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Abstract. The Universal Soil Loss Equation (USLE) is the
most commonly used model to assess soil erosion by water.
The model equation quantifies long-term average annual soil
loss as a product of the rainfall erosivity R, soil erodibility
K , slope length and steepness LS, soil cover C, and support
measures P . A large variety of methods exist to derive these
model inputs from readily available data. However, the esti-
mated values of a respective model input can strongly differ
when employing different methods and can eventually intro-
duce large uncertainties in the estimated soil loss. The po-
tential to evaluate soil loss estimates at a large scale is very
limited due to scarce in-field observations and their compara-
bility to long-term soil estimates. In this work we addressed
(i) the uncertainties in the soil loss estimates that can poten-
tially be introduced by different representations of the USLE
input factors and (ii) challenges that can arise in the evalua-
tion of uncertain soil loss estimates with observed data.

In a systematic analysis we developed different represen-
tations of USLE inputs for the study domain of Kenya and
Uganda. All combinations of the generated USLE inputs re-
sulted in 972 USLE model setups. We assessed the resulting
distributions in soil loss, both spatially distributed and on the
administrative level for Kenya and Uganda. In a sensitivity
analysis we analyzed the contributions of the USLE model
inputs to the ranges in soil loss and analyzed their spatial pat-

terns. We compared the calculated USLE ensemble soil es-
timates to available in-field data and other study results and
addressed possibilities and limitations of the USLE model
evaluation.

The USLE model ensemble resulted in wide ranges of es-
timated soil loss, exceeding the mean soil loss by over an
order of magnitude, particularly in hilly topographies. The
study implies that a soil loss assessment with the USLE is
highly uncertain and strongly depends on the realizations of
the model input factors. The employed sensitivity analysis
enabled us to identify spatial patterns in the importance of
the USLE input factors. The C and K factors showed large-
scale patterns of importance in the densely vegetated part
of Uganda and the dry north of Kenya, respectively, while
LS was relevant in small-scale heterogeneous patterns. Ma-
jor challenges for the evaluation of the estimated soil losses
with in-field data were due to spatial and temporal limita-
tions of the observation data but also due to measured soil
losses describing processes that are different to the ones that
are represented by the USLE.
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1 Introduction

The Universal Soil Loss Equation (USLE, Wischmeier and
Smith, 1965, 1987) formulates the most commonly applied
concept to assess soil loss by water erosion (Alewell et al.,
2019; Borrelli et al., 2017; Panagos et al., 2015e; Kinnell,
2010). The USLE is an empirical relationship that computes
long-term average annual soil loss as a product of six input
factors that characterize the erosive forces of the rainfall (R),
the soil erodibility (K), topography (L and S), plant cover
(C), and support practices to mitigate erosion (P ). Histori-
cally, the USLE succeeded earlier attempts to quantify soil
erosion by water developed for the Corn Belt region of the
United States of America (USA) in the 1940s. The first re-
lationships between soil loss on cropland and topography
(Zingg, 1940), factors for crops and conservation practices
(Smith, 1941), soil erodibility (Browning et al., 1947), and
rainfall (Musgrave, 1947) were developed and reported by
Wischmeier and Smith (1965). Over several decades exten-
sive soil erosion data were collected in many locations on
field plot scale in the USA. Eventually more than 10 000 plot
years of field data were analyzed with reference to a “unit
plot” to formulate a generally applicable approach for soil
loss estimation in the USA (Wischmeier and Smith, 1965;
Kinnell, 2010; Renard et al., 2011). The new approach over-
came restrictions of previous methods for soil loss estimation
to specific regions in the USA and thus was termed “univer-
sal” in the literature (Wischmeier and Smith, 1965). Further
data were collected over the following decades and the meth-
ods to calculate the USLE input factors were substantially
revised (Renard et al., 1991, 1997; Govers, 2011). This re-
sulted in an update of the iso-erodent maps, the consideration
of seasonality and rock fragments in the K factor, or a con-
sideration of additional subfactors, such as prior land use, for
the computation of the C factor (Renard et al., 1997). The re-
vised model was termed the Revised USLE (RUSLE, Renard
et al., 1991). However, the general structure of the equation
remained unchanged.

In the following we refer to USLE- or RUSLE-type mod-
els as USLE for simplicity. The different revisions of the
USLE were summarized in Agriculture Handbooks (Wis-
chmeier and Smith, 1965, 1987; Renard et al., 1997) that
proved to be pragmatic and effective tools for soil conser-
vation planning in the USA (Renard et al., 1991, 2011).
Not without causing controversies, applications of the USLE
model were extended to other land uses than cropland (Re-
nard et al., 1991; Alewell et al., 2019), such as rangeland
(Spaeth et al., 2003; Weltz et al., 1998) or woodland (Diss-
meyer and Foster, 1980). Due to the principally simple im-
plementation of the USLE model it found a wide application
outside of the USA in more than 100 countries (Alewell et al.,
2019) at various spatial scales and in various geoclimatic re-
gions (Benavidez et al., 2018). Several studies adopted the
methods to calculate the USLE input factors to meet lo-
cal or regional conditions (e.g., Roose, 1975; Moore, 1979;

Bollinne, 1985; Favis-Mortlock, 1998; Angima et al., 2003).
However, to term this empirical relationship as “universal”
is misleading for applications outside the USA and to non-
cropland (Jetten and Favis-Mortlock, 2006). The application
of the USLE to conditions different from the plot experi-
ments must be treated as a model extrapolation that is not
supported by field data (Bosco et al., 2015; Favis-Mortlock,
1998).

It is widely accepted that the USLE does not at all attempt
to represent the physical processes to erode and transport
soil particles but rather empirically relates field properties to
long-term soil loss (Beven and Brazier, 2011; Kinnell, 2010).
The USLEs’ wide application does not distinguish it to be
the best, or only option for soil loss estimation (Evans and
Boardman, 2016a). Limitations of the USLE (but also other
soil erosion models) have been well documented in the lit-
erature (see, e.g., Boardman, 1996, 2006). Jetten and Favis-
Mortlock (2006) summarize applications of the USLE in Eu-
rope, where the validation of calculated soil losses with ob-
served data showed poor results (e.g., Favis-Mortlock, 1998;
Bollinne, 1985). Nearing (1998) found that in general soil
erosion models tend to over-predict small soil losses and
under-predict large soil losses. Kinnell (2010) reports a good
performance of a locally adapted variant of the USLE in New
South Wales, Australia, but documents the over-prediction
of small soil losses and under-prediction of large soil losses
when applied to larger domains with a higher variability in
agricultural systems (Tiwari et al., 2000; Risse et al., 1993).
A recent pan-European soil loss assessment started a broad
discussion of the validity of the estimates when compared
to in-field soil loss assessments in Great Britain (see the
discussion in Panagos et al., 2015e; Evans and Boardman,
2016a; Panagos et al., 2016; Evans and Boardman, 2016b).
Several authors question the applicability of the plot-scale-
based USLE to the landscape scale (e.g., Boardman, 2006;
Evans, 1995; Govers, 2011), particularly as in large domains
other processes such as gully erosion, bank erosion, or sed-
iment deposition can dominate the erosion response (Gov-
ers, 2011). Multiple approaches are available from the liter-
ature that account, for instance, for the deposition of eroded
material by employing concepts such as the sediment deliv-
ery ratio (e.g., Rajbanshi and Bhattacharya, 2020; Ferro and
Minacapilli, 1995; Graham, 1975). While the USLE princi-
pally only accounts for the soil removal and does not con-
sider soil deposition, Evans (2013) concludes that the USLE
can be helpful in identifying the erosion potential or erosion
hotspots but fails to predict the exact magnitude of soil that
is eroded.

The above criticism does not impede the wide application
of the USLE. For large-scale erosion assessments, the avail-
ability of large-scale spatial data and methods to infer the
USLE inputs facilitate its implementation in GIS (Govers,
2011) and therefore is an attractive option to assess soil ero-
sion. The implementation of remote-sensing (satellite) prod-
ucts advances large-scale soil loss assessments, particularly

Hydrol. Earth Syst. Sci., 24, 4463–4489, 2020 https://doi.org/10.5194/hess-24-4463-2020



C. Schürz et al.: A systematic assessment of uncertainties in large-scale soil loss estimation 4465

in data-scarce regions where observations are limited as well
as in large domains where in-field data acquisition is unfeasi-
ble (Alewell et al., 2019; Bosco et al., 2015). This procedure
yielded several continental and global estimates of USLE in-
put factors (e.g., Panagos et al., 2017; Panagos et al., 2015a,
b, c; Vrieling et al., 2010) and soil loss assessments (e.g.,
Borrelli et al., 2017; Panagos et al., 2015e; Naipal et al.,
2015; Yang et al., 2003; Van der Knijff et al., 2000) that
were primarily derived from large-scale (remote-sensing)
data products. The implemented remote-sensing data prod-
ucts describe (or are a proxy for) features in the landscape
(e.g., a DEM represents the topography and the NDVI is of-
ten employed to describe vegetation density). In large-scale
assessments, methods are implemented that employ these
large-scale data products to infer spatially distributed esti-
mates for the USLE inputs. For each USLE input, various
methods exist to generate the spatially distributed estimates
for the USLE inputs that use different data sources (see, e.g.,
the review of Benavidez et al., 2018). Thus, differing results
in the realizations of a USLE input factor can result from the
different computational approaches. However, a typical setup
of the USLE combines only one representation of each USLE
input in a single model setup and therefore does not depict
the variations in the soil loss calculations that may arise from
different representations of the USLE input factors. Because
of the multiplicative structure of the USLE, uncertainties in
the input factors are decisive for the computation of the soil
loss as they are propagated by multiplication (Sonneveld and
Nearing, 2003).

Few studies have been conducted to analyze the uncertain-
ties of the calculated soil loss and the sensitivities of soil loss
estimates to the USLE input factors. Based on the original
USLE data set, Risse et al. (1993) performed a comprehen-
sive study to assess the errors in the USLE estimates, evalu-
ated the models’ performance to calculate soil loss, and an-
alyzed the influence of the USLE inputs on the model effi-
ciency. Risse et al. (1993) identified the LS factor and the C
factor as the most influential inputs. In a meta-model study,
Keyzer and Sonneveld (1997) found that large errors in the
soil loss estimates can be expected for high R and LS values
as well as for high and low values for the K factor due to low
observation densities in these ranges for these input factors
in the original USLE data. Continuing the work of Keyzer
and Sonneveld (1997), Sonneveld and Nearing (2003) an-
alyzed the robustness of the USLE model based on differ-
ent subsets of the original USLE data set and found that the
USLE model is not very robust. Falk et al. (2010) employed
Bayesian melding to quantify the uncertainties in the soil loss
estimates and to identify the USLE inputs that contribute the
most to the uncertainties for a catchment in eastern Australia.
In their case study, Falk et al. (2010) identified the LS factor
as the most influential USLE input. Based on nine nationwide
soil loss data sets, including soil loss estimates for Europe
(Panagos et al., 2015e), and the original USLE data set for the
USA, Estrada-Carmona et al. (2017) performed global sensi-

tivity analysis to identify the dominant USLE input factors.
For all nine countries Estrada-Carmona et al. (2017) found
that the C factor and the LS factor were the most influential
USLE inputs. Bosco et al. (2015) proposed a multi RUSLE
model approach to account for the uncertainties in their soil
loss estimates and therefore involve the impact of the differ-
ent representations of the USLE inputs on soil loss estima-
tion.

