Articles | Volume 24, issue 9
https://doi.org/10.5194/hess-24-4463-2020
https://doi.org/10.5194/hess-24-4463-2020
Research article
 | 
15 Sep 2020
Research article |  | 15 Sep 2020

A systematic assessment of uncertainties in large-scale soil loss estimation from different representations of USLE input factors – a case study for Kenya and Uganda

Christoph Schürz, Bano Mehdi, Jens Kiesel, Karsten Schulz, and Mathew Herrnegger

Related authors

Soil moisture and precipitation intensity jointly control the transit time distribution of quick flow in a flashy headwater catchment
Hatice Türk, Christine Stumpp, Markus Hrachowitz, Karsten Schulz, Peter Strauss, Günter Blöschl, and Michael Stockinger
Hydrol. Earth Syst. Sci., 29, 3935–3956, https://doi.org/10.5194/hess-29-3935-2025,https://doi.org/10.5194/hess-29-3935-2025, 2025
Short summary
Technical Note: Extending the SWAT2012 and SWAT+ models to simulate pesticide plant uptake processes
Hendrik Rathjens, Jens Kiesel, Jeffrey Arnold, Gerald Reinken, and Robin Sur
EGUsphere, https://doi.org/10.5194/egusphere-2025-877,https://doi.org/10.5194/egusphere-2025-877, 2025
Short summary
CAMELS-DE: hydro-meteorological time series and attributes for 1582 catchments in Germany
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024,https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Technical note: Extending the SWAT model to transport chemicals through tile and groundwater flow
Hendrik Rathjens, Jens Kiesel, Michael Winchell, Jeffrey Arnold, and Robin Sur
Hydrol. Earth Syst. Sci., 27, 159–167, https://doi.org/10.5194/hess-27-159-2023,https://doi.org/10.5194/hess-27-159-2023, 2023
Short summary
Hydrography90m: a new high-resolution global hydrographic dataset
Giuseppe Amatulli, Jaime Garcia Marquez, Tushar Sethi, Jens Kiesel, Afroditi Grigoropoulou, Maria M. Üblacker, Longzhu Q. Shen, and Sami Domisch
Earth Syst. Sci. Data, 14, 4525–4550, https://doi.org/10.5194/essd-14-4525-2022,https://doi.org/10.5194/essd-14-4525-2022, 2022
Short summary

Cited articles

Alewell, C., Borrelli, P., Meusburger, K., and Panagos, P.: Using the USLE: Chances, challenges and limitations of soil erosion modelling, International Soil and Water Conservation Research, 7, 203–225, https://doi.org/10.1016/j.iswcr.2019.05.004, 2019. a, b, c, d
Angima, S. D., Stott, D. E., O'Neill, M. K., Ong, C. K., and Weesies, G. A.: Soil erosion prediction using RUSLE for central Kenyan highland conditions, Agriculture, Ecosystems and Environment, 97, 295–308, https://doi.org/10.1016/S0167-8809(03)00011-2, 2003. a, b
Arnoldus, H. M. J.: An approximation of the rainfall factor in the USLE, in: Assessment of Erosion, edited by: DeBoodt, M. and Gabriels, D., 127–132, John Wiley & Sons, Chichester, 1980. a
Bai, Z. G., Dent, D. L., Olsson, L., and Schaepman, M. E.: Proxy global assessment of land degradation, Soil Use Manage., 24, 223–234, https://doi.org/10.1111/j.1475-2743.2008.00169.x, 2008. a
Bamutaze, Y.: Patterns of water erosion and sediment loading in Manafwa in catchment on Mt. Elgon, Eastern Uganda, PhD thesis, Department of Geography, Geo-information and Climatic Science, Makerere University, Kampala, Uganda, 2010. a, b, c, d, e, f, g
Download
Short summary
The USLE is a commonly used model to estimate soil erosion by water. It quantifies soil loss as a product of six inputs representing rainfall erosivity, soil erodibility, slope length and steepness, plant cover, and support practices. Many methods exist to derive these inputs, which can, however, lead to substantial differences in the estimated soil loss. Here, we analyze the effect of different input representations on the estimated soil loss in a large-scale study in Kenya and Uganda.
Share