. E., Pierson, F. B., Weltz, M. A., and Blackburn, W. H.: Evaluation
of USLE and RUSLE Estimated Soil Loss on Rangeland, J. Range
Manage., 56, 234–246, https://doi.org/10.2307/4003812, 2003. a
Tamene, L. and Le, Q. B.: Estimating soil erosion in sub-Saharan Africa based
on landscape similarity mapping and using the revised universal soil loss
equation (RUSLE), Nutr. Cycl. Agroecosys., 102, 17–31,
https://doi.org/10.1007/s10705-015-9674-9, 2015. a, b, c
Tiwari, A. K., Risse, L. M., and Nearing, M. A.: Evaluation of WEPP and its
comparison with USLE and RUSLE, T. ASAE, 43,
1129–1135, https://doi.org/10.13031/2013.3005, 2000. a
UBOS: Volume IV: Crop Area and Production Report, in: Uganda Census of
Agriculture 2008/2009, Uganda Bureau of Statistics, Kampala, Uganda, p. 178,
2010. a
Van-Camp, L., Bujarrabal, B., Gentile, A. R., Jones, R. J., Montanarella, L.,
Olazabal, C., and Selvaradjou, S.-K.: Reports of the Technical Working Groups
Established under the Thematic Strategy for Soil Protection, EUR 21319 EN/6,
Tech. rep., Office for Official Publications of the European
Communities, Luxembourg, 872 pp., 2004. a
Vanmaercke, M., Poesen, J., Broeckx, J., and Nyssen, J.: Sediment yield in
Africa, Earth-Sci. Rev., 136, 350–368,
https://doi.org/10.1016/j.earscirev.2014.06.004, 2014. a, b
Vrieling, A., Sterk, G., and de Jong, S. M.: Satellite-based estimation of
rainfall erosivity for Africa, J. Hydrol., 395, 235–241,
https://doi.org/10.1016/j.jhydrol.2010.10.035, 2010. a, b, c
Vrieling, A., Hoedjes, J. C. B., and van der Velde, M.: Towards large-scale
monitoring of soil erosion in Africa: Accounting for the dynamics of rainfall
erosivity, Global Planet. Change, 115, 33–43,
https://doi.org/10.1016/j.gloplacha.2014.01.009, 2014. a, b, c
Walsh, R. P. D. and Lawler, D. M.: Rainfall seasonality: description, spatial
patterns and change through time, Weather, 36, 201–208,
https://doi.org/10.1002/j.1477-8696.1981.tb05400.x, 1981. a, b
Warren, S. D., Mitasova, H., Hohmann, M. G., Landsberger, S., Iskander, F. Y.,
Ruzycki, T. S., and Senseman, G. M.: Validation of a 3-D enhancement of the
Universal Soil Loss Equation for prediction of soil erosion and sediment
deposition, CATENA, 64, 281–296, https://doi.org/10.1016/j.catena.2005.08.010, 2005. a
Weltz, M. A., Kidwell, M. R., and Fox, H. D.: Influence of abiotic and biotic
factors in measuring and modeling soil erosion on rangelands: state of
knowledge, Rangeland Ecology & Management/Journal of Range Management
Archives, 51, 482–495, 1998. a
Wickham, H.: forcats: Tools for Working with Categorical Variables (Factors),
r package version 0.4.0, available at: https://CRAN.R-project.org/package=forcats, last access: 17 February 2019. a
Wickham, H. and Henry, L.: tidyr: Easily Tidy Data with “spread()” and
“gather()” Functions, r package version 0.8.3, available at:https://CRAN.R-project.org/package=tidyr, last access: 2 March 2019. a
Wickham, H. and Ruiz, E.: dbplyr: A “dplyr” Back End for Databases,
r package version 1.4.0, available at: https://CRAN.R-project.org/package=dbplyr, last access: 24 April 2019.
a
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C.,
Woo, K., and Yutani, H.: ggplot2: Create Elegant Data Visualisations Using
the Grammar of Graphics, r package version 3.1.1, available at: http://ggplot2.tidyverse.org (last access: 11 April 2019), 2019a. a
Wickham, H., François, R., Henry, L., and Müller, K.: dplyr: A Grammar of
Data Manipulation, r package version 0.8.1, available at: https://CRAN.R-project.org/package=dplyr (last access: 17 May 2019), 2019b. a
Young, P. C.: Data-based Mechanistic Modelling and Validation of Rainfall-Flow
Processes, in: Model Validation: Perspectives in Hydrological Science, edited
by: Anderson, M. G. and Bates, P., John Wiley, Chichester, 117–161, 2001. a
Zhang, R., Liu, X., Heathman, G. C., Yao, X., Hu, X., and Zhang, G.: Assessment
of soil erosion sensitivity and analysis of sensitivity factors in the
Tongbai–Dabie mountainous area of China, CATENA, 101, 92–98,
https://doi.org/10.1016/j.catena.2012.10.008, 2013. a
Zingg, A. W.: Degree and length of land slope as it affects soil loss in
run-off., Agr. Eng., 21, 59–64, 1940. a
Short summary
The USLE is a commonly used model to estimate soil erosion by water. It quantifies soil loss as a product of six inputs representing rainfall erosivity, soil erodibility, slope length and steepness, plant cover, and support practices. Many methods exist to derive these inputs, which can, however, lead to substantial differences in the estimated soil loss. Here, we analyze the effect of different input representations on the estimated soil loss in a large-scale study in Kenya and Uganda.
The USLE is a commonly used model to estimate soil erosion by water. It quantifies soil loss as...