A widely applied procedure in environmental modeling to
gain confidence in a model setup is model validation, which
is the evaluation of calculated model outputs against ob-
served data (Beven and Young, 2013; Young, 2001). Beven
and Young (2013) further stress the importance of model fal-
sification when a model fails to reproduce observations. For
large-scale soil loss assessments the possibilities to evaluate
calculated soil losses, or spatially distributed estimates of the
USLE inputs are very limited (Bosco et al., 2015; Van der
Knijff et al., 2000). Typically, studies that monitored soil loss
within the study domain rarely exist. Existing in-field data,
however, entail issues of their spatial and temporal represen-
tativeness (Evans, 2013; Govers, 2011). Large-scale meta-
analysis studies of soil erosion plot data and sediment yield
records exist, such as García-Ruiz et al. (2015), Vanmaer-
cke et al. (2014) for Africa, or Maetens et al. (2012) for Eu-
rope. However, Boardman (2006) questions the comparabil-
ity of erosion plot data or in-stream sediment yields with soil
losses at the catchment scale. Govers (2011) highlights that
USLE estimates reflect long time periods (Wischmeier and
Smith, 1965, e.g., recommended 20 years). Such time periods
are usually not covered by a soil loss monitoring campaign.
Eventually, USLE input factor estimates and large-scale soil
loss assessments are compared to very limited observation
data (e.g., Borrelli et al., 2017; Vrieling et al., 2010; Moore,
1979) and in many cases no validation was carried out at all
(e.g., Karamage et al., 2017; Van der Knijff et al., 2000).

Acknowledging that soil loss assessments using the USLE
is uncertain and that the evaluation of soil loss estimates
in large-scale assessments has limitations, we formulate and
systematically address the following objectives.

i. What are the uncertainties in soil loss estimates that we
can expect from the implementation of different model
input realizations in the USLE model? How can we in-
terpret uncertain soil loss estimates?

ii. Which USLE model inputs contribute the most to the
uncertainties of the soil loss estimates?

iii. How do the USLE ensemble model results compare to
other single model studies?

iv. Can we compare the calculated soil loss estimates to
in-field soil loss data? Does the evaluation enable us to
reduce the uncertainties in the estimated soil losses?

We addressed these questions in a large-scale soil loss as-
sessment for Kenya and Uganda and structured our work in
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the following way: We reviewed methods to calculate USLE
inputs that were widely used in previous large-scale soil
loss assessments and employed selected methods to gener-
ate spatially distributed estimates for the study domain (see
Sect. 3.2). All combinations of the input factor realizations
delineate a USLE model ensemble. The analysis of the USLE
ensemble results is outlined in Sects. 3.4 and 4.1. We ana-
lyzed the impact of the USLE input factors R, LS, K , and C

on the calculated ranges of the soil loss estimates in a spatial
analysis (see Sects. 3.5, 4.2, and 5.3). On the national level
and for selected erosion-prone counties of Kenya and dis-
tricts of Uganda, we analyze the spatially aggregated mean
soil loss estimates and compare them to the results of Fenta
et al. (2020) on a national level and to the results of Kara-
mage et al. (2017) on the administrative level for Uganda
(Sects. 4.3 and 5.1). In a final step we compare the ensem-
ble soil loss estimates derived with the USLE model ensem-
ble to selected in-field erosion studies that were conducted in
Kenya and Uganda (Sects. 4.4 and 5.4).

2 Study area

The study area covers the countries of Kenya and Uganda,
located in eastern Africa (Fig. 1). Overall, the sub-Saharan
countries have experienced drastic land degradation and a
decrease in net primary productivity of the land over the
last decades (Bai et al., 2008). The dominant driver for land
degradation in the Horn of Africa is soil erosion by water
(Jones et al., 2013). Large parts of Kenya and Uganda are
generally prone to soil loss by water-induced erosion.

In total, the study region covers an area of 821 405 km2, of
which 729 622 km2 or 89 % of the surface are analyzed, since
lakes and other water bodies are excluded from the analy-
sis. Additionally, 27 administrative units in both countries
(Fig. 1a, Table 1) are analyzed in detail. The selection of the
erosion-prone administrative units is based on a visual analy-
sis of Fig. 1a and on local knowledge and on-site experience.

The study region covers a wide range of factors influenc-
ing soil erosion. Figure 1a shows the potential erosion risk
solely stemming from topography, based on thresholds sug-
gested by Ebisemiju (1988). Large areas with moderate to
steep slopes (“moderate risk”) are evident in the southwest
of Uganda and in a north-to-south band in Kenya, where
the Western or Gregory Rift as part of the Great Rift Valley
transects the country. The southwest of Uganda is charac-
terized by a hilly topography with low elevation differences.
In contrast, the erosion-prone regions in Kenya are mostly
characterized by larger elevation differences, e.g., escarp-
ments. Very steep slopes that exhibit a high risk of erosion
from topography are evident around mountain massifs, e.g.,
Ruwenzori (5109 m a.s.l., Uganda), Mt. Elgon (4321 m a.s.l.,
Uganda and Kenya) or Mt. Kenya (5199 m a.s.l., Kenya). Ad-
ditionally, high erosion risk-prone areas are evident in the
southwestern corner of Uganda and along the Rift Valley in

the northern part of Kenya. Figure 1b shows the mean an-
nual MODIS NDVI (Didan, 2015) for the period 2001–2018
as a proxy for the vegetation cover. Higher values in NDVI
show pixels with high vegetation cover, where a lower risk
of water erosion due to ground cover can be assumed, and
vice versa. Kenya exhibits a large variability in NDVI, with
low values in the arid to semi-arid northern and southeastern
parts. Higher vegetation cover is present at the coast towards
the Indian Ocean, around Mt. Kenya, but also around Lake
Victoria in the western part of the country. Uganda shows a
rather homogeneous vegetation distribution, with some semi-
arid areas in the northeast showing a lower vegetation cover.

Figure 1c shows the long-term mean annual rainfall (based
on WorldClim Version2 for the period 1970–2000, Fick
and Hijmans, 2017) as a proxy for the erosivity by rain-
fall. This assumes that larger annual rainfall values lead
to higher erosion rates. Rainfall and vegetation cover are
clearly connected. Hence, a more homogeneous rainfall pat-
tern is visible for Uganda. Drier areas in the southwest and
northeast receive around 750–1000 mm yr−1 of precipita-
tion. The center of the country is wetter with around 1000–
1500 mm yr−1. In Kenya, wetter areas are evident around
Lake Victoria and Mt. Kenya, receiving 1500–2000 mm yr−1

or even higher. The northern part of the country only receives
250–500 mm yr−1. Here, areas around Lake Turkana are very
dry, with an annual precipitation of less than 250 mm yr−1. In
accordance with vegetation cover, the coast is wetter (1000–
1250 mm yr−1). Between the coast and the central highlands,
a dry belt is visible (500–750 mm yr−1). To accompany the
distribution of the mean annual rainfall, the seasonality of the
rainfall (SI, Walsh and Lawler, 1981) is illustrated in Fig. 1d.
The rainfall around Lake Victoria is classified as equable
with a definite wetter season. The rainfall in the remaining
parts of Uganda and along the coast of Kenya is rather sea-
sonal with a short drier season. Northern and central Kenya
are markedly seasonal, with long dry seasons and only short
wet periods.

3 Methods and data basis

3.1 The Universal Soil Loss Equation (USLE)

The general form of a USLE-type equation is as follows:

A= R×K ×LS×C×P, (1)

where A is the long-term average annual soil
loss in t ha−1 yr−1, R is the rainfall erosivity in
MJ mm ha−1 h−1 yr−1, K is the soil erodibility factor
in t h MJ−1 mm−1, L and S are the unitless slope length
factor and the slope steepness factor (that are usually
evaluated together as the topographic factor LS; Renard
et al., 1997), C is the unitless cover management factor, and
P is the unitless support practice factor.
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Figure 1. Study area of Kenya and Uganda. A classification of the soil erosion risk following Ebisemiju (1988) (a), the mean annual MODIS
NDVI as a proxy for vegetation cover (b), mean annual rainfall (c), and the rainfall seasonality index (SI, Walsh and Lawler, 1981) (d) are
plotted to characterize spatial properties of the study region. The boundaries for administrative units where the mean soil loss was assessed
are shown with pink outlines in panel (a). Locations of soil loss assessments from previous studies that were used for comparison are shown
as pink squares. The hillshade is plotted in grey in the background to characterize the terrain topography.

3.2 Estimation of USLE model inputs

To address the impact of different USLE input factor real-
izations on the simulation of the soil loss A, we generated
a set of realizations for each of the four USLE input factors
R, K , LS, and C. Methods to calculate the inputs were con-
sidered that were either used in previous large-scale appli-
cations or that were specifically developed for eastern Africa
(or regions with similar climatic, topographic, and vegetation
conditions). The implemented methods are described below.
Further details on the input factor generation are provided
in Supplement Sect. S1. The support practice factor P was
excluded from the analysis, as large-scale data to derive es-
timates for P are very limited. Previous large-scale studies,

for example, inferred the P factor from relationships with the
land use (e.g., Yang et al., 2003), the land cover, and slope
(Fenta et al., 2020), implemented a global estimate of P for
the entire study region (e.g., Karamage et al., 2017), or did
not consider the P factor (e.g., Borrelli et al., 2017).

The rainfall erosivity factor R relates the intensity of rain-
fall events to the kinetic energy that is available to erode
soil particles (Wischmeier and Smith, 1987; Panagos et al.,
2015a). Rainfall intensity records are hardly available for
large domains. Thus, large-scale erosion studies often em-
ploy long-term monthly average or long-term annual aver-
age precipitation sums to infer R. We implemented long-
term monthly precipitation provided by WorldClim Ver-
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Table 1. Administrative units analyzed in more detail. The locations are shown in Fig. 1a. The slope and elevation statistics are based on the
SRTM v4.1 90m DEM (Jarvis et al., 2008).

Administrative Area Mean slope Max. slope Mean elev. Max. elev. Min. elev.
No. Country Greater region unit (km2) (deg) (deg) (m) (m) (m)

1 Uganda – Kiruhura 4636 4.39 28.96 1310 1670 1178
2 Uganda Lake Bunyoni Ntungamo 2062 7.57 43.61 1497 2224 1279
3 Uganda Lake Bunyoni Kabale 1740 14.79 46.15 1990 2601 1355
4 Uganda Lake Bunyoni Kisoro 733 11.95 49.44 1983 3861 1338
5 Uganda Lake Bunyoni Kanungu 1335 8.61 46.52 1388 2499 912
6 Uganda Ruwenzori Kasese 3402 8.81 60.54 1493 5034 878
7 Uganda Ruwenzori Kabarole 1825 8.01 48.94 1515 3996 626
8 Uganda Ruwenzori Bundibugyo 2265 5.65 52.24 1002 4659 612
9 Uganda – Nebbi 2922 3.71 34.70 1039 1873 612

10 Uganda – Kaabong 7301 5.87 61.41 1416 2720 834
11 Uganda Mt. Elgon Bukwo 529 12.28 53.35 2420 4204 1253
12 Uganda Mt. Elgon Kapchorwa 1215 8.00 53.39 1823 4265 1062
13 Uganda Mt. Elgon Sironko 1106 7.15 60.43 1619 4280 1045
14 Uganda Mt. Elgon Bududa 253 16.99 61.70 2103 4314 1216
15 Uganda Mt. Elgon Mbale 522 5.50 71.23 1288 2351 1083
16 Uganda Mt. Elgon Manafwa 606 8.34 57.77 1608 3319 1139
17 Kenya Mt. Elgon Bungoma 3036 5.15 45.12 1859 4304 1213
18 Kenya Southwestern Kenya Kisii 1353 6.24 32.83 1750 2190 1394
19 Kenya Southwestern Kenya Nyamira 897 6.70 31.99 1888 2214 1509
20 Kenya Southwestern Kenya Bomet 2384 5.14 30.29 1997 2465 1693
21 Kenya Cherangani Hills Elgeyo-Marakwet 3058 9.97 60.70 2122 3517 920
22 Kenya Cherangani Hills West Pokot 9328 8.70 67.15 1443 3524 691
23 Kenya – Samburu 21250 6.81 66.83 1185 2834 296
24 Kenya Mt. Kenya Nyeri 3380 7.39 54.88 2284 5035 1210
25 Kenya Mt. Kenya Kirinyaga 1491 4.41 45.27 1619 4747 1057
26 Kenya Mt. Kenya Embu 2780 4.89 38.56 1191 4760 520
27 Kenya – Makueni 8297 3.84 58.42 1065 2120 404

sion2 (Fick and Hijmans, 2017) with a spatial resolution of
30 s. The monthly precipitation sums were aggregated to a
long-term annual precipitation. To account for the season-
ality of the rainfall, the monthly precipitation sums were
employed to calculate the modified Fournier index (MFI,
Arnoldus, 1980). In total, we considered six methods that re-
late long-term mean annual precipitation (Pannual) to R and
one method that relates the MFI to R (Fig. 2a).

Roose (1975) and Moore (1979) developed relationships
between mean annual rainfall sums and R based on station
data in western and eastern Africa, respectively. Karamage
et al. (2017) used the method developed by Lo et al. (1985) to
calculate R for Uganda. The method of Renard and Freimund
(1994) was developed for USA precipitation station data and
has been employed in global applications (e.g., Naipal et al.,
2015; Yang et al., 2003). Nakil (2014) developed a relation-
ship between precipitation and R for the highly variable rain-
fall patterns of the western coast of India. To assess and
analyze the rainfall erosivity in eastern Africa, Fenta et al.
(2017) used two methods to infer R from long-term annual
precipitation and from the MFI, respectively. Additionally,
we considered recent products by Panagos et al. (2017) and
Vrieling et al. (2014) that inferred R estimates from high

temporal precipitation data. While Panagos et al. (2017) de-
rived global estimates for R on a 1 km grid based on a large
global rainfall intensity data set to assemble the GloREDa
database, Vrieling et al. (2014) used the 3-hourly TRMM
Multi-satellite Precipitation Analysis (TMPA) product (Huff-
man et al., 2007) to infer R estimates for the African conti-
nent at a 0.25◦ spatial resolution. In total we included seven
realizations for R in this study (Fig. 2a).

The soil erodibility factor K describes the tendency of a
soil to erode due to the erosive force of precipitation or sur-
face runoff and can be related to soil physical and chemical
properties (Panagos et al., 2014). Direct assessments of the
soil erodibility are only available at a plot scale. Large-scale
erosion studies employ transfer functions that infer the soil
erodibility from soil properties that are easier to acquire. Sev-
eral global soil data products are available that provide phys-
ical and chemical soil properties with different spatial resolu-
tion. We implemented soil information from SoilGrids250m
(Hengl et al., 2017) and the Global Soil Dataset for use in
Earth System Models (GSDE, Shangguan et al., 2014). Lay-
ers of mass fractions of sand (Sa), silt (Si), and clay (Cl),
the soil organic carbon content (orgC) and the fraction of
coarse fragments (CRF) were acquired for the available soil
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Figure 2. Methodological framework to generate the realizations of
the USLE model input factors R, K , LS, and C.

depths and weighted average values for 0–10 cm were calcu-
lated. The aggregated soil layers were used in three transfer
functions that were employed in previous large-scale studies
to compute K . We applied the method of Wischmeier and
Smith (1987) and followed the procedure suggested by Pana-
gos et al. (2014) and Borrelli et al. (2017) to compute K from
the SoilGrids250m layers. The method of Wischmeier and
Smith (1987) requires Sa, Si, Cl, and organic matter content
(OM) as inputs. Additionally, information on soil structure
(s) and soil permeability (p) is relevant. Borrelli et al. (2017)
derived these properties from soil classes according to the
World Reference Base (WRB) and the USDA soil texture
classification systems that are available for SoilGrids250m.
GSDE does not provide soil class layers. Thus, the parame-
ters s and p were kept constant when using the GSDE as in-
put, following a procedure by Tamene and Le (2015). We fur-
ther implemented the methods of Williams (1995) and Torri
et al. (1997). Both methods require values of Sa, Si, Cl, and
OM as inputs. The soil products SoilGrids250m and GSDE
in combination with three transfer functions resulted in six
realizations of the K factor (Fig. 2b).

The slope length and steepness factor LS represents the
influence of the terrain topography on soil erosion (Panagos
et al., 2015b). A digital elevation model (DEM) is the basis
for deriving the LS factor. In this study we implemented the
SRTM v4.1 90m DEM (Jarvis et al., 2008) and the ASTER
GDEM V2 (NASA/METI/AIST/Japan Spacesystems, and
U.S./Japan ASTER Science Team, 2009) with a 30 m res-
olution. ASTER GDEM V2 data were aggregated and pro-
jected to the 90 m grid of SRTM v4.1 for comparability, but
also because our computation capacities were insufficient to
calculate soil erosion rates on a 30 m grid for the study ex-
tent. Three methods were applied from Moore et al. (1991),
Desmet and Govers (1996), and Böhner and Selige (2006)
that are available from the System for Automated Geosci-
entific Analyses (SAGA) v. 2.1.4 (Conrad et al., 2015). To-
gether with the two DEM products, six realizations of the
LS factor (Fig. 2c) were computed. Intermediate steps such
as the reprojection of the ASTER GDEM V2, DEM fill, the
calculation of flow direction, or flow accumulation were pro-
cessed in ArcMap 10.6 (ESRI, 2012). In the calculation of
LS using the method of Desmet and Govers (1996) we fol-
lowed the steps described in Panagos et al. (2015b). The use
of ASTER GDEM v2 introduced strong noise in the com-
puted LS layers that results from artifacts in the remote-
sensing data. Particularly, the computed soil erosion in flat
areas was strongly affected by the noise signal, rendering the
results unusable (see Sect. S3 and Fig. S1 in the Supplement).
Thus, we excluded the LS realizations using ASTER GDEM
v2 in the analysis and only considered three out of the six
generated realizations for the LS factor (Fig. 2c).

The cover management factor C subsumes the impacts
of vegetation cover and land management on soil erosion
(Wischmeier and Smith, 1987; Panagos et al., 2015c). For
large-scale studies we identified two main approaches to
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compute C (Fig. 2d): (i) to infer C from vegetation indices
from satellite-based remote-sensing products (e.g., Karam-
age et al., 2017; Naipal et al., 2015; Tamene and Le, 2015;
Van der Knijff et al., 2000) and (ii) to join land cover clas-
sification products with agricultural statistics and C factor
literature values to compile a continuous C factor layer (e.g.,
Borrelli et al., 2017; Panagos et al., 2015c; Bosco et al., 2015;
Yang et al., 2003).

For the computation of C from NDVI vegetation indices,
we implemented the method of Van der Knijff et al. (2000),
who proposed a nonlinear relationship between NDVI and
C. We acquired 16 d MODIS NDVI averages (Didan, 2015)
from 2000 to 2012 and aggregated them to a mean NDVI
layer. We calculated the annual mean NDVI (see e.g., Van
der Knijff et al., 2000; Tamene and Le, 2015) and the mean
NDVI averages over the two rainy seasons March to May and
October to November as proposed by Karamage et al. (2017).
Both long-term mean NDVI layers were used to compute C

factor realizations with the equation of Van der Knijff et al.
(2000).

Two land cover products, the MODIS Collection 5 LC
with a spatial resolution of 250 m (Channan et al., 2014;
Friedl et al., 2010) and the ESA CCI LC Map v2.0.7 with
a spatial resolution of 300 m (ESA, 2017), served as base
land cover layers. The agricultural, forest, and naturally veg-
etated land covers in these maps were superimposed with
C factor literature values. The C factor values for agricul-
tural land uses were calculated based on agricultural statis-
tics. Two agricultural statistics were used that provide infor-
mation on crop areas at different spatial scales. (i) National
agricultural surveys for Kenya on ward level (KNBS, 2015)
and for Uganda on county level (UBOS, 2010) were harmo-
nized. (ii) Monfreda et al. (2008) provide global gridded crop
shares of 175 crops with a spatial resolution of 5 min. We as-
signed C factor literature values from Panagos et al. (2015c)
and Angima et al. (2003) to all crops found in the national
agricultural surveys and the grid layers from Monfreda et al.
(2008). Based on the crop shares in the administrative units
of Kenya and Uganda and for the crop shares in each grid
cell of Monfreda et al. (2008), we calculated weighted aver-
age C values as proposed in Panagos et al. (2015c). C values
for non-agricultural land uses of the MODIS LC were es-
timated according to Panagos et al. (2015c), varying the C

values for forest between boundaries based on the MODIS
vegetation continuous fields (VCF) tree cover product. The
ESA CCI LC classifies the land cover as shares between
different land uses (e.g., Mosaic cropland (> 50 %)/natural
vegetation (tree, shrub, herbaceous cover) (< 50 %)). In this
case, C values were estimated by calculating weighted aver-
ages between the calculated average C values for agricultural
areas and literature values (Panagos et al., 2015c) for non-
agricultural land uses according to the given fractions of the
land cover classes. The combination of the two land cover
products and the two agricultural statistic products resulted
in four realizations for the C factor.

3.3 Estimation of soil loss

In total, nine, six, six (three), and six realizations were gen-
erated for USLE input factors R, K , LS, and C, respectively.
The combination of all input factors to assemble USLE
model setups would have resulted in 1944 realizations of the
USLE model. The LS factor realizations that were generated
with the ASTER GDEM V2 were however excluded from the
model ensemble, as they showed large noise ratios. The num-
ber of analyzed USLE model setups was therefore halved to
972. For the overlay of the generated USLE input layers, all
layers were reprojected to the grid of the SRTM v4.1 90m
DEM and the long-term mean annual soil loss A was calcu-
lated for all model combinations in the study region of Kenya
and Uganda using Eq. (1).

3.4 Analysis of spatially distributed soil loss estimates

The ensemble of 972 spatially distributed soil loss estimates
with a spatial resolution of 90 m was summarized in each grid
cell by employing descriptive statistical measures. In each
grid cell we calculated mean and median values to estimate
an average soil loss from the USLE model ensemble. The
range of the minimum and maximum soil loss A in a grid
cell indicates the variation of the ensemble simulations in a
grid cell (i.e., the disagreement between the model setups).

A common concept in the erosion literature is to relate soil
loss to soil formation rates and therefore classify the soil loss
as sustainable (tolerable) or non-sustainable (e.g., Blanco-
Canqui and Lal, 2008; Montgomery, 2007; Van-Camp et al.,
2004) or to group soil loss based on the severity of soil re-
moval (e.g., Zachar, 1982; FAO-PNUMA-UNESCO, 1980).
Literature values for tolerable levels of soil loss vary between
5 and 12 t ha−1 yr−1 on a global scale (Montgomery, 2007;
Blanco-Canqui and Lal, 2008; Zachar, 1982). Karamage
et al. (2017), Bamutaze (2015), Morgan (2009), and Lufafa
et al. (2003) used 10 t ha−1 yr−1 as a threshold value to clas-
sify tolerable soil loss for studies conducted in eastern Africa.
In this study low soil losses were classified by employing the
same threshold. However, no information on soil formation
was included, and thus the term tolerable is misleading. Con-
sequently a soil loss between 0 and 10 t ha−1 yr−1 is defined
as slight soil loss, as suggested by Fenta et al. (2020).

For soil loss levels larger than 10 t ha−1 yr−1 we im-
plemented the soil removal classification following FAO-
PNUMA-UNESCO (1980, implemented, e.g., in Hernando
and Romana, 2015, or Olivares et al., 2016), where a soil loss
between 10 and 50 t ha−1 yr−1 is considered to be moderate,
a soil loss between 50 and 200 t ha−1 yr−1 to be high, and
a soil loss larger than 200 t ha−1 yr−1 to be severe. In each
grid cell we classified the simulated soil losses from the 972
USLE model setups into the four defined soil loss classes and
calculated the frequencies for each soil loss class as follows:

Hydrol. Earth Syst. Sci., 24, 4463–4489, 2020 https://doi.org/10.5194/hess-24-4463-2020



C. Schürz et al.: A systematic assessment of uncertainties in large-scale soil loss estimation 4471

fi,m,n =

{
0 if Ai,m,n 6∈ [Aclass,lower;Aclass,upper),

1 if Ai,m,n ∈ [Aclass,lower;Aclass,upper),
(2)

fm,n =

∑N
i=1fi,m,n

N
, (3)

where fm,n is the frequency of models that calculated a
soil loss between the defined boundaries Aclass,lower and
Aclass,upper of the respective class in the grid cell (m,n) and
based on the N = 972 USLE model setups. A step function
assigns the probabilities pi,m,n = 1 or pi,m,n = 0 to a model
i if the soil loss Ai,m,n that was calculated with the model i

for the grid cell (m,n) is included or excluded from a class
interval.

3.5 Analysis of the USLE input factors

In the case of a simple model, such as the USLE, uncertain-
ties in the inputs can be analytically propagated through the
model to infer the uncertainties in the outputs (Beven and
Brazier, 2011). Thus, the sensitivity of the calculated soil loss
for the ranges of the input factors can be analyzed analyti-
cally. We assessed the importance of the USLE input factors
on the simulation of the soil loss in each grid cell by calculat-
ing the fraction between the range in soil loss that is caused
by an input factor Ij and the total range of A that results from
the entire model ensemble in that grid cell:

sj,m,n =
(max(Ij,m,n)−min(Ij,m,n)) ·

∏
k 6=j max(Ik,m,n)(∏

kmax(Ik,m,n)−
∏

kmin(Ik,m,n)
) , (4)

where sj,m,n is the sensitivity of the input factor Ij in the
grid cell (m,n), I is the set of the analyzed input factors R,
K , LS, and C, and k is the index of the respective input fac-
tor. The resulting sensitivity measure is normalized between
0 and 1, where a sensitivity sj,m,n = 1 means that the total
range of the calculated soil loss can result from varying the
input Ij and 0 means that this input shows no variation be-
tween its realizations in the grid cell (m,n). In each grid cell
the input factors are ranked based on their sensitivities and
visualized to get a spatial reference of the importance of the
model inputs.

3.6 Soil loss assessment at administrative levels and
comparison to other studies in Uganda and Kenya

We assessed the soil loss on a national level for Kenya and
Uganda as well as on an administrative levels for 27 adminis-
trative units in Uganda and Kenya. An aggregation of the cal-
culated soil losses to clearly defined spatial units allowed a
comparison of the USLE model ensemble results to previous
erosion studies in Kenya and Uganda that employed single
USLE model setups and evaluated the soil losses for these
spatial domains. On a national level we compared the USLE
model ensemble results to the results presented in Fenta et al.

(2020). For the comparison we employed the descriptive sta-
tistical measures that were computed spatially distributed
for the study area in Sect. 3.4. The spatially distributed soil
loss quantiles were aggregated in two different ways. First,
mean values for Uganda and Kenya were computed for the
spatially distributed median, minimum, and maximum soil
losses and compared to the mean soil losses in Fenta et al.
(2020). Second, the quantile soil losses were grouped into
soil loss levels based on a classification used in Fenta et al.
(2020) and area proportions were calculated for each soil loss
level. These area proportions were compared to the area pro-
portions of the soil loss levels reported in Fenta et al. (2020).

For all administrative units and all USLE model setups the
mean soil loss was calculated. The distribution of the mean
soil loss in each administrative unit was analyzed with de-
scriptive statistics. Employing Eq. (3) soil loss levels were
determined for all grid cells in the respective administrative
units and for all USLE model setups. The areas of each soil
loss class calculated from all USLE model setups per admin-
istrative unit were summed up to compute the average share
of a soil loss class for each administrative unit. Only admin-
istrative units located in the erosion-prone regions that are in-
dicated in Fig. 1 are analyzed in the main document and com-
pared to the soil losses on the administrative level presented
in Karamage et al. (2017). To provide a complete summary
of the soil losses on the administrative level for all counties
of Kenya and districts of Uganda, we refer to Sect. S5 and
Figs. S2 and S3.

3.7 Comparison of the soil loss estimates to in-field
assessments

To provide a reference for the USLE ensemble simulations
we used literature values of long-term mean annual soil
loss from in-field assessments. García-Ruiz et al. (2015)
compiled a comprehensive literature review for global soil
loss rates, where three sources provided values for five
sites within the study area of Kenya and Uganda. All three
sources, however, applied different methods to assess the soil
loss and cover a wide range of spatial domains. Sutherland
and Bryan (1990) estimated the soil loss from the 0.3 km2

Katiorin catchment located in the Lake Baringo drainage
area in Kenya based on an in-stream discharge and sus-
pended sediment sampling. Sutherland and Bryan (1990) es-
timated an average soil loss for the Katiorin catchment of
73 t ha−1 yr−1 with a range between 16 and 96 t ha−1 yr−1.
Kithiia (1997) reported results from soil loss monitorings in
tributaries of the Athi River basin conducted by the Kenyan
Ministry of Water Development. From the tributary sam-
pling sites in the Athi River basin we selected the 41 km2

Riara catchment with an average reported sediment load of
1474 t yr−1 (0.36 t ha−1 yr−1). Bamutaze (2010) preformed
an erosion plot experiment in the Sinje catchment at Mt.
Elgon in Uganda. Based on 2-year monitoring, Bamutaze
(2010) estimated a mean soil loss of 0.838 t ha−1 yr−1 with a
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range between 0.185 and 1.761 t ha−1 yr−1. De Meyer et al.
(2011) assessed the soil loss from 36 farm compounds in
the two villages Iguluibi and Waibale close to the northern
shore of Lake Victoria in Uganda. De Meyer et al. (2011)
assessed the soil loss by reconstructing the historic surface
level and calculating the lost soil volume. The estimations
range between 56 and 460 t ha−1 yr−1 in Iguluibi and 27 and
135 t ha−1 yr−1 in Waibale.

To compare the ensemble soil loss estimations in this study
with the literature values we calculated mean soil losses for
grid cells that cover the original study site locations. Statisti-
cal measures were aggregated for the calculated site averages
and plotted against the measured soil losses acquired from
the selected studies.

3.8 Used software

The entire calculation of the USLE model realizations, most
part of the input factor generation and the entire analysis of
the simulation results was performed in the R programming
environment (R Core Team, 2019). Spatial tasks and analyses
were performed using the spatial R packages raster (Hi-
jmans, 2019), sf (Pebesma, 2018), rgdal (Bivand et al.,
2019), and fasterize (Ross, 2018). Data handling with
SQLite databases was managed by interfacing with the
RSQLite (Müller et al., 2018) and dbplyr (Wickham
and Ruiz, 2019) packages. Data analyses employed R pack-
ages dplyr (Wickham et al., 2019b), forcats (Wick-
ham, 2019), lubridate (Grolemund and Wickham, 2011),
purrr (Henry and Wickham, 2019), tibble (Müller and
Wickham, 2019), and tidyr (Wickham and Henry, 2019).
Parallel computing to run some analyses were performed
with R packages foreach (Microsoft Corporation and We-
ston, 2017b), doSNOW (Microsoft Corporation and Weston,
2017a), and parallel (R Core Team, 2019). LS factor re-
alizations were generated with the LS module in SAGA GIS
(Conrad et al., 2015). Spatial maps were prepared in ArcGIS
(ESRI, 2012) and in the R environment ggplot2 (Wickham
et al., 2019a) was used for all other figures.

4 Results

4.1 Analysis of the soil loss simulated with the USLE
model ensemble

Overall, the calculated soil losses by our models follow the
spatial pattern indicated by the potential erosion risk from
topography that was presented in Fig. 1a. Both the ensem-
ble mean (Fig. 3a) and the median soil loss (Fig. 3b) show
increased soil losses where moderate or high erosion risks
were identified based on the slope thresholds suggested by
Ebisemiju (1988). Although the soil loss levels shown in
Fig. 3 differ from the soil loss levels that were used by Fenta
et al. (2020), the spatial patterns of soil loss by water reported
in Fenta et al. (2020) strongly agree with the patterns of the

mean and median soil losses shown in Fig. 3a and b. Mean
soil losses of larger than 50 t ha−1 yr−1 were found in the
southwestern corner of Uganda around Lake Bunyoni and
along the Rift Valley in the northwest of Kenya. Excessive
soil losses that exceed 200 t ha−1 yr−1 were calculated for
the steep slopes around the Ruwenzori Mountains, Mt. El-
gon, and Mt. Kenya with ensemble mean soil losses of up to
1865, 1663, and 1438 t ha−1 yr−1, respectively. Large varia-
tions in the calculated soil losses in each grid cell in combina-
tion with highly positively skewed distributions are two rea-
sons why the calculated mean soil losses are generally larger
than the median values.

The strong discrepancy between the USLE model setups
is evident from the comparison of the minimum calculated
soil losses (Fig. 3c) and the maximum soil losses (Fig. 3d)
in each grid cell. While combinations of USLE model input
factors were present in the model ensemble that calculated
soil losses below 10 t ha−1 yr−1 for 99 % of the study region
and soil losses below 100 t ha−1 yr−1 for the entire study re-
gion, other input factor combinations resulted in soil losses
above 200 t ha−1 yr−1 for over 45 % of the study region and
substantial soil losses of at least 50 t ha−1 yr−1 for over 85 %
of the study region.

Figure 4 provides a different perspective of the same en-
semble simulations. Each grid cell shows the frequency for
the defined soil loss levels slight, moderate, high, and severe
(panels a–d, respectively) that were predicted by the model
members of the USLE model ensemble. For large areas in
the Northern Region of Uganda, the south of lakes Kyoga
and Albert in Uganda, and the Northeast Province and the
northern parts of the Eastern Province in Kenya, over 90 %
(and in many cases all) of the USLE model setups calculated
slight soil losses. In the topographically heterogeneous re-
gions of the Uganda Plateau, the southwest of Uganda, and
the Gregory Rift in Kenya, a substantial share of up to 40 %
of all model setups calculated a slight soil, and the majority
of model setups resulted in moderate soil losses. Only along
the steep mountain ridges in the Rift Valley and the mountain
massifs of Mt. Kenya, Mt. Elgon, the Ruwenzori Mountains,
and the region around Lake Bunyoni, a considerable number
of the USLE model setups resulted in high and severe soil
losses (yellow and local red regions in Fig. 4 c and d).

Figure 5 combines the soil loss classification and the
(un)certainties in the prediction of soil loss levels based on
the USLE model ensemble into one representation. The dom-
inant soil loss levels that a majority of model setups predicted
for a grid cell are shown in green (slight), blue (moderate),
orange (high), and purple (severe). The lightness of the col-
ors indicates the percentage of models that calculated a soil
loss within the respective soil loss classes. To highlight the
complex patterns that result from the ensemble soil loss esti-
mations in topographically heterogeneous regions, we show
the Mt. Elgon (Fig. 5b), Lake Bunyoni (Fig. 5c), and Mt.
Kenya (Fig. 5d) regions in detail.
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Figure 3. Descriptive statistics calculated for each grid cell based on the 972 USLE model realizations. Panels (a) to (d) show the mean,
median, minimum, and maximum long-term annual soil erosion in each grid cell.

The strong agreement between the USLE model setups
to calculate slight soil loss for the generally flat regions of
Kenya and Uganda (shown in purple in Fig. 4a) is visible
in dark green in Fig. 5a. The soil loss level patterns in the
erosion-prone areas of Mt. Elgon, Lake Bunyoni, and Mt.
Kenya clearly follow the topographic patterns of these re-
gions, with high and severe soil loss levels along the moun-
tain ridges and slight to moderate soil losses in the valley
bottoms. The agreement of the USLE model setups to predict
the same soil loss level in such heterogeneous topographies is
generally lower, showing percentages of 25 % to 75 %. Only
along the very steep slopes of the mountain massifs (and par-
ticularly at the top of Mt. Kenya with its steep slopes and low
vegetation cover) did a large majority of the USLE model
ensemble predict a severe soil loss (center of Fig. 5d). Al-
though the entire Mt. Elgon and Mt. Kenya massifs show
moderate to steep slopes (see Fig. 1b), a large majority of the
USLE model ensemble (> 75 %) calculated slight soil losses
for the densely forested northern part of Mt. Elgon and the
forest belt around Mt. Kenya.

4.2 Analysis of the USLE input factors

To analyze and compare the individual realizations for the
USLE inputs summary statistics were calculated for all grid
cells of the study area. A detailed summary for all inputs is
presented in Sect. S2. The median values of the R factor real-
izations range between 1581 and 6851 MJ mm ha−1 h−1 yr−1

where the method of Nakil (2014) shows the lowest value
and the method of Roose (1975) the largest median value.
All other methods show comparable median values with a
range of 2243–3652 MJ mm ha−1 h−1 yr−1. The maximum
R values show, however, a wide range between the imple-
mented methods, where RNakil again shows the lowest value
(6875 MJ mm ha−1 h−1 yr−1) and RTMPA a 4.5 times larger
value with 31068 MJ mm ha−1 h−1 yr−1. The maximum val-
ues are however very local and the values of the third quantile
of most of the R values for the different methods are within a
narrow range of 3606–5463 MJ mm ha−1 h−1 yr−1. Summa-
rized for the entire study area the implemented methods do
not show any clear differences between the different types of
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Figure 4. Frequency of USLE model ensemble members to predict one of the four soil loss classes slight (0–10 t ha−1 yr−1) (a), moderate
(10–50 t ha−1 yr−1) (b), high (50–200 t ha−1 yr−1) (c), and severe (> 200 t ha−1 yr−1) (d), based on the soil loss classification following
FAO-PNUMA-UNESCO (1980). The pixel color illustrates the percentage of models from the model ensemble that calculated a soil loss in
between the respective class boundaries.

methods that were implemented. The quantile R values for
RGloREDa (from high temporal resolution precipitation data),
for example, greatly compare to the quantiles of RFenta,MFI
that consider the rainfall seasonality or the method of Moore
(1979), which is based on long-term annual rainfall.

For the K factor realizations, in contrast, a clear differ-
ence can be observed between the implemented methods.
While the K factor realizations that employed the methods
of Wischmeier and Smith (1987) (as implemented in Pana-
gos et al., 2015c) and Williams (1995) resulted in compa-
rable values, with 0.005–0.038 t h MJ−1 mm−1 and 0.011–
0.039 t h MJ−1 mm−1, respectively, when applied to the Soil-
Grids250m data set, the method of Torri results in a substan-
tially larger range (0.00–0.109 t h MJ−1 mm−1). Overall, all
quantiles for the K values that employ the method of Torri
are approximately 4 times larger than the respective quan-
tiles for the other two methods.

Similar findings are visible for the realizations for the
LS factor. The median and first and third quantiles for the
method of Desmet and Govers (1996) resulted in substan-
tially larger LS values compared to the methods of Böhner
and Selige (2006) and Moore et al. (1991), with median val-
ues of 0.334, 0.074, and 0.013, respectively, when imple-
mented with the SRTM v4.1 90m DEM. The methods of
Böhner and Selige (2006) and Moore et al. (1991) resulted,
however, in substantially larger maximum values (70.63 and
91.48) compared to the method of Desmet and Govers (1996)
(19.31).

Overall, the summary statistics for the C factor values
show clear differences between the methods that employed
the MODIS NDVI, the ESA CCI LC, and the MODIS LC,
whereas the impact of the implemented agricultural statis-
tics, or the temporal aggregation of the NDVI on the sum-
mary statistics of the C factor is low. The median (0.214 and
0.175), the third quantile (0.402 and 0.355) and the maxi-
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Figure 5. Dominant soil loss levels. The color shows the soil loss
level predicted by the majority of USLE model setups. The light-
ness of the color indicates the percentage of models that predicted
the dominant soil loss level. Panel (a) shows the study area of
Kenya and Uganda. Panels (b), (c), and (d) show erosion-prone ar-
eas around Mt. Elgon, Lake Bunyoni, and Mt. Kenya, respectively.

mum value (1) of the C factor realizations that employed
the NDVI are approximately twice as large as the respective
quantiles for the methods that implemented the ESA CCI LC
(median= 0.080, q.75 = 0.15 and 0.232, maximum= 0.5),
and the MODIS LC (median= 0.15, q.75 = 0.15 and 0.232,
maximum= 0.5) land cover products. The first quantiles of
the C factor realizations that employed the NDVI (0.059
and 0.472) show however 2 and 3 times smaller values than
the first quantiles for the realizations that implemented the

Figure 6. Most important USLE model input factors for the calcu-
lation of the soil loss A. The colors blue, yellow, pink, and green
indicate whether the input factors R, K , LS, or C caused the largest
range in the calculation of A in a grid cell. Panel (a) shows the study
area of Kenya and Uganda. Panels (b), (c), and (d) show critical ero-
sion hotspots around Mt. Elgon, Lake Bunyoni, and Mt. Kenya, re-
spectively. The insets A to D indicate the extents for which the input
factor realizations for R, K , LS, and C were analyzed in Fig. 7.

ESA CCI LC (0.080) and the realizations that implemented
MODIS LC (0.150), respectively.

The range of the calculated soil loss A in a grid cell is the
direct result of the different values stemming from the vari-
ous input factor realizations. A large range in the values of an
input factor in a grid cell has a greater impact on the result-
ing uncertainties of the calculated soil loss compared to input
factors where the different realizations show similar values.
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The analysis of the strongest impact of input factors on the
uncertainties of A revealed clear spatial patterns at different
spatial scales (Fig. 6a). Over the whole domain, the input
factors C, K , and LS were identified as the most important
inputs for the uncertainties in soil loss in 33.89 %, 31.35 %,
and 28.45 % of the total study area, respectively. The R fac-
tor was only locally identified as the most relevant input fac-
tor in 6.31 % of the total study area. The C factor and the
K factors show large aggregated patterns in both countries.
The importance of the LS factor, however, generally shows
small structured, heterogeneous patterns scattered over the
entire study region. Exceptions are visible in larger depres-
sions along the Gregory Rift in zones where the slope is close
to 0. Lake Magadi (100 km2), an alkine lake located in an en-
dorheic basin in the Rift Valley south of Nairobi, or a larger
region in the east of Lake Turkana are the most distinct exam-
ples for large patterns of LS. Clusters of high importance of
the R factor were only identified at high altitudes with gen-
erally large precipitation sums but also in very dry regions in
northern Kenya, where the precipitation sums are close to 0.

Fig. 6b–d provide more detail of the spatial patterns of the
input factors and their importance for the calculation of the
soil loss in regions around Mt. Elgon, Lake Bunyoni, and
Mt. Kenya (that were also analyzed in Fig 5). In contrast to
Fig. 6a, finer-scale characteristics of input factor importance
become visible. The patterns around the two mountains Mt.
Elgon and Mt. Kenya show similarities. Although the R fac-
tor is spatially highly concentrated at the top of Mt. Kenya
and only slightly visible to the east of Mt. Elgon, both regions
show a high importance of the R factor for the calculation of
A at high altitudes. High-altitude areas are mostly character-
ized by a sparse observation network for precipitation. R is
highly correlated with some, in our case spatially distributed,
rainfall estimates. High uncertainties in rainfall records but
also in the modeling chain to derive remotely sensed precip-
itation explain these patterns. Moving down from the sum-
mits, belts of a high importance of the C and K factors are
visible. These distinct patterns result from the vertical bands
of changes in vegetation in such mountainous regions and the
impact of sparse and dense natural vegetation and agricul-
tural land uses on the calculation of the C factor. The Lake
Bunyoni region shows more heterogeneous patterns for the
most important input factors. In the north, the calculation of
A is affected by the C factor in large regions and the LS fac-
tor on very small-scale patterns. In the east and west of Lake
Bunyoni, patterns for all input factors are visible that follow
the terrain topography. The LS and K factor are the most rel-
evant input factors for the calculation of A along the ridge
lines, while the C factor becomes more important closer to
the valley bottoms.

The importance of an input factor for the calculation of A

in Fig. 6 results from the differences in the estimated input
factor values for the individual input factor realizations. In
addition to the general analysis of the quantiles of the input
factor realizations for the entire study region, we analyzed

Figure 7. Variability between the realizations of the most impor-
tant USLE model input factors. Cases (a) to (d) (delineated in Fig
6) exemplify the differences in the distributions of the input fac-
tors R, K , LS, and C, respectively. Cases (a) to (d) include the
values of input factor realizations for grid cells, in which the re-
spective input factor was the most sensitive one and the majority of
the models of the model ensemble predicted high to severe soil loss.
Panel (a) analyzes the R factor realizations at the top of Mt. Kenya,
panel (b) shows the differences in the K factor realizations in the
belt around Mt. Kenya, and panels (c) and (d) analyze the LS and C

factors in the hilly topography of the Lake Bunyoni region.

the input factor realizations of R, K , LS, and K in the four
regions A to D (indicated in Fig. 6) with greater detail in
Fig. 7. For the analysis only grid cells in the defined extents
A to D were selected and only (i) where the respective input
factor was the most relevant one and (ii) where the calculated
soil loss was classified as high or severe.

Case A (Fig. 7a) shows the differences of R factor realiza-
tions at the top of Mt. Kenya. In this specific case (and other
locations with high altitudes, data not shown), a difference
between the rainfall erosivity products derived from tem-
porally high-resolution rainfall (GloREDa, Panagos et al.,
2017, and TMPA, Vrieling et al., 2014) and the distribu-
tions of the R values obtained from long-term annual pre-
cipitation is visible. While both GloREDa and TMPA show
low R values between 1869 and 3486 MJ mm ha−1 h−1 yr−1

and 3000 and 4602 MJ mm ha−1 h−1 yr−1, respectively, the
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methods of Roose (1975), Moore (1979), Renard and
Freimund (1994), Lo et al. (1985), and Fenta et al.
(2017) (employing Pannual) resulted in a wide range of
R values between 4821 MJ mm ha−1 h−1 yr−1 (minimum
value using the method of Fenta et al., 2017) and
16207 MJ mm ha−1 h−1 yr−1 (maximum value using the
method of Roose, 1975). Hence, a strong impact of the
selected equation to calculate R from long-term annual
precipitation is observable. Only the methods of Nakil
(2014) and the method of Fenta et al. (2017) (that employs
the MFI ) showed low R values in a comparable range
to GloREDa and TMPA, with ranges of 2590–3757 and
3828–5046 MJ mm ha−1 h−1 yr−1, respectively. The method
of Nakil (2014), however, resulted in very low R values over-
all (also where GloREDa and TMPA showed significantly
larger R values), as outlined in the analysis of the entire study
area (see also Sect. S2 in the Supplement).

Case B (Fig. 7b) compares the K factor realizations in the
southeastern belt around Mt. Kenya. The six realizations of
K show the same pattern as it is observable for the entire
study area. The methods that were employed to calculate K

strongly affect the calculation of K , while the differences be-
tween the two soil products that were used are rather insignif-
icant. In this specific case in Fig. 7b, the method of Torri
et al. (1997) resulted in by far the largest K values between
0.069 t h MJ−1 mm−1 and 0.088 t h MJ−1 mm−1. On average
these values are 3 times larger than the ones calculated
with the method of Williams (1995) (with a range between
0.021 t h MJ−1 mm−1 and 0.031 t h MJ−1 mm−1) and up to
13 times larger than the values calculated with the method
of Wischmeier and Smith (1987) when using the SoilGrids
data set (with a range between 0.011 t h MJ−1 mm−1 and
0.028 t h MJ−1 mm−1).

Case C (Fig. 7c) shows the differences between the LS
factor realizations along the ridges of the hills around Lake
Bunyoni. Eventually, only the SRTM 90m DEM was used
as input data and is shown in Fig. 7. Panel c compares the
three methods of Moore et al. (1991), Desmet and Govers
(1996), and Böhner and Selige (2006). While the methods
of Moore et al. (1991) and Böhner and Selige (2006) re-
sulted in comparable values with ranges between 1.47 and
3.90 and between 1.65 and 5.03, respectively, the method of
Desmet and Govers (1996) resulted in 5 times larger values
with a range between 8.22 and 18.79. In this specific case
the method of Desmet and Govers (1996) resulted in values
close to the overall maximum value that was calculated for
the study region (19.31). The methods of Moore et al. (1991)
and Böhner and Selige (2006) resulted in lower values, al-
though their maxima for the entire study region exceed the
maximum value that results from the method of Desmet and
Govers (1996) by a factor of 3–4.

Case D (Fig. 7d) compares the implemented C factor re-
alizations for the same extent around Lake Bunyoni as for
case C. In general two patterns are observable. A strong dif-
ference between the realizations that employ the NDVI as in-

put and the C factor realization that were derived from land
cover products and literature C factor values is visible. Fur-
ther, using the gridded crop distribution product of Monfreda
et al. (2008) to derive spatially distributed mean C factor val-
ues from the literature resulted in larger values compared to
the implementation of agricultural census data on the admin-
istrative unit level for Kenya and Uganda. The impact of the
used land cover product (ESA LC or MODIS LC) are low.
Both realizations based on NDVI (NDVI, annual and NDVI,
rainy season) show mean C factor values of 0.04 and 0.03,
respectively. The C values for the realizations that employed
crop data from Monfreda et al. (2008) and agricultural cen-
sus data were on average 6 times and 4.5 times larger with
mean values of 0.21 and 0.15, respectively. The results for
this specific case contrast with the general analysis of the C

factor values for the entire study region, where C factor val-
ues of the realizations that implemented the NDVI are sub-
stantially larger compared to the methods that employed land
cover products.

4.3 Soil loss assessment at administrative levels and
comparison to other studies

On a national level the results reported in Fenta et al.
(2020) allow a comparison to ensemble soil loss estimates
of this study. Fenta et al. (2020) calculated mean soil losses
of 7.3 and 6.7 t ha−1 yr−1 for Uganda and Kenya, respec-
tively. While the USLE ensemble median soil losses show
comparable values of 7.7 and 7.3 t ha−1 yr−1 on average
for Uganda and Kenya, the minimum and maximum av-
erage soil losses for the two countries that result from
the USLE model ensemble show extreme ranges (Uganda:
0.3–301.2 t ha−1 yr−1, Kenya: 0.5–207 t ha−1 yr−1). Figure 8
compares the area proportions for Uganda and Kenya that
were shown in Fenta et al. (2020) to the summarized results
from the USLE model ensemble. For a comparison, the en-
semble soil loss quantiles in each grid cell were classified
based on the soil loss levels that were used in Fenta et al.
(2020), and their area proportions were summarized. Over-
all, the area proportions of the median soil losses agree with
the findings of Fenta et al. (2020). It is, however, evident that
the area proportions of the soil loss levels that were calcu-
lated for the lower and upper quantiles strongly differ from
the proportions presented in Fenta et al. (2020). While the
lowest two quantiles of the USLE ensemble calculated a very
slight soil loss for over 90 % of both countries, the maximum
soil losses calculated in each grid cell would result in very
high soil loss for almost 70 % of the area in Uganda and over
40 % of the area in Kenya (compared to the 4 % and 5 %
shown in Fenta et al. (2020) and the 3 % shown by the en-
semble median).

The selected administrative units in Uganda and Kenya are
located in erosion-prone areas (shown in Figs. 3 and 4). Al-
though averaging the soil loss for the domain of an admin-
istrative unit reduces the impact of areas with excessive soil
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Figure 8. Comparison of the proportions of the areas in Kenya and Uganda that are summarized with different soil loss levels. The comparison
shows the results reported in Fenta et al. (2020) to the results of the 972 USLE model realizations. The analyzed quantiles represent the soil
loss quantiles in each grid cell that result from the USLE model ensemble. For the comparison the soil loss levels applied in Fenta et al. (2020)
were used.

loss, the median values of mean soil loss for the selected ad-
ministrative units that result from the USLE model ensemble
result in a moderate (blue) soil loss in 22 of the 27 adminis-
trative units. Four administrative units even show a high (yel-
low) mean soil loss, while only one administrative unit re-
sulted in a slight (green) soil loss (Fig. 9a). Particularly large
mean soil losses were found for the administrative units Ka-
bale and Kisoro in the Lake Bunyoni region and the adminis-
trative units Kasese and Bududa on the slopes of the Ruwen-
zori Mountains and Mt. Elgon, respectively. The data points
shown as colored squares in Fig. 9a provide a reference to the
soil loss assessment performed by Karamage et al. (2017) on
district level in Uganda. As we included the realizations of
the USLE input factors developed in Karamage et al. (2017)
in the present assessment, the calculated soil loss from Kara-
mage et al. (2017) is a member of the USLE model ensemble.
In 9 of the 16 districts, the soil losses calculated by Karamage
et al. (2017) are lower than the 25 % quantile of soil losses
that resulted from the USLE model ensemble. Only for a few
districts, such as Kasese, Bundibugyo, Nebbi, or Kaabong,
did the soil losses calculated by Karamage et al. (2017) and
the ensemble means show comparable values.

For each administrative unit, the mean soil losses that re-
sulted from the individual USLE model ensemble members
show wide spreads (indicated by box plots and light grey
dots in Fig. 9a). The spreads were particularly large in the
administrative units with overall high soil losses. In all ad-
ministrative units the mean soil loss that resulted from the
individual USLE model setups are scattered over several soil
loss classes (class boundaries indicated by dashed lines in

Fig. 9a). Figure 9b summarizes the numbers of model se-
tups that predicted one of the four soil loss classes for each
administrative unit. Although the median soil loss class for
the majority of the administrative units is moderate on av-
erage 48 % (462 out of 972 models; with a range of 26.5 %
to 61.2 % between the 27 administrative units) of the mod-
els from the USLE model ensemble predicted moderate soil
loss, while all other model setups predicted one of the other
four soil loss classes.

Figure 9c relates the soil loss classification in the selected
administrative units to the average shares of the soil loss
classes in the administrative unit areas. While on average
only 20 % of the models from the USLE model ensemble
predicted a slight soil loss almost 54 % of the areas of the
administrative units show on average a slight soil loss. Ar-
eas with high and severe soil loss share only small areas in
the administrative units with average fractions of 14.9 % and
7.1 %, respectively. However, these areas have a strong im-
pact on the mean soil loss in an administrative unit.

4.4 Comparison of the soil loss estimates to in-field
assessments

While the total ranges of the soil loss estimates calculated for
the reference sites from the USLE model ensemble cover the
reference soil losses from literature values in all five cases in
Fig. 10 the interquartile ranges for the USLE model ensemble
can strongly differ from the values that were estimated from
in-field experiments.

Cases I and II in Fig. 10 compare average soil losses for
the domains of the villages of Iguluibi and Waibale to soil
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Figure 9. Mean soil loss in selected erosion-prone administrative units of Uganda and Kenya. Panel (a) shows the mean soil loss from
all 972 USLE realizations in the selected administrative units with grey dots and aggregated as boxplots. The colors indicate whether the
median soil loss in an administrative unit is slight (green), moderate (blue), high (yellow), or severe (purple). For comparison the results from
Karamage et al. (2017) are plotted as colored squares. Panel (b) shows the distributions of soil loss levels that were predicted by the USLE
model realizations for the selected administrative units. Panel (c) shows the average shares of soil loss classes for the domains of the selected
administrative units.

loss assessments of small-scale farm compounds. In both
cases the soil losses assessed in the field exceed the interquar-
tile ranges that result from the USLE model ensemble, with
ranges of 56 to 460 and 6.5 to 40.4 t ha−1 yr−1 in Iguluibi and
27 to 135 and 2.8 to 10.2 t ha−1 yr−1 in Waibale.

For the Sinje test case (case III in Fig. 10) in the Man-
afwa district in Uganda Bamutaze (2010) resulted in very
low soil losses between 0.185 and 1.761 t ha−1 yr−1. Gen-
erally the districts along Mt. Elgon are known to be erosion-
prone. On average the USLE model ensemble predicted high
soil loss for the location of the Sinje test catchment with a
median soil loss 97.29 t ha−1 yr−1 and an interquartile range
between 3.7 and 228 t ha−1 yr−1. Although the range of cal-
culated soil losses is generally large, only 11 % of models
from the USLE model ensemble predict soil losses that are
in the range of the values reported by Bamutaze (2010).

The reported soil losses for the Katiorin catchment are
comparable to the soil loss estimations for the catchments
extent that resulted from the USLE model ensembles (case
IV in Fig. 10). Sutherland and Bryan (1990) report a range

of soil loss between 16 and 96 t ha−1 yr−1 for the Katiorin
catchment, and 47 % of the USLE model setups predict a
soil loss in the same range. Almost 44 %, however, result in
soil losses lower than 16 t ha−1 yr−1.

Kithiia (1997) reports a very low soil loss of
0.36 t ha−1 yr−1 for the Riara basin. All USLE model
realizations predict larger soil losses for the domain of Riara,
with a minimum value of 1.4 t ha−1 yr−1 and an interquartile
range of 6.3 to 27.4 t ha−1 yr−1.

5 Discussion

With this study we illustrated how strongly the estimated
soil loss magnitudes can vary, simply due to the choice of
the methods and data that are implemented to calculate the
USLE input factors. The statistical analysis of the generated
USLE model ensemble (Fig. 3) showed that ranges of one
or two magnitudes for the estimated soil loss were possi-
ble. These large ranges ultimately resulted from the differ-
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Figure 10. Comparison of soil loss simulations from the USLE
model ensemble to in-field soil loss assessments acquired from se-
lected studies. The reference soil loss values are shown with red
squares for sites Iguluibi and Waibale (De Meyer et al., 2011), Sinje
(Bamutaze, 2010), Katiorin (Sutherland and Bryan, 1990), and Ri-
ara (Kithiia, 1997) in panel (a). The soil loss simulations for the
reference extents from all 972 USLE model realizations are shown
as grey circles. Corresponding boxplots show summary statistics for
the model ensembles in panel (a). Panel (b) summarizes the num-
bers of models that predicted the soi loss levels slight (green), mod-
erate (blue), high (orange), and severe (purple) for the reference
sites.

ences in the individual realizations of the USLE input factors
(some realizations were over a magnitude larger than others
in Fig. 7 and Tables S11–S14). These differences in the in-
puts propagate through the USLE equation by multiplication
(Sonneveld and Nearing, 2003). The large uncertainties in the
estimation of soil loss that result from such an ensemble ap-
proach but also the effort that has to be put into such an anal-
ysis raise immanent questions that will be discussed in the
following: (i) what are the benefits of such an ensemble soil
loss assessment and what can we learn from a comparison to
single model soil loss studies? (ii) Can we identify specific
realizations of the input factors and USLE model combina-
tions as implausible, exclude them from the model ensem-
ble, and eventually reduce the uncertainties in the ensemble
model predictions? (iii) What can we delineate from the im-
portance of USLE inputs on the estimation of soil loss and
how do these findings compare to other studies? (iv) Are in-
field data that are potentially available from monitoring stud-
ies a valid reference for the evaluation of large-scale USLE
soil loss assessments?

5.1 Ensemble soil loss modeling – how can we benefit
from the collective?

Although the calculated magnitudes and the ranges in soil
loss that result from the model ensemble were extreme for
some locations, the ensemble modeling approach can provide
essential information on the overall simulation uncertainties
that are simply not available from single model implemen-
tations. The analyses illustrated in Fig. 5 exemplify how we
can utilize the information provided be the USLE model en-
semble to qualitatively evaluate the erosion risk for a specific
location. Such a visualization can greatly support decision

making as it provides in addition to the soil loss level infor-
mation whether the majority of the USLE model ensemble
predicted that specific soil loss level, or whether the predic-
tion is highly uncertain. In the specific example in Fig. 5 low
soil loss levels were frequently classified by a large major-
ity of the USLE ensemble, while in complex terrain and for
more severe soil loss levels a stronger disagreement between
the USLE ensemble members is visible. In such cases, how-
ever, the combination with summary statistics as illustrated
in allow an evaluation of the erosion risk as well as the un-
certainties in the prediction.

The comparison to the results presented in Fenta et al.
(2020) and Karamage et al. (2017) greatly exemplifies the
issues that may arise from a single USLE model soil loss as-
sessment. While the results presented in Fenta et al. (2020)
show a good comparison to the ensemble median, the results
of Karamage et al. (2017) are substantially lower than the en-
semble predictions. These circumstances can be explained to
a large extent due to the selected methods that were imple-
mented to calculate the USLE input factors in the two stud-
ies. Fenta et al. (2020) employed for example the method
of Panagos et al. (2015c) to calculate the C factor, which
was found to be less sensitive to extremely low C values
in densely vegetated areas compared to the method of Van
der Knijff et al. (2000) (see Fig. 7d). The method of Fenta
et al. (2017) that was used to calculate the R factor in Fenta
et al. (2020) resulted in an R factor realization that was in
the medium range in this study. As a consequence, the over-
all soil loss estimations also compared well to the ensemble
median. Karamage et al. (2017), in contrast, employed the
methods of Lo et al. (1985) to compute R and the method
of Van der Knijff et al. (2000) to calculate C. Both methods
were found to be on the lower ends of the spectrum when
compared to the other methods in this study (particularly for
the C factor in the densely vegetated regions of Uganda).
In addition, Karamage et al. (2017) implemented a global P

factor value that further reduced the soil loss estimates. As a
consequence, the calculated soil loss estimates were low in
general. While the ensemble approach allows us to compare
each model combination to all other combinations and there-
fore provides a reference point for the implementation of a
specific USLE input combination, a single model approach
simply cannot provide such information.

5.2 USLE input realizations – ranges, plausibility, and
their comparison to other studies

The analysis and comparison of the USLE input realiza-
tions revealed several systematic patterns in their summary
statistics calculated for the entire study area but also in the
four specific cases that were presented in Fig. 7. Some of
the patterns in the differences between specific realizations
that were observed in the specific cases agreed with the pat-
terns for the entire study domain, while others showed con-
tradicting results. The systematic differences in the K factor
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realizations for instance were found in the specific case in
Fig. 7b, while cases a and d for instance showed opposite be-
haviors of the realizations of R and C for the smaller regions.
Overall, the sets of realizations for each input resulted in
wide ranges of values that eventually resulted in large ranges
of the calculated soil loss. Thus, it is worth to put the input
factor realizations into a reference to other studies. In any
case, we have to keep however in mind that a comparison to
other studies does not per se determine specific realizations
to be more or less plausible, as other large-scale soil erosion
studies face the same issues in terms of a model validation
(see Sect. 5.4).

Locally the calculated R factor realizations showed values
of large maximum values, where the largest R values were
found for the realizations RTMPA, RRenard, and RRoose with
maxima of 31068, 25755, and 22741 MJ mm ha−1 h−1 yr−1,
respectively. The third quantiles of all methods range, how-
ever, between 2046 and 9636 MJ mm ha−1 h−1 yr−1. Other
large-scale studies in eastern Africa and on a global scale
also report wide ranges in the R values. In an assessment
for eastern Africa, Moore (1979) calculated rainfall erosivi-
ties of up to 10900 MJ mm ha−1 h−1 yr−1 for the Mt. Elgon
region. Fenta et al. (2017) found high values for R of >

7000 MJ mm ha−1 h−1 yr−1 for the northwestern Ethiopian
highlands, the area around Mt. Kilimanjaro, and the west-
ern region around Lake Victoria in Uganda. Fenta et al.
(2017) found these results to be in line with the findings
in Vrieling et al. (2010). Karamage et al. (2017) calculated
a range of 1674–6358 MJ mm ha−1 h−1 yr−1 for Uganda.
For Europe Panagos et al. (2015a) found a range for R

of 51.4–6228.7 MJ mm ha−1 h−1 yr−1. In a global soil loss
assessment Naipal et al. (2015) calculated values for R

that exceeded magnitudes of 1× 105 MJ mm ha−1 h−1 yr−1.
Although Naipal et al. (2015) emphasize that such large
values are unrealistic, they stress that erosivities of over
20000 MJ mm ha−1 h−1 yr−1 can be observed in the tropics,
which is also reported in Panagos et al. (2017). The excessive
R values that are shown locally by a few of the implemented
realizations of R can be questioned. Overall, however, the
ranges of the individual R realizations are in line with the
results reported in other studies.

In the specific case presented in Fig. 7b the K values
that were calculated with the method of Torri et al. (1997)
showed maximum values of 0.088 t h MJ−1 mm−1. For the
entire study region values larger than 0.1 t h MJ−1 mm−1

were found. Depending on the input data set (Soilgrids250m
or GSDE), the methods of Wischmeier and Smith (1987) and
Williams (1995) resulted in maximum values of 0.038 and
0.039 t h MJ−1 mm−1 and 0.055 and 0.052 t h MJ−1 mm−1,
respectively. Ranges of K factor values that are shown in
other studies show comparable values to the ranges that re-
sulted from the methods of Wischmeier and Smith (1987)
and Williams (1995). The implementation of the method
of Torri et al. (1997) exceeds the ranges shown in other
studies. Karamage et al. (2017) calculated a range for K

of 0.015–0.029 t h MJ−1 mm−1 for Uganda. A similar range
is shown in Fenta et al. (2020) for eastern Africa, with
high erodibilities shown for the northwest of Lake Victo-
ria and the Rift Valley and the area around Lake Turkana
in Kenya. On a global scale, Borrelli et al. (2017) im-
plemented K values that range from values lower than <

0.01 t h MJ−1 mm−1 to values > 0.04 t h MJ−1 mm−1. For
Europe Panagos et al. (2014) found values for the soil erodi-
bility of up to 0.076 t h MJ−1 mm−1 for medium- to fine-
textured soils. Naipal et al. (2015) implemented values for
K of 0.08 t h MJ−1 mm−1 for highly erodible volcanic soils.
As a consequence, the implementation of the method of Torri
et al. (1997) as it was implemented in this study must be
questioned.

The majority of erosion studies implemented the method
of Desmet and Govers (1996) to calculate LS (e.g., Fenta
et al., 2020; Karamage et al., 2017; Borrelli et al., 2017;
Panagos et al., 2015e; Yang et al., 2003). As a consequence,
the ranges for LS that were found in these studies are in line
with the ranges for LS that we found with the implementation
of the method of Desmet and Govers (1996). Although the
methods of Moore et al. (1991) and Böhner and Selige (2006)
showed excessive maximum values, these were highly local.
As shown in the specific case in Fig. 7c, large variations in
the calculated soil loss were mostly found in locations where
the method of Desmet and Govers (1996) resulted in large
values for LS, while the other two methods resulted in low
values.

Overall, the C factor values reported in other studies are
comparable to the ranges of the C factor that were calcu-
lated in this study, since the majority of studies which we
reviewed implemented either the MODIS NDVI in combina-
tion with the method of Van der Knijff et al. (2000) to cal-
culate C or employed the method of Panagos et al. (2015c)
in their study regions. Thus studies that implemented the
NDVI (e.g., Karamage et al., 2017) resulted in ranges for
C factor of 0–1. Karamage et al. (2017), for example, found
values of C < 0.05 for large areas in the western and cen-
tral parts of Uganda, whereas only regions in the northeast
show values > 0.2. Fenta et al. (2020), who implemented the
method of Panagos et al. (2015c), calculated C values that
range between 0.135 and 0.33 in the southwest of Uganda
and north of Lake Victoria, whereas the forested regions in
central Uganda show values below 0.01. Both findings are
reflected in Fig. 7d, which documents the discrepancies be-
tween the two methods of Van der Knijff et al. (2000) and
Panagos et al. (2015c). While the method of Panagos et al.
(2015c) accounts for the agricultural areas in the southwest
of Uganda in the calculation of C, the method of Van der
Knijff et al. (2000) only accounts for the vegetation density
(by implementing the NDVI as a proxy).
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5.3 Input factor importance – findings and comparison
with other studies

Figure 6 illustrated the most dominant USLE input factor re-
alizations with respect to their impact on the uncertainties of
the calculated soil loss. The dominant input factors revealed
spatial patterns on different spatial scales. The patterns of the
most dominant inputs follow the patterns of the input data
that were employed to calculate the input factor realizations.
Thus, the shown patterns can support in identifying the input
data/method combination that introduced the largest share of
uncertainties in the calculation of soil loss locally. Larger pat-
terns were mainly visible for the input factors C and K , while
LS showed very small-scale patterns and R showed a lower
relevance for the prediction uncertainties in general. While
C is the most important input factor for large regions in the
densely vegetated part of Uganda and around Lake Victoria
in Kenya, K is most relevant in the drier regions of Kenya.
The R factor was mainly relevant at higher altitudes. The LS
factor realizations were most relevant in highly variable to-
pographies and very flat areas where the factor is close to
zero and numerical issues governed the results of the sensi-
tivity analysis.

Based on nine nationwide soil loss data sets, including
soil loss estimates for Europe (Panagos et al., 2015e), and
the original USLE data set for the USA, Estrada2017 per-
formed a global sensitivity analysis to identify the dominant
USLE input factors. In eight out of nine countrywide analy-
ses of the USLE input importance Estrada2017 identified the
C factor to be tho most relevant one for the soil loss estima-
tion. The second most relevant input shown in Estrada2017
was, however, the LS factor, which was identified as rele-
vant very locally in this study. In a study in the mountain-
ous Tongbai–Dabie region in China, Zhang et al. (2013) also
found that the LS factor was the most important input fac-
tor on small scales. Keyzer and Sonneveld (1997) performed
a meta-model study and analyzed the USLE model relation-
ship based on the original US data set that was employed in
the development of the USLE. Based on the data points that
were available from the US data set, Keyzer and Sonneveld
(1997) concluded that larger uncertainties in the soil loss es-
timation can be expected for high R and LS values as well
as for high and low values for the K factor, as the number of
samples was low for these regions in the USLE inputs in the
original USLE data set. Falk et al. (2010) employed Bayesian
melding to quantify the uncertainties in the soil loss estimates
and to identify the USLE inputs that contribute the most to
the uncertainties for a catchment in eastern Australia. In an
analysis of the spatial distribution of the input uncertainties
and the magnitudes and uncertainties in the calculated soil
losses, Falk et al. (2010) found a relationship between the
patterns of the S factor and the patterns that were observed
in the calculated soil loss.

All studies that were reviewed here differ in their method-
ological approaches and also come to different conclusions

with respect to the importance of the USLE inputs. Overall,
the analysis of the most important inputs can greatly sup-
port a soil loss assessment in order to identify the dominant
sources of uncertainties in the soil loss estimates. However,
the importance of the individual inputs seems to be very spe-
cific for the individual studies.

5.4 Model validation – are in-field data a valid
reference for USLE model evaluation?

Although large-scale meta-analysis studies exist that provide
soil loss data globally (García-Ruiz et al., 2015) or for spe-
cific regions in the world (e.g., for Africa, Vanmaercke et al.,
2014, or for Europe, Maetens et al., 2012), these studies of-
ten compile reported soil losses that result from a wide range
of study settings. The presented comparison of the USLE en-
semble soil losses to in-field erosion studies should therefore
not be seen as best practice but rather provides illustrative
examples of potential issues that can arise in the comparison
to in-field data.

Overall, we were not able to delineate a clear pattern from
the comparison of estimated soil losses to in-field soil loss
assessments within the study domain, as the selected refer-
ence studies had different specific scopes. While Sutherland
and Bryan (1990) and Kithiia (1997) monitored the accumu-
lated soil loss from river catchments, De Meyer et al. (2011)
assessed the soil loss on small scales and on sites that are
particularly erosion-prone. While most of the selected refer-
ence studies report low to moderate soil losses for their study
domains, De Meyer et al. (2011) report high to excessive soil
losses for several of the farm compounds they investigated.
The methodologies that were used for the soil loss assess-
ments strongly impacted the reported soil losses and result in
wide ranges of soil loss between the selected studies.

Aforementioned limitations of the temporal and spatial
representativeness of the reported soil losses from the se-
lected reference studies are likely to be present and may
have impacted the significance of the comparison to the soil
loss estimates. At larger scales, processes other than the ones
that are assessed by the USLE, such as deposition processes,
gully erosion, or bank collapses have to be considered in
the quantification of the soil loss (Govers, 2011). Boardman
(2006) stresses that long-term monitoring schemes and addi-
tional assessments of rills and gullies would be required to al-
low a comparison to soil loss estimations. Records from ero-
sion monitoring studies are, however, usually short (Evans,
2013; Govers, 2011). The reference studies of Sutherland and
Bryan (1990) and Bamutaze (2010) for instance only covered
monitoring periods of 1 and 2 years, respectively, and thus
are only snapshots in time that are difficult to compare with
long-term assessments.

Apart from the short monitoring periods that are often
available from reference studies, it is likely that the (remote-
sensing) data that were employed to calculate the USLE in-
put factors and to assess the soil loss do not reflect the con-
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ditions that were present during the monitoring period in a
study region, simply because the monitoring period and the
period for which input data are available do not overlap. Soil
cover by vegetation perfectly illustrates the issue. Monitor-
ing data can date back several decades (e.g., Sutherland and
Bryan, 1990, in our case). On large scales the vegetation
cover is often estimated by employing remote-sensing satel-
lite data that can be more recent than monitoring data. In par-
ticular, in eastern Africa deforestation has affected the land
cover over the past decades, with reported decreases in the
forest biomass of up to 26 % in Uganda (Jagger and Kittner,
2017) or forest clearances in protected forests in the Mt. El-
gon region of 33 % (Petursson et al., 2013). In such a case, a
C factor that was calculated with recent remote-sensing data
would fail to reflect the condition of the vegetation during the
monitoring period.

Although the soil losses reported in De Meyer et al. (2011)
are based on cumulative soil losses in farm compounds over
periods of 15 to 20 years, the spatial domains of the farm
compounds that were analyzed do not properly reflect the
spatial resolution of the grid on which the soil loss assess-
ment with the USLE was conducted. Other reference stud-
ies, such as Sutherland and Bryan (1990) or Kithiia (1997),
represent the average soil loss at the catchment scale. One
could assume that the spatial scale of such studies better
agrees with the spatial scale of a large-scale soil loss as-
sessment with the USLE. These reported loads are affected
by processes, such as deposition, gully erosion, land sliding,
or bank erosion that superimpose rill and inter-rill erosion
(Govers, 2011). Boardman (2006) further highlights that the
in-stream sediment delivery ratios (SDRs) are a function of
time and scale. Boardman (2006) compares the differences
in the SDR of the Yellow River and British rivers that differ
by a factor of 28. Such a large difference in the SDR does,
however, not necessarily reflect the differences in soil erosion
rates.

Evans (1995) and Boardman (2006) point out that soil
losses derived in plot-scale experiments do not reflect erosion
taking place on the landscape scale. Evans (1995) found that
plot-scale soil losses are larger than soil losses in the land-
scape by a factor of 2 to 10 under comparable conditions.
The soil losses reported in Bamutaze (2010) were however
lower than the soil losses estimated by almost 90 % of all
used USLE models in this study and thus show an opposite
behavior.

Prasuhn et al. (2013), Warren et al. (2005), or Evans
(2002), among others, require that soil losses that were es-
timated by models must be supported by field-based obser-
vations. Bosco et al. (2015) emphasize the limitations of in-
field validation for large-scale studies. Bosco et al. (2014)
and Bosco et al. (2015) highlight the potential to employ
high-resolution satellite imagery and Google Earth or Google
Street View data for plausibility checks of soil loss estimates.
However, the verification (and falsification) of the absolute

magnitudes of soil loss estimates on large scales remains a
challenge.

5.5 Further considerations and limitations

In this study we only implemented a selection of methods
and primary data sources for the calculation of the USLE in-
put factors. Hence, we have to recognize that the performed
study does not provide a comprehensive picture of the un-
certainties that are introduced by different representations
of the USLE input factors. Albeit, the calculated ranges in
soil loss were substantial and considering additional realiza-
tions of USLE input factors can in the worst case increase the
ranges of calculated soil loss. The demonstrated procedure,
however, pinpoints the central weakness of the USLE. The
model can identify relative risks for soil erosion but fails to
predict exact magnitudes of soil loss. Eventually every mod-
eler must acknowledge the limitations of the USLE (some of
them we addressed at great length) and not overestimate the
predictive power of the model.

We are fully aware that such a comprehensive analysis is
very likely beyond the scope for most studies that employ
the USLE model, as in most applications the soil loss esti-
mation is only a small part of the entire analysis. Further,
extending such analysis to larger domains or increasing the
spatial resolution can be limited by available computation
and storage capacities. For instance, the entire ensemble of
USLE model representations in the present study comprised
11225× 14778× 1944 (∼ 322× 109) pixel values and re-
quired 2.74 TB distributed in SQlite databases on four sep-
arate hard drives to allow an efficient batch-wise analysis of
the model results.

We omitted the analysis of the conservation support or
management practice factor P in this study. For all USLE
model setups the P factor was globally set to a value of 1.
According to literature values, the application and mainte-
nance of support practise measures can substantially reduce
the soil erosion in erosion-prone landscapes. Conservation
measures, such as contour farming, strip cropping, or terrac-
ing reduces the calculated soil loss by a factor of up to 2,
4, and 10, respectively, depending on the slope on which the
measure was applied (Karamage et al., 2017; Shin, 1999).
Large-scale estimations of P and the implementation of the
P factor in large-scale soil loss assessments are almost ab-
sent, as only very limited spatial data are available on soil
conservation measures. Panagos et al. (2015d) generated a
spatial estimate for P for entire Europe, considering the ef-
fects of contouring, stone walls, and grass margins. Panagos
et al. (2015d) thereby used comprehensive spatial statistics
on soil conservation based on 270000 data points available
for Europe from the LUCAS database (LUCAS, 2012). Such
detailed data are, however, not available in all regions of
the world. Thus, other large-scale assessments omitted the
P factor and used a value of 1 globally (e.g., Borrelli et al.,
2017), assigned a reduced P value globally in the study do-
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main (Karamage et al., 2017), assigned global values for P

to specific land uses (Yang et al., 2003), or used land cover
and slope as a proxy for the P factor estimation (Fenta et al.,
2020). Such simplifications do not reflect the spatial distri-
butions of soil conservation measures that are actually ap-
plied in a (large-scale) study domain, although their impact
on large soil loss estimates can be substantial.

6 Conclusions

The USLE model, an empirical model to estimate the soil
loss by water erosion is widely applied in large-scale assess-
ments and was implemented in a case study to assess the soil
loss on the entire domain of Kenya and Uganda. Although the
USLE has a simple model structure and is therefore easy to
implement, the generation of spatially distributed estimates
of the USLE input factors for the study domain poses a major
challenge. Large-scale (remote-sensing) data products and
methods to employ them for the generation of the USLE
inputs greatly support soil loss assessments on large scales.
We generated sets of realizations for each USLE input factor
and combined them with 972 USLE model setups to com-
pute spatially distributed soil loss estimates for Kenya and
Uganda. Based on the generated USLE model combinations
we analyzed and quantified the impacts of frequently used
methods to calculate USLE inputs on the uncertainties in the
soil loss estimation with the USLE model.

Overall, but particularly in erosion-prone areas of the
study domain, the calculated ranges of soil loss showed large
values. In many cases, especially in areas with high soil
losses, the calculated ranges exceeded the mean soil loss by
greater than 1 order of magnitude. To condense the informa-
tion provided by the USLE model ensemble, we proposed
classifying the soil loss into the soil levels slight, moder-
ate, high, and severe, employing common soil loss thresholds
from the literature. The classification allowed us to utilize the
USLE ensemble predictions to analyze but consider the “cer-
tainty” of the prediction simultaneously. The employed ap-
proach enabled us to identify zones with a high soil loss but
also areas where the agreement in the USLE model ensemble
is low, and it thus suggests an evaluation and/or plausibility
checks for the simulations.

A sensitivity analysis of the soil loss predictions was per-
formed to identify the USLE input factors that introduce
the strongest impact on the uncertainties of the soil loss es-
timates. The analysis identified clear patterns on the large
scale for the input factors C and K , where the C factor is
more relevant for areas with denser vegetation and the K

factor showed a greater importance for the calculation of the
soil loss in dry less densely vegetated areas. The LS factor
showed very scattered patterns in complex topographies and
was relevant for the uncertainties of the calculated soil loss
in sloped terrain.

The comparison of the USLE ensemble soil loss estimates
to single USLE model implementations illustrate the advan-
tages of an ensemble over single model studies. While the
ensemble members provide a reference to other USLE input
combinations, with a single model no reference is given to
evaluate the calculated magnitudes in soil loss.

A validation of simulated soil loss on large-scale domains,
employing in-field assessments from the literature, poses a
challenge, and in this study no clear conclusions can be
drawn for the ensemble soil loss estimates when they were
compared to soil loss observations. Thus, the comparison
failed to falsify any of the generated USLE model combi-
nations that would allow us to exclude ensemble members to
ultimately reduce the soil loss prediction uncertainties. Ma-
jor issues for a valid comparison are the differing origins of
the in-field soil loss data as well as spatial and temporal lim-
itations of the observed data.

Although available computational and time resources will
naturally limit such an analysis of soil loss predictions in
most studies that employ the USLE model, the findings
clearly highlight the importance of critically viewing and an-
alyzing single USLE model predictions, as the resulting soil
loss estimates are highly sensitive to the combinations of re-
alizations of the USLE model inputs. We further question
the aptitude of soil loss assessments based on in-stream sed-
iment yields or small-scale plot experiments to be valid data
for the evaluation of soil loss estimates. We should think of
new approaches to validate soil loss estimates that employ
large-scale data that are now available. Bosco et al. (2014)
outline a method to employ satellite imagery to check the
plausibility of large-scale soil loss assessments.
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